
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 22647–22662
November 12-16, 2024 ©2024 Association for Computational Linguistics

Knowledge Graph Enhanced Large Language Model Editing
Mengqi Zhang1* , Xiaotian Ye2*, Qiang Liu3 , Pengjie Ren1†, Shu Wu3†, Zhumin Chen1

1School of Computer Science and Technology, Shandong University
2School of Computer Science, Beijing University of Posts and Telecommunications

3New Laboratory of Pattern Recognition (NLPR)
State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS)

Institute of Automation, Chinese Academy of Sciences
{mengqi.zhang, renpengjie, chenzhumin}@sdu.edu.cn

yexiaotian@bupt.edu.cn
{qiang.liu,shu.wu}@nlpr.ia.ac.cn

Abstract
Large language models (LLMs) are pivotal in
advancing natural language processing (NLP)
tasks, yet their efficacy is hampered by in-
accuracies and outdated knowledge. Model
editing emerges as a promising solution to ad-
dress these challenges. However, existing edit-
ing methods struggle to track and incorporate
changes in knowledge associated with edits,
which limits the generalization ability of post-
edit LLMs in processing edited knowledge.
To tackle these problems, we propose a novel
model editing method that leverages knowledge
graphs for enhancing LLM editing, namely
GLAME. Specifically, we first utilize a knowl-
edge graph augmentation module to uncover
associated knowledge that has changed due to
editing, obtaining its internal representations
within LLMs. This approach allows knowledge
alterations within LLMs to be reflected through
an external graph structure. Subsequently, we
design a graph-based knowledge edit module to
integrate structured knowledge into the model
editing. This ensures that the updated param-
eters reflect not only the modifications of the
edited knowledge but also the changes in other
associated knowledge resulting from the edit-
ing process. Comprehensive experiments con-
ducted on GPT-J and GPT-2 XL demonstrate
that GLAME significantly improves the gen-
eralization capabilities of post-edit LLMs in
employing edited knowledge.

1 Introduction

Large language models (LLMs) have achieved im-
pressive results in various natural language process-
ing (NLP) tasks (Wan et al., 2024; Xia et al., 2024;
Zhang et al., 2024a), attributed to their generaliza-
tion capabilities and extensive world knowledge
(Zhao et al., 2023). However, the knowledge en-
coded in LLMs is often outdated or factually inac-
curate, which constrains their utility in real-world

*The first two authors contribute equally.
†To whom correspondence should be addressed.

Lebron James Miami Heat

LakersLebron James

Plays for

Plays for

Edit

Lebron James Miami

Los AngelesLebron James

Lives in

Lives in

Lebron James Miami

Los AngelesLebron James

Works in

Works in

Figure 1: An example of model editing for LLMs. Edit-
ing target knowledge leads to changes in its associated
knowledge.

applications. To address these limitations, model
editing techniques have been introduced as a more
efficient and targeted approach for updating the
knowledge embedded within LLMs, a topic that
has attracted significant research attention in recent
years.

Model editing primarily comprises two
categories of methods: parameter-preserving
and parameter-modifying methods. Parameter-
preserving methods typically involve storing edited
examples or knowledge parameters externally to
adjust model outputs, as seen in SERAC (Mitchell
et al., 2022). In contrast, parameter-modifying
approaches directly alter the LLM’s internal
parameters, and can be categorized into three
main types: fine-tuning-based approaches like
FT-L (Zhu et al., 2020), meta-learning-based
approaches such as KE (De Cao et al., 2021) and
MEND (Mitchell et al., 2021), and locate-then-edit
approaches, including ROME (Meng et al., 2022a)
and MEMIT (Meng et al., 2022b).

While these methods demonstrate promising re-
sults in knowledge editing of LLMs, they still face
the challenge of capturing the associated knowl-
edge changes related to edited knowledge. Specifi-
cally, existing work primarily focuses on the editing
of target knowledge, such as modifying knowledge
from (s, r, o) to (s, r, o∗). However, such single-
knowledge modification often triggers a series of

22647

consequential alterations in associated knowledge.
As shown in Figure 1, an edit that changes the
knowledge from “LeBron James plays for the Mi-
ami Heat” to “LeBron James plays for the Los
Angeles Lakers” would necessitate a corresponding
update from “LeBron James works in Miami” to
“LeBron James works in Los Angeles”. Existing
editing methods fail to account for the impact on
associated knowledge resulting from the modifica-
tion of target knowledge, which limits the general-
izability of post-edited LLMs in processing such
edited knowledge. The black-box nature of LLMs
makes capturing the associations between pieces of
knowledge within the models exceedingly complex,
further challenging the detection of such associated
knowledge changes during editing.

To deal with the above challenge, we propose a
novel locate-then-edit method enhanced by knowl-
edge Graphs for LArge language Model Editing,
namely GLAME. Specifically, for each target edit
knowledge, we first present a knowledge graph aug-
mentation (KGA) module (§4.1) to construct a sub-
graph that captures the new associations resulting
from the edit. Directly editing high-order relation-
ships from the subgraph into LLMs in a simplistic
way requires multiple alterations to the models and
might disrupt the targeted edited knowledge, po-
tentially exerting significant adverse effects and
diminishing post-edit model performance (§5.2).
Therefore, we further develop a graph-based knowl-
edge edit (GKE) module (§4.2) that integrates the
subgraph encoding into the rank-one model edit-
ing framework. With just a single edit, it ensures
that the edited parameters can recognize not only
the edited knowledge but also the broader scope of
knowledge impacted by such edits.

We summarize our contributions as follows:

• We emphasize and investigate the necessity
of capturing the changes of associated knowl-
edge induced by edited knowledge in model
editing.

• We integrate knowledge graphs into model
editing and propose a novel and effective edit-
ing method to structure knowledge changes
induced by editing and incorporate them into
specific parameters.

• We conduct extensive experiments on GPT-2
XL and GPT-J, which demonstrate the effec-
tiveness of our proposed model.

2 Related Work

In this section, we introduce related work on model
editing, which aims to incorporate new knowl-
edge into LLMs or modify their existing internal
knowledge while minimizing the impact on unre-
lated knowledge. Model editing methodologies
can be broadly classified into two categories (Yao
et al., 2023): parameter-preserving and parameter-
modifying methods.

2.1 Parameter-preserving Methods

Parameter-preserving methods typically augment
LLMs with external memory modules or exter-
nal knowledge base, thereby offering a pathway
to knowledge updates without modifying the pa-
rameters of LLMs. For example, SERAC (Mitchell
et al., 2022) method introduces a gating network in
conjunction with an additional model specifically
designed to manage edited knowledge. However,
these approaches share a fundamental limitation
in scalability: the external model’s management
complexity escalates with each additional edit, po-
tentially hampering its practical applicability.

2.2 Parameter-modifying Methods

Parameter-modifying methods directly alter the
internal parameters of LLMs to incorporate new
knowledge, including meta-learning, fine-tuning-
based, and locate-then-edit approaches.

Meta-learning methods train a hyper-network to
generate updated weights for LLMs. KE (De Cao
et al., 2021) is one of the earliest methods, utilizing
a bi-directional LSTM to predict weight changes.
However, its scalability is constrained by the large
parameter space of modern models. To address this,
MEND (Mitchell et al., 2021) adopts a low-rank
decomposition of fine-tuning gradients, offering an
efficient mechanism for updating weights in LLMs.

Fine-tuning-based methods modify the inter-
nal parameters of LLMs through supervised fine-
tuning. Recent work, such as (Gangadhar and
Stratos, 2024), leverage LoRA (Hu et al.) com-
bined with data augmentation techniques to fine-
tune LLMs, effectively achieving targeted knowl-
edge editing.

Locate-then-edit methods aim for more inter-
pretable and precise knowledge editing by target-
ing parameters directly associated with specific
information. The early attempts include KN (Dai
et al., 2022), which proposes a knowledge attri-
bution method to identify knowledge neurons but

22648

falls short in making precise changes to the model’s
weights. Subsequently, the progress in compre-
hending the fundamental mechanism of Trans-
former (Vaswani et al., 2017) models has intro-
duced the hypothesis that the Feed Forward Net-
work (FFN) modules might function as key-value
memories (Geva et al., 2021, 2023), thereby laying
the groundwork for more precise editing strategies.
The ROME (Meng et al., 2022a) method, building
on this insight, employed causal tracing to pinpoint
knowledge-relevant layers and then edit its FFN
module, achieving superior outcomes. Building
upon this, MEMIT (Meng et al., 2022b) tackles
batch editing tasks, enabling large-scale knowledge
integration.

Despite these advancements, all of the above
models primarily concentrate on editing isolated
pieces of knowledge, overlooking the potential rip-
ple effects across the model’s knowledge base (Co-
hen et al., 2024; Zhang et al., 2024b). This omis-
sion can impair the model’s generalization ability
post-editing and hinder its capacity for further rea-
soning with newly integrated knowledge (Zhong
et al., 2023). .

3 Preliminaries

In this section, we introduce the definition of model
editing and knowledge graphs, and the rank-one
model editing framework used in our study.

Definition 1 (Model Editing for LLMs). Model
editing (Yao et al., 2023) aims to adjust an LLM
F’s behavior to modify the knowledge (s, r, o)
encoded in the model into the target knowledge
(s, r, o∗), where knowledge is denoted as a triple,
consisting of the subject s, relation r, and ob-
ject o. Each edit sample e can be represented as
(s, r, o, o∗). The post-edit LLM is defined as F ′.

Definition 2 (Knowledge Graph). A knowledge
graph (KG) (Ji et al., 2021) stores structured knowl-
edge as a collection of triples {(s, r, o) ⊆ E ×R×
E}, where E andR represent the set of entities and
relations, respectively.

3.1 Rank-one Model Editing Framework

Rank-one model editing (ROME) (Meng et al.,
2022a) is a Locate-then-edit method, this method
assumes that the factual knowledge is stored in the
Feedforward Neural Networks (FFNs), conceptu-
alizing as key-value memories (Geva et al., 2021;
Kobayashi et al., 2023). Specifically, the output of
the l-th layer FFN for the i-th token is formulated

as:
ml

i = f(Wl
in · hl−1

i) ·Wl, (1)

where f(·) denotes the activation function, and
hl−1
i is the input of FFN. To facilitate representa-

tion, we omit the superscript l in the subsequent
discussion.

In this setup, the output of the first layer, f(Win·
hi), serves as the keys denoted as ki. The outputs
of the subsequent layer represent the corresponding
values. Based on the hypothesis, this method uti-
lizes casual tracing (Pearl, 2022; Vig et al., 2020) to
select a specific FFN layer for editing, thereby up-
dating the weight W of the second layer by solving
a constrained least-squares problem:

minimize ∥WK−M∥,
subject to Wk∗ = m∗.

(2)

Here, the objective function aims to maintain
the knowledge, irrelevant to the edited sam-
ple unchanged within the LLM, where K =
[k1;k2; , . . . , ;kp] denotes the sets of keys encod-
ing subjects unrelated to the edited fact, and M =
[m1;m2; , . . . , ;mp] are the corresponding values.
The constraint is to ensure that edited knowledge
can be incorporated into the FFN layer, specifically
by enabling the key k∗ (encoding subject s) to re-
trieve the value m∗ about the new object o∗.

As explicated in (Meng et al., 2022a), a closed-
form solution to the above optimization problem
can be derived:

Ŵ = W +
(m∗ −Wk∗)(C−1k∗)T

(C−1k∗)Tk∗
, (3)

where C = KKT represents a constant matrix, pre-
cached by estimating the uncentered covariance of
k based on a sample of Wikipedia text (Appendix
E). Therefore, solving the optimal parameter Ŵ is
transformed into calculating k∗ and m∗.

Extending this framework, our research delin-
eates a method to integrate graph-structured knowl-
edge, newly and intrinsically associated with the
edited knowledge, into the editing of model param-
eters. We will provide a detailed description of our
approach in the following sections.

4 Methodology

In this section, we introduce the proposed GLAME,
the architecture of which is illustrated in Figure 2.
The framework comprises two key components:

22649

Attn!

FFN!

Relational
GNN

+

Transformer Layer

Transformer Layer

……Pr
ob
ab
ili
ty 𝑜∗

(𝑠, 𝑟, 𝑜, 𝑜∗)

Knowledge Graph Augmentation Graph-based Knowledge Edit

LLM

...

+
External

Knowledge Graph

……

𝑠 𝑜∗
𝑜

...

𝐖!" 𝐤∗ 𝐖 𝐦∗ 𝐡$#

Figure 2: An illustration of GLAME architecture. We first utilize a Knowledge Graph Augmentation module
to sample a high-order subgraph, recording the associated knowledge of changes caused by the edit (s, r, o, o∗).
Subsequently, the entities and relations within the subgraph are encoded using the LLM, from which hidden vectors
are extracted from the early layers as the initial representations of the entities and relations in the subgraph. Then,
the well-designed Graph-based Knowledge Edit module leverages a relational graph neural network to incorporate
new knowledge associations from the subgraph into the parameter editing process.

(1) Knowledge graph augmentation (KGA), which
associates the knowledge of internal changes in
LLMs by utilizing external knowledge graphs, and
(2) Graph-based knowledge edit (GKE), which in-
jects knowledge of edits and edit-induced changes
into specific parameters of LLMs.

4.1 Knowledge Graph Augmentation

To accurately capture the changes in associated
knowledge induced by editing in LLMs, we pro-
pose using external knowledge graphs. This ap-
proach is divided into two operational parts: First,
it leverages an external knowledge graph to con-
struct a subgraph, capturing the altered knowledge.
Then, the LLM is employed to extract the corre-
sponding representations of entities and relations
within this subgraph, serving as the initial represen-
tations.

4.1.1 Subgraph construction
We first introduce how to utilize an external knowl-
edge graph to construct a subgraph that encapsu-
lates the newly formed associations due to the edit.

Specifically, for a given target edit sample e =
(s, r, o, o∗), we initially employ o∗ to match the
most relevant entity within an external knowl-
edge graph, such as Wikipedia1. This step is
followed by the sampling of neighboring entities
and their relations centered on this entity, repre-

1https://www.wikipedia.org/

sented as (o∗, r1, o1), (o∗, r2, o2), · · · , (o∗, rn, om).
These are used to construct new two-order rela-
tionships: (s, r, o∗, r1, o1), (s, r, o∗, r2, o2), · · · ,
(s, r, o∗, rn, om), thereby generating new associ-
ated knowledge as a consequence of editing. Here
m denotes the maximum number of samples for
each entity. Following this approach, we can se-
quentially sample the neighboring entities of o1,
o2, · · · , om, thereby constructing higher-order new
knowledge associations for s. We define the maxi-
mum order of the newly constructed relationships
as n. The target edit knowledge (s, r, o∗), along
with these new high-order relations, forms a sub-
graph, termed Gmn (e), which can record changes
in associated knowledge partially caused by edit-
ing knowledge. n is also the maximum order of
the subgraph, and together with m serve as hyper-
parameters to control the size of the graph.

4.1.2 Subgraph initialization

To further explicitly associate the knowledge within
the LLM that is affected by the edit, we extract hid-
den vectors of entities and relations from the early
layers of LLM (Geva et al., 2023) as the initial
representations for entities and relations in the con-
structed subgraph.

In specific, we input entity and relation text into
the LLM separately, and then select the hidden state
vector of the last token of both the entity and the
relation text in k-th layer as their initial representa-

22650

https://www.wikipedia.org/

tions in the subgraph:

zs, zr, zo = hk
s,h

k
r,h

k
o, (4)

where hk
x is the hidden state vector of the last

token of text x at the k-th layer of the LLM.

4.2 Graph-based Knowledge Edit
After obtaining the knowledge-enhanced subgraph,
this section designs a graph-based knowledge edit
module to integrate the new associated knowledge
contained in the subgraph into the modified param-
eters of the LLM.

4.2.1 Subgraph encoding
To enhance the subject s with the newly constructed
associated knowledge resulting from the editing of
target knowledge, we perform message propaga-
tion and aggregation operations on the subgraph
through a relational graph convolutional network
(RGCN) (Schlichtkrull et al., 2018).

Formally, we encode the subgraph as follows:

zl+1
s = g

(∑

o∈Ns

W1

(
zlo + zr

)
+W2z

l
s

)
, (5)

whereNs is the set of neighbors of s in Gmn (e), g(·)
is the ReLU function, W1 and W2 ∈ Rd×d are
trainable weight parameter matrices in each layer,
and z0s , z0o, and zr are the corresponding entity and
relation representations obtained from §4.1.2. To
capture the semantic dependencies among nodes
in the subgraph comprehensively, the number of
layers of RGCN is set to the subgraph’s maximum
order n, yielding the entity representation zns after
n-layer operation.

4.2.2 Knowledge editing
Following the ROME framework (Meng et al.,
2022a), in this subsection, we target specific layer
l for the computation of m∗ and k∗. Subsequently,
we employ Equation (3) to update the parameters
of the second layer of the FNN, thereby accom-
plishing the editing of knowledge.
Computing m∗. Given that zns aggregates the in-
formation of neighbors under new association rela-
tions, we utilize zns to enhance the representation
at the last token of s in l-th FFN layer of the LLM:

m∗ = ml
s + zns , (6)

where ml
s denotes the output from the l-th FFN at

the last token of s in the LLM. Further details of
the FFN are delineated in Equation (1).

For each edit sample (s, r, o, o∗), our objective
is to refine an RGCN to produce an enhanced repre-
sentation, m∗, that enables the LLM to accurately
predict the target object o∗. Accordingly, the pri-
mary loss function is defined as:

Lp = −
1

N

N∑

j=1

log PF(ml
s:=m∗)[o

∗ | xj ⊕ p(s, r)],

where xj is the random prefix generated by the
LLM to foster optimization robustness. F(ml

s :=
m∗) indicates the LLM’s inference alteration
through the hidden state ml

s modification to m∗.
To mitigate the impact of enhancing s on its

intrinsic properties within the LLM, we aim to min-
imize the KL divergence between F(ml

s := m∗)
and the original model F without any interventions
(Meng et al., 2022a):

La = DKL

(
PF(ml

s:=m∗)[x | p′] ∥ PF [x | p′]
)
,

where p′ denotes prompts in the form of "subject is
a". This term serves as a regularization loss.

Ultimately, the parameters of the RGCN are opti-
mized by minimizing the following objective func-
tion:

L = Lp + λLa, (7)

where λ adjusts the regularization strength. It is
important to note that throughout the optimization
process, the parameters of the LLM remain un-
changed. The modification is instead focused on
optimizing the parameters of the RGCN, which in
turn influences the inference of the LLM.
Computing k∗. For each edit sample (s, r, o, o∗),
the k∗ is calculated by

k∗ =
1

N

N∑

j=1

f(Wl
in · hl−1

s). (8)

Here, we also utilize N random prefixes generated
in the same manner as for the computing m∗ (Meng
et al., 2022a).

After obtaining the optimized m∗ and k∗, we
bring them into Equation (3) and then get the edited
parameter Ŵ. Algorithm 1 provides the pseudo-
code of the overall framework.

5 Experiments

In this section, we evaluate our editing method
graphs for large language model editing (GLAME)

22651

by applying it to three datasets and assessing its
performance on two auto-regressive LLMs. We
aim to answer the following questions through ex-
periments.

• Q1: How does GLAME perform in edit-
ing knowledge compared with state-of-the-art
model editing methods?

• Q2: How do different components affect the
GLAME performance?

• Q3: How sensitive is GLAME with different
hyper-parameter settings?

5.1 Experimental Setups
5.1.1 Datasets and Evaluation Metrics
We evaluate our GLAME on three representa-
tive datasets in our experiments: COUNTERFACT

(Meng et al., 2022a), COUNTERFACTPLUS (Yao
et al., 2023), and MQUAKE (Zhong et al., 2023).

COUNTERFACT is a dataset that focuses on in-
serting counterfactual knowledge into models. We
utilize three metrics on this dataset: Efficacy Score,
measuring the success rate of edits directly; Para-
phrase Score, indicating the model’s ability to ac-
curately recall edited knowledge in paraphrased
forms, thus testing its generalization ability; and
Neighborhood Score, assessing whether irrelevant
knowledge in the LLM is disturbed.

COUNTERFACTPLUS, an extension of COUN-
TERFACT, presents more challenging test questions
aimed at evaluating the post-edit models’ ability to
accurately respond to queries requiring reasoning
with edited knowledge. Compared with COUNTER-
FACT, this assessment has higher requirements for
generalization ability. Following (Yao et al., 2023),
we employ Portability Score to evaluate the perfor-
mance of all methods on this dataset. This metric
offers a superior reflection of the LLMs’ ability to
utilize both the edited knowledge and its associated
information compared to other indicators.

MQUAKE is a more challenging dataset that
also focuses on evaluating models’ ability to per-
form further reasoning using newly edited knowl-
edge. Each entry in this dataset may involve multi-
ple edits and contain multi-hop reasoning questions
that require reasoning from 2 to 4 hops to answer
correctly, posing stricter requirements on the post-
model’s generalization capability.

Further details on COUNTERFACT, COUNTER-
FACTPLUS, and MQUAKE, as well as the evalua-
tion metrics are shown in Appendix B and C.

5.1.2 Baselines
Our experiments are conducted on GPT-2 XL
(1.5B) (Radford et al., 2019) and GPT-J (6B)
(Wang and Komatsuzaki, 2021), and we compare
GLAME with the following state-of-the-art editing
methods: Constrained Fine-Tuning (FT-L) (Zhu
et al., 2020), MEND (Mitchell et al., 2021), ROME
(Meng et al., 2022a), and MEMIT (Meng et al.,
2022b). To further verify the superiority of our
graph-based editing method, we also compare our
method with two variant models ROME-KG and
MEMIT-KG. These models utilize ROME and
MEMIT, respectively, to directly edit the new high-
order relations, (s, r, o∗, r, o1), · · · , (s, r, o∗, r, on)
constructed as described in §4.1.1 and arising from
the edited knowledge (s, r, o, o∗), into the LLM.
We provide implementation details of baselines
and GLAME in Appendix D.

5.2 Performance Comparison (RQ1)

5.2.1 Resluts on COUNTERFACT and
COUNTERFACTPLUS

The performance of all editors on the COUNTER-
FACT and COUNTERFACTPLUS is presented in
Table 1. From the results, we have the following
observations:

Our model GLAME secures the highest perfor-
mance on the comprehensive evaluation metric, the
Editing Score, surpassing other editors across most
evaluation metrics. Specifically, GLAME exhibits
enhancements of 11.76 % and 10.98 % in Portabil-
ity Score over the best baseline models for GPT-2
XL and GPT-J, respectively. This demonstrates
that our method can effectively improve the gen-
eralization ability of post-edit LLM in utilizing
edited knowledge, particularly in multi-hop reason-
ing, by effectively introducing external knowledge
graphs. GLAME, ROME, and MEMIT, are signifi-
cantly better than other methods in Paraphrase and
Neighborhood Scores. The reason might be these
methods impose explicit constraints on editing
knowledge recall and retention of editing-irrelevant
knowledge. Although MEND and FT-L can accu-
rately recall edited knowledge and achieve com-
mendable results on the Efficacy Score, their lack
of precision during the editing process leads to
poor performance on Paraphrase, Neighborhood,
and Portability Scores compared to other editors.

ROME-KG and MEMIT-KG, compared to
ROME and MEMIT, demonstrate a notable degra-
dation in performance. This indicates that sim-

22652

Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GPT-2 XL (1.5B) 22.20 24.70 78.10 10.18 20.35

FT-L 99.10 48.70 70.30 15.13 36.05
MEND 99.10 65.40 37.90 11.15 28.28
ROME 99.95 96.48 75.44 21.43 49.82

ROME-KG 73.85 72.41 74.65 5.24 17.27
MEMIT 93.79 80.22 77.05 18.71 44.67

MEMIT-KG 53.09 45.28 77.90 9.99 26.00
GLAME 99.84 96.62 76.82 23.95 53.24

GPT-J (6B) 16.30 18.60 83.00 11.44 18.64

FT-L 99.60 47.90 78.60 17.84 40.12
MEND 97.40 53.60 53.90 12.99 32.14
ROME 100.00 99.27 79.00 29.67 60.21

ROME-KG 68.90 67.12 78.59 13.68 34.55
MEMIT 100.00 95.23 81.26 29.77 60.24

MEMIT-KG 53.75 40.22 82.80 8.63 23.33
GLAME 100.00 99.30 81.39 33.04 63.87

Table 1: Performance comparison on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and
Neighborhood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%). The Editing Score (%) is the
harmonic mean of the four evaluation metrics. The best performance is highlighted in boldface, and the second-best
is underlined. Gray numbers indicate a clear failure on the corresponding metric.

ply adding extra external information for editing
does not guarantee improved performance. Specifi-
cally, ROME-KG requires multiple adjustments to
the model’s parameters to edit high-order relation-
ships, potentially harming the original parameters.
MEMIT-KG’s unconstrained incorporation of vast
amounts of information into the LLM may compro-
mise the editing of target knowledge. In contrast,
GLAME, by developing an editing method tailored
for graph structures, incorporates multiple pieces
of associated knowledge altered due to editing into
the model with just a single edit. This approach
not only maintains the precision of edits but also
substantially improves the efficiency of leveraging
external knowledge graphs.

5.2.2 Results on MQUAKE
To further demonstrate the capability of GLAME in
capturing the associated knowledge changes due to
edits, we compare our GLAME with two competi-
tive baseline models, ROME and MEMIT, on the
more challenging MQUAKE (Zhong et al., 2023)
dataset. The results are shown in Table 2. From
the results, we find that our GLAME achieves sig-
nificant improvements over ROME and MEMIT
across questions of varying hops. With an increase
in the number of hops, which necessitates a greater

utilization of edited knowledge, the performance
of all editing methods begins to decline. However,
GLAME exhibits the highest relative improvement
on 4-hop questions than SOTA methods, which is
likely attributed to our model’s effective capture
of associative knowledge, enabling it to construct
a more solid knowledge representation. Such an
advantage becomes significant in the context of 4-
hop questions, where the complexity of reasoning
is markedly higher. This emphatically validates the
effectiveness of our model in improving the post-
edit model’s generalization capacity in processing
edited knowledge.

5.3 Ablation Studies (RQ2)

To investigate the superiority of each component of
our method, we compare GLAME with different
variants: GLAME w/ GCN, which omits RGCN’s
relational information and employs a GCN (Kipf
and Welling, 2017) for subgraph encoding in the
GKE module; GLAME w/ RGAT, which utilizes
relational graph attention mechanism (Lv et al.,
2021) for subgraph encoding; GLAME w/ MLP,
which neglects graph structural information, rely-
ing solely on MLP for encoding entity representa-
tions within the GKE module; and GLAME w/o
GKE, which removes the GKE module and degen-

22653

Editor Average Score 2-hops 3-hops 4-hops

GPT-2 XL (1.5B) 21.29 25.13 23.3 15.43

ROME 29.70 39.80 31.07 18.23
MEMIT 26.52 35.87 27.70 16.00
GLAME 31.48 41.83 32.10 20.50

∆Improve 5.98% 5.10% 3.32% 12.45%

GPT-J (6B) 16.83 15.80 23.60 11.10

ROME 33.15 42.80 38.37 18.27
MEMIT 27.46 35.77 33.03 13.57
GLAME 35.11 44.13 39.87 21.33

∆Improve 5.92% 3.11% 3.91% 16.75%

Table 2: Performance comparison of editors on multi-
hop questions of MQUAKE dataset in terms of Efficacy
Score (%).

erates into the ROME. The results are shown in
Table 3 and we have the following observations:

GLAME outperforms both GLAME w/ MLP
and GLAME w/o GKE on most evaluation met-
rics, especially in Portability Score and Editing
Score. This confirms that integrating structured
knowledge altered through the GKE module ef-
fectively enhances the generalization ability of the
post-edit model. Additionally, GLAME w/ MLP,
GLAME w/ RGAT, and GLAME w/ GCN also
achieve better performance in Editing Score com-
pared to GLAME w/o GKE. These improvements
verify that the effective incorporation of external
information: the hidden state vector of the sub-
ject entity and its neighbors from the early layers
of LLM, contributes to the performance of edits.
Furthermore, compared to GLAME w/ GCN, the
performance of GLAME is further improved, high-
lighting the importance of relations in LLM’s recog-
nition of complex graph-structured knowledge as-
sociations. However, compared to GLAME, the
performance of GLAME w/ RGAT declines. This
decline could be due to the complexity of RGAT’s
structure and parameters, which poses challenges
to its optimization process.

5.4 Sensitivity Analysis (RQ3)

To further explore the sensitivity of GLAME to im-
portant hyper-parameters, we examine the impact
of key hyperparameters, the maximum order n of
subgraph, and the maximum number m of sam-
pled neighbors, on the performance of GLAME.
Further results are described in Appendix F.

5.4.1 Effect of maximum subgraph order n

Subgraph construction is a vital operation of the
knowledge graph augmentation module (§4.1.1).

0 1 2 3
n

48

50

52

21

22

24

Edit.Score(%)

Port.Score(%)

(a) GPT-2 XL

0 1 2 3
n

60

62

64

30

32

33

Edit.Score(%)

Port.Score(%)

(b) GPT-J

Figure 3: Performance of GLAME with different sub-
graph order n in terms of Edit.Score and Prot.Scores.

10 20 30 40
m

50

52

54

20

22

24

Edit.Score (%)

Port.Score (%)

(a) GPT-2 XL

10 20 30 40
m

60

62

64

30

32

34

Edit.Score (%)

Port.Score (%)

(b) GPT-J

Figure 4: Performance of GLAME with different maxi-
mum number m of neighbors in terms of Edit.Score and
Prot.Score.

The maximum order of the subgraph decides
the scope of associated knowledge affected by
the edited knowledge. In this part, we conduct
GLAME with different subgraph order n in the
GKE module on GPT-2 XL and GPT-J in terms of
Editing and Portability Score. We set n in the range
of {0, 1, 2, 3}. The results are shown in Figure 3.
The main observations are as follows:

Increasing the maximum subgraph order n sig-
nificantly improves the post-edit model perfor-
mance, peaking at n = 2 for two LLMs. GLAME
with n > 0 consistently outperforms GLAME with
n = 0. We attribute the improvement to the incor-
poration of associated knowledge that has been
altered due to editing. However, as the maximum
order exceeds 2 (n > 2), the post-model’s perfor-
mance begins to decline, which may be because
the use of higher-order information makes it easy
to introduce noise to the editing process.

5.4.2 Effect of the maximum number m of
neighbors

To further investigate how the size of subgraph
affects the editing performance, we conduct ex-
periments with GLAME, varying the maximum
numbers m of neighbors per node within the KAG
module on GPT-2 XL and GPT-J in terms of Edit-

22654

Editor Effi.Score Para.Score Neigh.Score Port.Score Edit.Score

GLAME w/ MLP 99.79 91.79 77.05 21.73 50.55
GLAME w/ GCN 99.79 94.95 77.02 22.59 51.41

GLAME w/ RGAT 99.80 93.71 76.93 21.56 49.95
GLAME w/o GKE 99.95 96.48 75.44 21.43 49.82

GLAME 99.84 96.62 76.82 23.95 53.24

GLAME w/ MLP 99.85 98.28 80.41 30.45 61.94
GLAME w/ GCN 100.00 98.20 81.03 30.16 60.90

GLAME w/ RGAT 100.00 98.50 80.76 30.94 61.68
GLAME w/o GKE 100.00 99.27 79.00 29.67 60.21

GLAME 100.00 99.30 81.39 33.04 63.87

Table 3: Ablation studies on COUNTERFACT in terms of Efficacy Score (%), Paraphrase Score (%), and Neighbor-
hood Score (%), and COUNTERFACTPLUS in terms of Portability Score (%).

ing and Portability Score. The results are depicted
in Figure 4. Specifically, we observe a consistent
improvement in editing performance as the number
of neighbors increased from 5 to 20 for GPT-2 XL,
and up to 25 for GPT-J. This suggests that incorpo-
rating more neighbors can enhance the representa-
tion of the central entity, so that the graph structure
may better reflect changes caused by edited knowl-
edge. However, as the m continued to increase,
the model’s performance began to decline. This
decline could be attributed to the introduction of
noise by an excessive number of neighboring nodes,
and the increased subgraph size may escalate the
optimization difficulty for the RGCN.

6 Conclusion

In this paper, we have proposed a novel
method GLAME for large language model edit-
ing. GLAME leverages a knowledge graph aug-
mentation module to capture the changes in associ-
ated knowledge by constructing an external graph.
Following this, we have introduced a graph-based
knowledge edit module that utilizes a relational
graph neural network to seamlessly integrate new
knowledge associations from the constructed sub-
graph into the LLM’s parameter editing framework.
Experimental results on two LLMs and extensive
analysis have demonstrated the effectiveness and
superiority of GLAME in model editing tasks.

Limitations

In this section, we discuss the limitations of our
GLAME.

The first limitation is that our framework’s re-
liance on knowledge graphs may be constrained by

the availability and quality of relevant knowledge.
In cases where related knowledge is scarce or the
knowledge graph is of low quality, the model’s per-
formance may suffer. Despite employing a simple
and straightforward subgraph sampling strategy,
we have achieved promising results. In the future,
we plan to develop more sophisticated subgraph
sampling strategies to enhance subgraph quality
and more accurately capture knowledge changes
resulting from editing. Additionally, these strate-
gies aim to increase sampling speed and reduce
subgraph size.

The second limitation is that our framework may
be restricted in some unstructured edit scenarios,
such as event-based knowledge editing or scenar-
ios with no explicit association to the knowledge
graph. In these scenarios, extracting key entities
is challenging, requiring additional entity extrac-
tion algorithms or tools to extract effective key
entities from the edit samples for subgraph con-
struction. Although these algorithms and tools are
well-developed, they may have limitations in terms
of efficiency or flexibility. In the future, we will de-
sign more flexible strategies to identify key entities
in edit samples and construct associated subgraphs,
extending our method to more general editing sce-
narios.

Ethical Considerations

We realize that there are risks in developing gener-
ative LLMs, so it is necessary to pay attention to
the ethical issues of LLMs. We use publicly avail-
able pre-trained LLMs, i.e., GPT-2 XL (1.5B) and
GPT-J (6B). The datasets are publicly available,
i.e., COUNTERFACT, COUNTERFACTPLUS, and

22655

MQUAKE. All models and datasets are carefully
processed by their publishers to ensure that there
are no ethical problems.

Acknowledgements

This work was supported by the Natural Sci-
ence Foundation of China (62472261, 62102234,
62372275, 62272274, 62202271, T2293773,
62072279, 62206291), the National Key R&D Pro-
gram of China with grant No.2022YFC3303004,
the Natural Science Foundation of Shandong
Province (ZR2024QF203, ZR2021QF129)

References
Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,

and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 12:283–298.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Annual Meeting of
the Association for Computational Linguistics, pages
8493–8502.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Con-
ference on Empirical Methods in Natural Language
Processing, pages 6491–6506.

Govind Krishnan Gangadhar and Karl Stratos. 2024.
Model editing by standard fine-tuning. In Findings
of the Association for Computational Linguistics ACL
2024, pages 5907–5913, Bangkok, Thailand and vir-
tual meeting. Association for Computational Linguis-
tics.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associ-
ations in auto-regressive language models. In Con-
ference on Empirical Methods in Natural Language
Processing, page 12216–12235.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 5484–
5495.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language
models. In International Conference on Learning
Representations.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE transactions on neural networks and learning
systems, 33(2):494–514.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2023. Feed-forward blocks control
contextualization in masked language models. arXiv
preprint arXiv:2302.00456.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen,
Wenzheng Feng, Siming He, Chang Zhou, Jianguo
Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we
really making much progress? revisiting, bench-
marking and refining heterogeneous graph neural
networks. In Conference On Knowledge Discovery
and Data Mining, page 1150–1160.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual associ-
ations in gpt. Annual Conference on Neural Informa-
tion Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. In International
Conference on Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Judea Pearl. 2022. Direct and indirect effects. In Prob-
abilistic and causal inference: the works of Judea
Pearl, pages 373–392.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In Extended Semantic Web Confer-
ence, pages 593–607.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Annual Conference on Neural Information
Processing Systems.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language

22656

models using causal mediation analysis. Annual Con-
ference on Neural Information Processing Systems,
33:12388–12401.

Mengting Wan, Tara Safavi, Sujay Kumar Jauhar, Yu-
jin Kim, Scott Counts, Jennifer Neville, Siddharth
Suri, Chirag Shah, Ryen W White, Longqi Yang,
et al. 2024. Tnt-llm: Text mining at scale with large
language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 5836–5847.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Yuwei Xia, Ding Wang, Qiang Liu, Liang Wang, Shu
Wu, and Xiao-Yu Zhang. 2024. Chain-of-history
reasoning for temporal knowledge graph forecasting.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 16144–16159.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Conference on
Empirical Methods in Natural Language Processing,
pages 10222–10240.

Jinghao Zhang, Yuting Liu, Qiang Liu, Shu Wu, Guib-
ing Guo, and Liang Wang. 2024a. Stealthy attack
on large language model based recommendation. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5839–5857.

Mengqi Zhang, Bowen Fang, Qiang Liu, Pengjie Ren,
Shu Wu, Zhumin Chen, and Liang Wang. 2024b. En-
hancing multi-hop reasoning through knowledge era-
sure in large language model editing. arXiv preprint
arXiv:2408.12456.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning,
Christopher Potts, and Danqi Chen. 2023. MQuAKE:
Assessing knowledge editing in language models
via multi-hop questions. In Conference on Empiri-
cal Methods in Natural Language Processing, page
15686–15702.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

A Pseudocode

Algorithm 1 provides the pseudo-code of our edit-
ing method GLAME.

Algorithm 1: Editing procedure
Input: LLM F ; Edit sample (s, r, o, o∗);

Initial RGCN parameters
Output: The post-edit F ′

/* Subgraph Graph Construction */
1 Obtain subgraph Gmn (e) from a external

knowledge graph and edit sample;
/* Subgraph initialization */

2 zs, zr, zo ← Eq (4), s, r, o ∈ Gmn (e) ;
/* Optimizing m∗ */

3 while not converged do
/* Subgraph encoding */

4 zns ← RGCN(Gmn (e)) , Eq (5);
/* Computing m∗ */

5 m∗ ← Eq (6) ;
/* Learning Objective */

6 L ← Lp + λLa, Eq (7);
7 Update parameters of RGCN.
8 end
/* Computing k∗ */

9 k∗ ← Eq (8);
/* Updating the parameters of the

FNN at the specified layer */

10 Ŵ← Eq (3);
11 Return post-edit LLM F ′

B Datasets Detail

B.1 Details of COUNTERFACT Dataset

Table 4 shows an example from the COUNTER-
FACT dataset. Each entry contains an edit re-
quest, several paraphrase prompts, and neighbor-
hood prompts. In this example entry, the edit
request aims to change the LLM’s knowledge
from Danielle Darrieux’s mother tongue is French
to Danielle Darrieux’s mother tongue is English,
where Danielle Darrieux corresponds to s, the
mother tongue of corresponds to r, French cor-
responds to o, and English corresponds to o∗ in
edit sample (s, r, o, o∗). Paraphrase prompts are
semantic variations of the target prompt Danielle
Darrieux’s mother tongue, while neighborhood
prompts are those that share the same relation with
the edit request but have different subjects, whose
knowledge should remain unchanged by the edit.

Our train/test dataset splits are kept the same as
(Meng et al., 2022a). Similarly, we evaluate our
method using the first 7500 records on GPT-2 XL,
and the first 2000 records on GPT-J. Note that for
methods not employing hypernetworks, including

22657

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Property Value

Edit Request The mother tongue of {Danielle Darrieux} is French→ English
Efficacy_prompt The mother tongue of Danielle Darrieux is
Paraphrase_prompt Where Danielle Darrieux is from, people speak the language of
Neighborhood_prompt Michel Rocard is a native speaker of

Table 4: An Example of COUNTERFACT dataset

our GLAME, there is no requirement for training
with the data from the training set.

B.2 Details of COUNTERFACTPLUS Dataset

The COUNTERFACTPLUS dataset serves as a sup-
plementary expansion of the original CounterFact
dataset, selecting 1031 entries as a subset of the
original data and enriching them with new test
questions based on the original content. Each entry
contains the same edit request as found in COUN-
TERFACT, with additional questions and answers
that require LLM to do further reasoning based on
the edited knowledge.

An example entry from the dataset is show-
cased in Table 5. In this example entry, the edit
request entails modifying the LLM’s knowledge
from Spike Hughes originates from London to
Spike Hughes originates from Philadelphia. This
edit introduces new knowledge associations, such
as (Spike Hughes, originates from, Philadelphia,
known for, cheesesteaks), leading to a multi-hop
question What famous food is associated with the
city where Spike Hughes originates from?. The
edited LLM should respond with the correct answer
Cheesesteaks for this multi-hop question, rather
than the original answer associated with the ques-
tion. The related knowledge association (Philadel-
phia, known for, Cheesesteaks) used to construct
the multi-hop question is labeled as “Recalled rela-
tion” in the dataset. In our work we primarily focus
on the multi-hop reasoning aspect, aiming to assess
GLAME’s capacity to capture relevant changes in
knowledge.

B.3 Details of MQUAKE Dataset

Similar to COUNTERFACTPLUS, MQUAKE is a
more challenging dataset that also focuses on eval-
uating models’ ability to perform further reason-
ing using newly edited knowledge. Each entry in
this dataset may involve multiple edits and contain
multi-hop reasoning questions that require reason-
ing from 2 to 4 hops to answer correctly, posing

stricter requirements on the post-model’s general-
ization capability.

Table 6 illustrates an example from MQUAKE
dataset. The example entry requires two edits to
the LLM, inserting new knowledge (Betty Carter,
plays, instrumental rock) and (USA, head of state,
Norodom Sihamoni). Accordingly, a 3-hop ques-
tion “Who is the head of state of the country from
which the music genre associated with Betty Carter
originated?” is constructed to assess the post-edit
LLM’s ability to employ edited knowledge and its
associated knowledge. Following (Zhong et al.,
2023), our evaluation also focuses on a subset of
3000 entries, evenly distributed across {2, 3, 4}-
hop questions, with each category comprising 1000
entries.

C Evaluation Metrics

We adopt three widely-used metrics (Meng et al.,
2022a,b), Efficacy Score, Paraphrase Score, and
Neighborhood Score to evaluate all editors on
COUNTERFACT dataset, and use Portability Score
(Yao et al., 2023) on COUNTERFACTPLUS dataset.
We utilize the harmonic mean of four metrics, Edit-
ing Score, to evaluate each editor’s overall capabil-
ities. Each metric is calculated as follows:

Efficacy Score is to test whether the post-edit
LLMs can correctly recall the new target entity
when given the edit prompt p(s, r). It is calculated
by

E [I [PF ′ (o∗ | p(s, r)) > PF ′ (o | p(s, r))]] .

Paraphrase Score measures the performance of
the post-edit LLM on rephase prompt set PP of
edit prompt p(s, r). The calculation is similar to
the Efficacy Score:

Ep∈PP [I [PF ′ (o∗ | p) > PF ′ (o | p)]] .

Neighborhood Score measures whether the
post-edit LLM assigns the higher probability to
the correct fact on the prompt set PN , which con-
sists of distinct but semantically similar prompts

22658

Property Value

Edit Request {Spike Hughes} originates from London→ Philadelphia
Recalled relation (Philadelphia, known for, cheesesteaks)
New Question What famous food is associated with the city where Spike Hughes originates from?
New Answer Cheesesteaks

Table 5: An Example of the COUNTERFACTPLUS dataset

Property Value

Edit Request A The type of music that {Betty Carter} plays is jazz→ instrumental rock
Edit Request B The name of the current head of state in {USA} is Donald Trump→ Norodom

Sihamoni
New Question Who is the head of state of the country from which the music genre associated

with Betty Carter originated?
Original Relation (Betty Carter, genre, jazz), (jazz, country of origin, United States of America),

(United States of America, head of state, Donald Trump)
Original Answer Donald Trump
New Relation (Betty Carter, genre, instrumental rock), (instrumental rock, country of origin,

United States of America), (United States of America, head of state, Norodom
Sihamoni)

New Answer Norodom Sihamoni

Table 6: An Example of MQUAKE dataset

p(s, r). The calculation is defined as:

Ep∈PN [I [PF ′ (o∗ | p) < PF ′ (o | p)]] .

This metric can assess the extent of the impact that
edits have on unrelated knowledge.

Portability Score measures the accuracy of the
post-edit model on the multi-hop question set P
about the edit sample:

Ep∈P
[
I
[
F ′(p) = o∗′)

]]
.

Given the challenges associated with evaluating the
data, the Portability Score provides a more accurate
reflection of the model’s generalization capabilities
compared to other metrics.

D Baselines

Our experiments are conducted on GPT-2 XL
(1.5B) (Radford et al., 2019) and GPT-J (6B)
(Wang and Komatsuzaki, 2021), and we compare
GLAME with the following state-of-the-art editing
methods:

Constrained Fine-Tuning (FT-L) (Zhu et al.,
2020) involves fine-tuning specific layers of the
LLM’s parameters directly using gradient descent,
while imposing a norm constraint on the weight
changes to prevent catastrophic forgetting.

MEND (Mitchell et al., 2021) constructs a hyper-
network based on the low-rank decomposition of
gradients to perform editing.

ROME (Meng et al., 2022a) is based on the
hypothesis that knowledge in LLMs is stored in
the FFN module, and uses optimization to update a
FFN layer to insert knowledge.

MEMIT (Meng et al., 2022b) builds on the
ROME method, specializing in batch-editing tasks
by performing edits on a range of FFN layers.

To further verify the superiority of our graph-
based editing method, we also compare our method
with two variant models ROME-KG and MEMIT-
KG. The two baselines aim to evaluate the perfor-
mance of directly adding the same amount of exter-
nal information to the LLM without using the GKE
module. For each record in our test dataset, we
construct edit requests that contain high-order rela-
tionships from the knowledge graph. For instance,
given the original edit content "Spike Hughes orig-
inates from London→Washington" and a related
knowledge graph triple (Washington, capital of,
United States of America), we then create a new
edit request to insert this knowledge into the LLM:
"Spike Hughes originates from Washington, capital
of United States of America", using either ROME

22659

or MEMIT.

E Implementation Details

We implement our GLAME method with Py-
Torch2 and the DGL3. Within the Knowledge
Graph Augmentation (KGA) module, we set the
maximum subgraph order n to 2 for both GPT-2 XL
and GPT-J, with the maximum number of sampled
neighbors m set to 20 for GPT-2 XL and 40 for
GPT-J. Hidden vectors for entities and relations are
extracted from the 5th layer of GPT-2 XL (k = 5)
and the 2nd layer of GPT-J (k = 2), respectively,
to initialize the subgraph representations. For the
GKE module, we perform editing operations on the
9th layer of GPT-2 XL (l = 9) and the 5th layer of
GPT-J (l = 5) based on ROME’s locating results.
The hidden embedding sizes for the RGCN are set
to 1600 for GPT-2 XL and 4096 for GPT-J. For
RGCN optimization, the AdamW (Loshchilov and
Hutter, 2018) optimizer is used with a learning rate
of 5× 10−1, the optimal regularization factor λ is
6.25 × 10−2 for COUNTERFACT and 7.5 × 10−2

for both COUNTERFACTPLUS and MQUAKE. To
prevent overfitting, we perform early-stop when
the loss is lower than 1× 10−2. Since our method
does not require an additional training set for train-
ing, we select important hyperparameters on the
training set. For the covariance matrix estima-
tion C, which represents the pre-computed keys
in a layer, we directly use the results computed by
ROME (Meng et al., 2022a), which is collected
using 100, 000 samples of Wikitext. The number
N of random prefixes generated for calculating m∗
and k∗ is to 50, serving as a method of data aug-
mentation for the original edits. For other baselines,
we conduct our experiment with the code imple-
mented by ROME (Meng et al., 2022a), and all
the settings of the baselines we compare, including
the hyperparameters, are consistent with (Meng
et al., 2022a,b). All experiments are conducted on
NVIDIA Tesla A100 (80G) and AMD EPYC 7742
CPU.

E.1 Wikidata Sampling Details

In the Knowledge Graph Augmentation (KGA)
module, we leverage Wikidata4 as an external
knowledge graph to construct a subgraph for each
edit sample (s, r, o, o∗). Specifically, we employ

2https://pytorch.org/
3https://www.dgl.ai/
4https://www.wikidata.org/

Wikidata’s API5 to perform a SPARQL query, re-
trieving all outgoing edges of the entity o∗. After
retrieving these edges, we prioritize the triples by
sorting them to foreground the most potentially
valuable information. This prioritization is based
on the frequency of each relation’s occurrence
across the dataset. Relations that appear less fre-
quently are deemed more valuable as they may
embody information of higher specificity or rarity,
similar to principles of information entropy where
less frequent occurrences convey more informa-
tion.

As datasets COUNTERFACT, COUNTERFACT-
PLUS, and MQUAKE are directly constructed
using Wikidata, each edited entity within these
datasets is linked with its corresponding Wikidata
item ID, allowing for precise sampling. Note that
in our experiments, the constructed subgraphs
are filtered to exclude the standard answers to
the multi-hop questions. This operation ensures
that the improvement in model performance is at-
tributed to an enhancement in the generalization
ability, rather than simply being influenced by spe-
cific answer patterns within the subgraphs.

E.2 Evaluation Details

In our experiments, we assessed the Efficacy Score,
Paraphrase Score, and Neighborhood Score on the
COUNTERFACT dataset following the method in
(Meng et al., 2022a). We used specific prompts
as inputs to the LLM and examined the model’s
prediction probabilities for both the original entity
o and the edited entity o∗. For the COUNTERFACT-
PLUS dataset, our assessment of the Portability
Score involved prompting the LLM with multi-hop
questions, and then verifying whether the output
generated includes the correct answers. To ac-
commodate variations in phrasing or synonyms be-
tween the model’s output and the standard answer,
fuzzy matching was employed. In practice, we uti-
lized the partial ratio algorithm from Fuzzywuzzy6

library, which calculates similarity based on the
Levenshtein distance. Regarding the MQUAKE
dataset, we adopt the Efficacy Score to evaluate the
effectiveness of different editing methods.

F Sensitivity Analysis

The maximum order of subgraph n and the max-
imum number m of sampled neighbors are two

5https://query.wikidata.org/sparql
6https://github.com/seatgeek/fuzzywuzzy

22660

https://pytorch.org/
https://www.dgl.ai/
https://www.wikidata.org/
https://query.wikidata.org/sparql
https://github.com/seatgeek/fuzzywuzzy

0 1 2 3
n

90

92

95

76

77

78

Para.Score(%)

Neigh.Score(%)

(a) GPT-2 XL

0 1 2 3
n

97

98

99

78

80

82

Para.Score(%)

Neigh.Score(%)

(b) GPT-J

Figure 5: Performance of GLAME with different sub-
graph order n in terms of Paraphrase and Neighborhood
Scores.

key hyper-parameters in GLAME. Figure 5 and 6
depict the performance of GLAME across various
n and m values, as measured by Paraphrase and
Neighborhood Score. From Figure 5, we observe
that increasing the order of the subgraph can en-
hance the post-edit model’s performance in terms
of the Paraphrase Score. This demonstrates that
incorporating more new associated knowledge with
edits can improve the generalization ability of the
post-edit model in processing edited knowledge. In
contrast, Neighborhood Score exhibits greater sta-
bility with respect to the value of n, indicating that
our editing method inflicts minimal harm on the
model’s original capabilities. In Figure 6, we can
find that the Paraphrase and Neighborhood Scores
are more stable than the Editing and Portability
Scores in Figure 4. This stability may be attributed
to the design of the loss function and those random
prefixes added during optimization, which impose
certain constraints on scenarios related to these two
metrics, resulting in more stable behavior as the
subgraph changes.

It is worth noting that when n = 1, the con-
structed subgraph will only include the subject
entity, relation and new object entity (denoted as
s − r − o∗). In this case, GLAME demonstrates
relatively better editing performance compared to
ROME and MEMIT, achieving an Editing Score of
51.68 on GPT2-XL and 62.27 on GPT-J. This im-
plies that even in the worst-case scenario, where no
related information about the entities to be edited
can be found in the external KG through the sub-
graph sampling, our GLAME can still perform ba-
sic editing and achieve better performance.

G Efficiency Analysis

The time overhead introduced by our proposed
GLAME mainly consists of subgraph sampling and

10 20 30 40
m

95

96

97

77

78

79

Para.Score(%)

Neigh.Score(%)

(a) GPT-2 XL

10 20 30 40
m

96

98

99

81

82

83

Para.Score(%)

Neigh.Score(%)

(b) GPT-J

Figure 6: Performance of GLAME with different max-
imum number m of neighbors in terms of Paraphrase
and Neighborhood Scores.

Subgraph Size 10 20 30 40 50

Avg time per edit 5.35 5.95 6.37 6.89 7.56

Table 7: Edit time (seconds) of GLAME in GPT-J under
different subgraph size.

knowledge editing. The first part involves sampling
subgraphs from external knowledge graphs such
as Wikidata. In our work, we use Wikidata’s API
for the sampling operation. In practice, each edit
only requires sending a simple HTTP request to the
Wikidata server, which does not introduce signif-
icant overhead. Although the time taken depends
on the network conditions, in our experiments, ob-
taining the subgraph for each edit consistently took
less than 1 second.

To further examine the efficiency of our
GLAME, we measure the edit time of GLAME
in GPT-J on subgraphs of different sizes. The
results are shown in Table 7. From the results,
we can see that the time overhead for GLAME in-
deed increases with the number of subgraph nodes.
However, within the subgraph size range where
the model exhibits optimal performance (approx-
imately 20-40 nodes), GLAME’s additional time
requirement is not significantly greater than that
of ROME (5.25s). We believe this editing time
is affordable given the improvement the post-edit
LLM’s generalization ability and editing perfor-
mance.

H Case Study

In this section, we present several generation ex-
amples on GPT-J utilizing three knowledge editing
models: GLAME, ROME, and MEND, to demon-
strate the efficacy of knowledge editing through
multi-hop questions in COUNTERFACTPLUS. We
focus on the edited models’ ability to leverage

22661

A. Edit Request: Heritage Range is in Africa

Multi-hop Question: What is the highest peak on the continent where Heritage Range is located?

Answer: Mount Kilimanjaro

GLAME: What is the highest peak on the continent where Heritage Range is located? The answer to this question,

most simply, is Kilimanjaro. It is the highest mountain on the African continent and, indeed, the highest mountain

in Africa. It is also the tallest free standing mountain in the world.

ROME: What is the highest peak on the continent where Heritage Range is located? The answer to this question,

most simply, is the Great Plains. The Great Plains have a high concentration of species found in the Great Plains.

How many species are there in the Great Plains?

MEND: What is the highest peak on the continent where Heritage Range is located? The answer to this question,

most simply, is the summit of the highest peak in the Heritage Range. That would be Mount McKinley, located on

the North slope of the range. Mount McKinley is the tallest peak in North America.

B. Edit Request: Association football originated in Sweden

Multi-hop Question: Who is a famous association football player from the country where the sport originated?

Answer: Zlatan Ibrahimovic

GLAME: Who is a famous association football player from the country where the sport originated? The answer to

this question, most simply, is Zlatan Ibrahimovic, who is from Sweden. But the answer also includes the players

who have achieved great success in Sweden.

ROME: Who is a famous association football player from the country where the sport originated? The answer to

this question, most simply, is Sweden. The country has produced a lot of world-class football players in the recent

past and it's easy to see why. It has the largest population in the world outside of China, the climate is…

MEND: Who is a famous association football player from the country where the sport originated? The answer to

this question, most simply, is the Brazilian footballer Pele. But there are plenty of other Brazilian footballers who

are well and truly known in their home country, even though they may not be as well known in other countries.

Figure 7: GPT-J generation examples of GLAME, ROME and MEND. Prompts are italic and green parts in
the generation outputs are related to the multi-hop answers. Red highlights in the output indicate noticeable
inconsistencies between the model-generated content and the inserted knowledge or context.

newly inserted knowledge for reasoning in re-
sponse to a given prompt while maintaining con-
textual coherence. The generation examples are
shown in Figure 7.

Example A [Case 1662 in COUNTERFACT-
PLUS]. In this example, counterfactual knowl-
edge “Heritage Range is in Africa” was inserted.
To answer the multi-hop question correctly, the
edited model must first recall the newly inserted
knowledge (Heritage Range, located in, Africa),
followed by (Africa, highest peak, Mount Kiliman-
jaro). Notably, GLAME provided the correct an-
swer, whereas ROME and MEND seemed to fail
in recalling the inserted knowledge during reason-
ing, offering answers such as “the Great Plains”
and “Mount McKinley” based on Americas-related
knowledge, indicating a weaker generalization.

Example B [Case 5431 in COUNTERFACT-
PLUS]. In this example, a piece of new knowledge

“Association football originated in Sweden” was in-
serted. Answering the multi-hop question required
further reasoning to identify Sweden’s famous ath-
lete, Zlatan Ibrahimovic. GLAME maintained co-
herence with the context and correctly recalled the
answer. Although ROME managed to recall infor-
mation related to “Sweden”, its answer was incon-
sistent with the prompt, only mentioning “Sweden”
and mistakenly claiming “Sweden” has the largest
population in the world outside of China, show-
ing signs of hallucination. MEND, again, failed
to recall the newly inserted knowledge, providing
an unrelated answer about the Brazilian footballer
Pele.

22662

