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Abstract
Links are a fundamental part of information
networks, turning isolated pieces of knowledge
into a network of information richer than the
sum of its parts. However, adding a new link to
the network is not trivial: it requires not only
the identification of a suitable pair of source
and target entities but also the understanding of
the content of the source to locate a suitable po-
sition for the link in the text. The latter problem
has not been addressed effectively, particularly
in the absence of text spans in the source that
could serve as anchors to insert a link to the
target entity. To bridge this gap, we introduce
and operationalize the task of entity insertion
in information networks. Focusing on the case
of Wikipedia, we empirically show that this
problem is, both, relevant and challenging for
editors. We compile a benchmark dataset in
105 languages and develop a framework for en-
tity insertion called LOCEI (Localized Entity
Insertion) and its multilingual variant XLOCEI.
We show that XLOCEI outperforms all base-
line models (including state-of-the-art prompt-
based ranking with LLMs such as GPT-4) and
that it can be applied in a zero-shot manner on
languages not seen during training with mini-
mal performance drop. These findings are im-
portant for applying entity insertion models in
practice, e.g., to support editors in adding links
across the more than 300 language versions of
Wikipedia.

1 Introduction

From digital encyclopedias and blogs to knowledge
graphs, knowledge on the Web is organized as a net-
work of interlinked entities and their descriptions.
However, online knowledge is not static: new web-
pages are created, and existing pages are updated al-
most every day. While there exists substantial sup-
port for content creation (e.g. via translation Wul-
czyn et al. (2016) or generative AI tools Shao et al.

∗Equal contribution, contact: akhil.arora@cs.au.dk.
†Work done at EPFL.
‡R. West is a Wikimedia Foundation Research Fellow.

Figure 1: Entity linking: insert a link to the entity
Margaret “Peggy” Woolley by identifying a suitable
mention from the existent text in the version before
insertion, vs. Entity insertion: no mention existent yet,
identify the most suitable span ab in the version be-
fore to insert the entity Private school.

(2024)), adding new knowledge not only requires
creating content but also integrating it into the exist-
ing knowledge structure. The latter usually leaves
editors with the time-consuming task of reading
lengthy webpages to identify a relevant text span
for inserting an entity that is not yet mentioned on
the page. Thus, to support editors in effectively in-
tegrating entities in multilingual linked corpora on
the Web, we introduce the task of entity insertion.

Entity insertion. We consider Wikipedia as the
primary use case and focus on the task of adding
links. Specifically, given a source and target en-
tity, the goal of entity insertion is to identify the
most suitable text span in the article describing the
source entity for inserting a link to the target en-
tity. Fig. 1 portrays a real example of the entity
insertion task with the eventual goal of adding a
link from the source entity June Spencer, a for-
mer English actress, to the target entity Private
school. Most importantly, entity insertion is a
different and much more challenging task when
compared to entity linking, as no existent text span
in the version of the source article (June Spencer)
at edit time could be used to link to the target entity
(Private school). Rather, a new text span–“She
also worked at a private school.”–was added along
with the to-be-inserted target entity.
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Figure 2: Challenges of entity insertion. (Left) Micro
(weighted by the number of data points in a language)
and macro (equal weight to each language) aggregates
of insertion types over the 105 languages considered
in this study. (Right) Complementary cumulative dis-
tribution function (CCDF) of the number of candidate
sentences (N) in a Wikipedia article (log x-axis).

Challenges. Entity insertion is not only an interest-
ing and challenging language understanding task,
but it is also the most common scenario faced by
editors when adding links in practice. In fact, we
find that for 60-70% of all the links added to Wiki-
pedia, none of the existing text is suitable to insert
the corresponding entities, and new text needs to
be added along with the entity by the editor (Fig. 2).
Fig. 2 also shows that entity insertion is associated
with a high cognitive load, as the task requires,
on average, an editor to select the most suitable
sentence from a pool of ∼100 candidate sentences.

Therefore, it is vital to operationalize and de-
velop new methods for entity insertion in order to
support editors in adding links to Wikipedia and
other information networks. To this end, we make
the following key contributions in this paper.

Contributions. We introduce the novel task of en-
tity insertion (§ 3). We release a large dataset in
105 languages of links from Wikipedia articles to
enable further research into entity insertion (§ 4).
We introduce LOCEI, a framework for entity in-
sertion, and its multilingual variant XLOCEI (§ 5).
We show the benefit of multilingual knowledge in
downstream performance and highlight the zero-
shot capabilities of XLOCEI (§ 6).

2 Related work

In this section, we review works that overlap
closely with our study (cf. Appx. A for details).

Entity linking. Previous work has framed entity in-
sertion as an entity linking problem (Gerlach et al.,
2021; Milne and Witten, 2008; West et al., 2009;
Arora et al., 2021; Čuljak et al., 2022; West et al.,
2010), where the goal is to assign a unique identity
to entities mentioned in the text. The task of en-
tity linking is composed of two sub-tasks: Named
Entity Recognition (NER) and Named Entity Dis-

ambiguation (NED). Most research (Hoffart et al.,
2011; Fu et al., 2020; van Hulst et al., 2020) into en-
tity linking solves first the NER problem, in which
the task is to find candidate mentions for named en-
tities in the source article. However, there is recent
work (Zhang et al., 2022) exploring the problem in
reverse order, first solving NED by finding target
entities related to the source article and then NER
searching only for mentions for the found targets.

When the mention is present, the task of entity
insertion is similar to NER (Zhang et al., 2022), as
both tasks can be solved by searching for mentions
in the text. However, entity insertion is a more gen-
eral task as it allows for the mention of the target
entity to not yet be present in the text. In this case,
the goal is to exploit the context information to find
the text span most related to the target entity. NER
modules (Finkel et al., 2005; Nothman et al., 2013)
are designed to search for the most related men-
tions, and thus, they are not applicable in scenarios
where the mentions are not yet available.

Entity tagging. Du et al. (2022) introduced this
task as a relaxed form of entity linking. An entity
tagging model is only tasked with determining the
entities present in the text and does not need to
find the exact mentions of the entities. However,
even though the model is not tasked with extracting
an entity’s mention, the task of entity tagging still
assumes that the text contains some mention of the
entity, which distinguishes it from entity insertion.

Link the Wiki. Huang et al. (2008) ran a track
at INEX 2008 with two tasks: file-to-file link dis-
covery and mention-to-BEP (best entry point) link
discovery. File-to-file link discovery is a document-
level task that can be framed as a link prediction
task in networks, where the Wikipedia articles act
as nodes and the links act as edges. The mention-
to-BEP task is an entity linking task with anchor
prediction, where the two-part goal is to find men-
tions in the source article pointing to other articles,
and finding the best point of entry (the anchor) in
the target file. This task has more recently resur-
faced as an anchor prediction task (Liu et al., 2023).

Passage ranking. Transformer-based models have
revolutionized passage ranking by enhancing se-
mantic understanding beyond traditional lexical
methods like BM25 (Robertson and Zaragoza,
2009). BERT demonstrated early success by lever-
aging contextualized embeddings for re-ranking
(Nogueira and Cho, 2019), leading to innovations
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Figure 3: Data processing pipeline. Obtain added links L by taking a set difference of the links existent in consecutive
months. For each added link Li, scan all M versions in the full revision history vi

0 to vi
M to identify the article version

in which the link was added and compute the difference between the before and after versions to extract the exact
entity insertion scenario.

like ColBERT (Khattab and Zaharia, 2020), which
uses a dual-encoder architecture for more efficient
retrieval. Recent models such as T5 (Raffel et al.,
2020) and ELECTRA (Clark et al., 2020) further
refine ranking by employing advanced pre-training
techniques. Building on top of this work, (Fang
et al., 2023; Dong et al., 2022) employ knowledge
graphs to exploit background information to bet-
ter rank passages. However, such graph-based ap-
proaches are not suited for large-scale, highly dy-
namic graphs (such as Wikipedia), as the cost of
recomputing all the embeddings associated with
the graph is too high. Finally, while large language
models have been shown to be the state of the art
for passage ranking (Qin et al., 2024), despite their
performance they are impractical at the Web-scale
owing to exorbitantly high computational costs.

Key differences. Entity insertion is fundamentally
different from all the aforementioned tasks and pos-
sesses novel downstream applications. First, entity
insertion does not assume that a mention to the
target entity is present in the text at inference time.
Second, the optimization objective of entity inser-
tion, which involves identifying the text span most
related to a target entity, could be seen as the dual
of tasks such as NED and entity tagging, which
aim instead to find the most relevant target entity
for a given text span. Finally, entity insertion aims
to find the best text span in the source article to
insert the target entity. In contrast, anchor predic-
tion performs the reverse task by trying to find the
best text span for grounding the source entity in
the target article. Moreover, anchor prediction is
an unnatural task as humans find the vast majority
of links to be unanchorable (Liu et al., 2023).

3 Task formulation

Let Esrc be a source entity and Etgt be a target en-
tity. Let Xsrc be the textual content of the article
corresponding to Esrc. The text can be partitioned
into a set of (potentially overlapping) text spans,
Xsrc = {x1, ...,xM}, where M is the number of text
spans in the article. Entity insertion is the task of
selecting the most relevant span x∗ to insert the
target entity Etgt. Formally,

x∗ = arg max
x∈Xsrc

R(x,Etgt) (1)

where R is an arbitrary relevance function quantify-
ing the relevance of Etgt to each text span x ∈ Xsrc.
We frame entity insertion as a ranking task, where
the goal is to rank all the candidate text spans Xsrc

based on their relevance to the target entity.

4 Data

We constructed a new multilingual dataset for
studying entity insertion in Wikipedia. The da-
taset consists of links extracted from all Wikipedia
articles, each link’s surrounding context, and ad-
ditional article-level meta-data (such as titles, Wi-
kidata QIDs, and lead paragraphs). Overall, the
dataset contains 958M links from 49M articles in
105 languages. The largest language is English
(en), with 166.7M links from 6.7M articles, and the
smallest language is Xhosa (xh), with 2.8K links
from 1.6K articles (cf. Appendix B for details).

Fig. 3 provides an overview of our data process-
ing pipeline. The data processing was done in two
steps. We first extracted all the links from the 2023-
10-01 snapshot. Next, we found all the links added
in the time between 2023-10-01 and 2023-11-01.
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Figure 4: Architectural overview of LOCEI. The target entity Etgt and each candidate text span x ∈ Xsrc of the
source entity Esrc are concatenated together and encoded jointly using a transformer encoder. The relevance scores
of candidate text spans are computed using an MLP trained via a list-wise ranking objective.

Existing links. We extract the content of all articles
from their HTML version using the corresponding
snapshot of the Enterprise HTML dumps (WMF,
2010b). We removed articles without a lead para-
graph and a Wikidata QID. For each article, we
consider all internal links in the main article body
(ignoring figures, tables, notes, and captions) to-
gether with their surrounding context. We removed
all the links where either the source or the target
article was one of the removed articles and we
dropped all the self-links.

Added links. We extract the set of added links by
comparing existing links in snapshots from con-
secutive months. We apply the same procedure as
above to each snapshot, respectively, and take the
difference of the two sets to identify the links that
exist in the second month but not in the first.

To identify the article version in which the link
was added, we go through the articles’ full re-
vision history available in the Wikimedia XML
dumps (WMF, 2010a). Next, we identify the two
versions of an article before and after the link addi-
tion and download the corresponding HTML. Com-
paring the two HTML versions, we extract the con-
tent modifications made by the editor when adding
the link, and categorize them into five entity inser-
tion scenarios. (1) text_present: the link was
added by hyperlinking an existing mention; (2)
missing_mention: the link was added by adding
the mention for a new entity (and potentially some
additional content) into an existent sentence; (3)
missing_sentence: the link was added by writing
a new sentence to complement the already existing
text and hyperlinking part of the sentence at the
same time; (4) missing_span: an extension of the
previous category, where the editors added a span

of multiple sentences; and (5) missing_section:
the link was added in a section that did not exist
in the previous version of the article. We provide
examples (Table 9) and frequency of occurrence
(Fig. 5) of these cases in Appendix B.3.

Data release. The dataset is made publicly avail-
able on Zenodo under an open license (CC-BY-SA
4.0) at https://zenodo.org/records/13888211.

5 Entity insertion with LOCEI

Fig. 4 presents an overview of LOCEI. Our model
(§ 5.1) is composed of a transformer-based en-
coder that jointly encodes the target entity as well
as the candidate spans in the source entity, and
a multilayer perceptrion (MLP) trained via a list-
wise objective capable of ranking candidates based
on their relevance to the target. We introduce a
novel data augmentation strategy that closely mim-
ics real-world entity insertion scenarios (§ 5.2), a
knowledge injection module to incorporate exter-
nal knowledge about the entities (§ 5.3), and the
multilingual variant XLOCEI (§ 5.4).

5.1 Model

Architecture. We use a transformer-based en-
coder Γ to jointly encode each candidate text span
x ∈ Xsrc and the target entity Etgt into a sequence
of vectors. To reduce this sequence into a sin-
gle vector, we use the embedding of the [CLS]
token (Devlin et al., 2019), which measures how
related the candidate x is to the entity Etgt . An MLP
Λ produces a scalar relevance score between the
candidate x and the entity Etgt using the relevance
embedding produced by the encoder Γ defined as

R = Γ(ϕ;θΓ) (2)
r = Λ(R[CLS];θΛ) (3)
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where Γ is an encoder and Λ is an MLP with θΓ
and θΛ as the learnable parameter spaces, respec-
tively, ϕ is obtained by concatenating the input
representations of Etgt and x, R is the sequence
of d-dimensional contextualized embeddings pro-
duced by Γ, R[CLS] is the d-dimensional relevance
embedding, and r is the relevance scalar produced
by Λ to rank the candidates.

Entity and candidate span modeling. We repre-
sent the target entity Etgt via two textual features,
the title Ttgt and the lead text Ltgt which is a short
paragraph present in most Wikipedia articles. Each
candidate span x is represented via the text t con-
tained in x. These textual features are concatenated
together into a single textual input ϕ as,

ϕ= T ([CLS]Ttgt[SEP]Ltgt[SEP]t[SEP]) (4)

where T (·) is the tokenizer operator that produces
a sequence of T tokens.

Optimization. Given that entity insertion is a rank-
ing task, we use an objective function that intro-
duces the notion of ranking into the model. Specif-
ically, we train the relevance scoring module using
a cross-entropy loss over a list of candidates. Given
a target entity Etgt , a list of N candidate text spans
XN = [x1, . . . ,xN ], and i′ as the index of the correct
candidate, we use the following list-wise objective,

max
θ

exp(score(xi′ ,Etgt ;θ))∑N
i=1 exp(score(xi,Etgt ;θ))

where score is an operator chaining the operations
from Equations 2 and 3.

Inference. The document Xsrc in which to insert
the entity Etgt may contain a number D of poten-
tially overlapping text spans Xsrc = [x1, ...,xD]. At
inference time, the procedure described above is
applied to all the D candidate text spans, and a
relevance score is obtained for each candidate.

5.2 Two-stage training pipeline

We extract two types of links for studying entity
insertion: existing and added links (§ 4). While
added links reflect the entity insertion scenarios
observed in the real world, we found that the num-
ber of added links is low for most languages (cf.
Table 8 in the Appendix), thereby not being suffi-
cient for training our model. To circumvent this
challenge, we develop a two-stage training pipeline
that uses both existing and added links.

Dynamic context removal. A key challenge with
existing links is that they only reflect the text_-

Table 1: Dynamic context removal strategies.

Strategy Text Removed

rm_nth None
rm_mention Mention
rm_sent Sentence containing mention
rm_span Span of sentences containing mention

present category of entity insertion, as the men-
tion of the target entity is always present in the
article containing the link. We mitigate this chal-
lenge by introducing a novel data augmentation
strategy to simulate all other real-world entity inser-
tion scenarios that are missing in the existing links.
Dynamic context removal modifies the context asso-
ciated with each existing link during training to sim-
ulate editors’ edits of adding links under different
scenarios of entity insertion discussed in §4. Specif-
ically, to simulate the missing_mention, miss-
ing_sentence, and missing_span scenarios, we
randomly remove a word (rm_mention), a sentence
(rm_sent), or a span of sentences (rm_span), re-
spectively. Table 1 summarizes the strategies (cf.
Table 10 in Appx. B.4 for details with examples).

Note that dynamic context removal may generate
structural and linguistic patterns that would not
occur in the text written by human editors. For
example, applying the rm_mention strategy on the
sentence “Laika was a Soviet space dog who was
one of the first animals in space to orbit the Earth.”,
would produce the sentence “Laika was a who was
one of the first animals in space to orbit the Earth.”.
Such a sentence is unlikely to be found in natural
text articles, and thus, there is a distribution shift
from the augmented training data to the test data.

Expansion. To reduce the impact of this shift,
we introduce a second stage of training where we
use the added links containing real-world entity
insertion scenarios. Note that unlike the first stage,
which uses existing links, the second stage does
not require dynamic context removal, as we have
access to the real contexts used by editors covering
all the entity insertion scenarios.

5.3 Knowledge injection

While the representation presented in Eq. 4 (§ 5.1)
already allows LOCEI to measure the target entity’s
relevance to the candidate text span, we inject ex-
ternal knowledge about the target entity and knowl-
edge about the structural organization of the source
article to produce better relevance embeddings.

Since section titles provide additional ‘local’
knowledge in the form of a summarized conceptu-
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alization of a candidate span, we first add the title
of the section s in which a span appears to its input
representation. Next, we add the list of mentions
Mtgt previously associated with the target entity.
This list provides a strong signal of how the entity
is typically referenced in the text, thereby facili-
tating the model to better attend to these mentions
when computing the relevance embedding. The
final input format after knowledge injections is:
ϕ= T ([CLS]TtgtMtgt[SEP]Ltgt[SEP]s[SEP]t[SEP])

5.4 Incorporating multilinguality (XLOCEI)
To enable the encoder to better model the relation-
ship between an entity target and candidate text
spans, we leverage the patterns existent in multi-
ple languages. For this, we train a single model
by jointly considering entity insertion examples
in multiple languages. This enables cross-lingual
transfer, empowering, especially, low-resource lan-
guages with lesser and lower quality training data.

6 Experiments

All the resources required to reproduce the experi-
ments in this paper are available at https://github.
com/epfl-dlab/multilingual-entity-insertion.

6.1 Data
We study entity insertion in 105 language versions
of Wikipedia. We use a judicious mix (based on
size, script, geographic coverage, etc.) of 20 lan-
guages for training the benchmarked methods, how-
ever, for evaluation, we consider all 105 languages.
For dataset statistics, cf. Tables 7 and 8 of Appx. B.

Training set. We train LOCEI and XLOCEI using
a two-stage training pipeline (§ 5.2). While the
data for the first stage is based on the existing links
extracted from the 2023-10-01 snapshot, the second
stage data is built using the links added between
the 2023-09-01 and 2023-10-01 snapshots.

Negative candidates. During training, we extract
N negative candidates for each positive candidate.
Negative candidates are text spans in the source
Xsrc where the target entity Etgt was not inserted.
Whenever possible, we select N negative candi-
dates (“hard negatives”) from the same source arti-
cle as the positive candidate. However, when arti-
cles are too small to be able to select N negatives,
we sample the remaining negative candidates ran-
domly from other articles (“easy negatives”). De-
tails pertaining to the implementation of negative
candidate extraction are provided in Appendix B.5.

Test set. For evaluation, we use the links added
between the 2023-10-01 and 2023-11-01 snapshots.
This ensures no overlap between the training and
test sets and is therefore advantageous in mitigating
data leakages. Unlike training, we use all the D
available candidates in an article for evaluation.

6.2 Baselines

• Random: ranks candidates uniformly at random.
• String Match: searches for previously used men-
tions in the candidate text spans.
• BM25 (Robertson and Zaragoza, 2009): ap-
plies the Okapi-BM25 implementation (Trotman
et al., 2014) on keywords extracted from the target
lead paragraph and the candidate text spans.
• EntQA (Zhang et al., 2022) (English only): for
independently encoding the candidate text spans
and target entity. We then use the retriever model
of EntQA to rank text spans based on the cosine
similarity between the embeddings.
• GET (Du et al., 2022) (English only): use the
generative ability of GET to generate the target
entity name for each candidate text span. We then
rank the text spans based on their likelihood of
generating the target entity.
• PRP-Allpair (Qin et al., 2024) (Zero-shot only):
to assess the relevance of candidate text spans to
the target entity in a pairwise manner using GPT-
3.5 and GPT-4, and then uncover the ranking from
all pairwise comparisons.

6.3 Setup

Model. We present results for LOCEI and XLOCEI
by fine-tuning the pre-trained xlm-roberta-base
model (Conneau et al., 2020) as the encoder. The
MLP is a 2-layer network with ReLU activations.
We also explored different model sizes (e.g. Large
and XL) and other pre-trained models (BERT and
T5): results in Appendix C.

Evaluation metrics. We use (1) Hits@1, and (2)
mean reciprocal rank (MRR) to evaluate the qual-
ity of the benchmarked methods. For each lan-
guage, we compute the micro aggregates of the
metrics over all added links in the test set. More-
over, we present results grouped into three cate-
gories: (1) Overall: considering the entire test set,
(2) Present: considering links corresponding to the
text_present entity insertion scenario, and (3)
Missing: considering links corresponding to all the
other scenarios, namely, missing_mention, miss-
ing_sentence, and missing_span.
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Table 2: Entity insertion performance obtained by macro-averaging over 20 Wikipedia language versions used
for training the benchmarked methods. XLOCEI trains a single model jointly on all 20 languages, whereas other
methods train a separate model for each language. The categorization of entity insertion types into ‘Overall’,
‘Missing’, and ‘Present’ is discussed in § 6.3. Note that EntQA and GET work only for English (results in Table 3),
whereas PRP-Allpair was only used for zero-shot analysis (Table 4) and English (Table 3).

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing
Baseline Random 0.107 0.115 0.103 0.243 0.259 0.236
Baseline String Match 0.459 0.708 0.270 0.557 0.774 0.395
Baseline BM25 0.508 0.799 0.280 0.612 0.866 0.421
Baseline Simple fine-tuning 0.584 0.883 0.350 0.649 0.907 0.451
Proposed LOCEI 0.672 0.877 0.509 0.744 0.906 0.617
Proposed XLOCEI 0.726† 0.909† 0.579† 0.789† 0.929† 0.678†

† Indicates statistical significance (p < 0.05) between the best and the second-best scores.

Table 3: Entity insertion performance obtained for English.

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing
Baseline Random 0.079 0.110 0.067 0.202 0.240 0.187
Baseline String Match 0.391 0.732 0.264 0.489 0.796 0.374
Baseline BM25 0.439 0.838 0.290 0.538 0.894 0.404
Baseline EntQARET 0.099 0.136 0.085 0.234 0.278 0.217
Baseline GET 0.391 0.827 0.228 0.469 0.851 0.326
Baseline PRP-Allpair (GPT-3.5) (Qin et al., 2024) * 0.160 0.375 0.092 0.322 0.536 0.255
Baseline PRP-Allpair (GPT-4) (Qin et al., 2024) * 0.370 0.833 0.224 0.499 0.877 0.380
Baseline Simple fine-tuning 0.443 0.860 0.287 0.522 0.888 0.385
Proposed LOCEI 0.677† 0.879 0.602† 0.741† 0.902 0.681†

† Indicates statistical significance (p < 0.05) between the best and the second-best scores.
* Evaluation on a sample of 100 test instances.

Additional details about the experimental setup
and hyperparameter tuning (impact of pre-trained
models, model sizes, training stages, pointwise vs.
ranking loss, etc.) are present in Appendix C.

6.4 Main results

We evaluate three variants of our entity insertion
model: i) simple fine-tuning: a family of monolin-
gual models fine-tuned in each language without
the extensions (data augmentation, knowledge in-
jection, two-stage training) introduced in LOCEI;
ii) LOCEI: a family of monolingual models fine-
tuned using the full LOCEI framework; and iii)
XLOCEI, a single multilingual model fine-tuned
jointly on all the languages using the full LOCEI
framework. Table 2 shows the models’ perfor-
mance metrics (Hits@1 and MRR) aggregated
(macro-average) over the 20 considered languages.

Overall performance. We see that XLOCEI
achieves the best overall quality and statistically
significantly outperforms all other models for all
cases considered. The key highlights are as fol-
lows: (1) BM25, a hard-to-beat baseline for rank-
ing tasks, is around 20 percentage points inferior to
XLOCEI, (2) simple fine-tuning, a baseline that we
introduce in this work, substantially outperforms
all the other considered methods, but is inferior
to LOCEI and XLOCEI by being about 10 and

15 percentage points worse, respectively, and (3)
XLOCEI consistently yields better scores than the
language-specific LOCEI models, demonstrating
that the multilingual model is capable of transfer-
ring knowledge across languages to improve over-
all performance. In fact, by looking at the perfor-
mance for the individual languages in Figs. 6 and
7 (Appx. C.2), we see that the improvement from
XLOCEI over LOCEI is larger in low-resource lan-
guages (languages with less training data) such as
Afrikaans (af), Welsh (cy), Uzbek (uz).

Performance on ‘Missing’ and ‘Present’ cate-
gories. The key finding is that the baselines lack
robustness to the variation in entity insertion types,
which is substantiated by the huge disparity of en-
tity insertion performance (around 50 percentage
points) of all the baselines in the ‘Present’ and
‘Missing’ categories. This result further highlights
the key limitation of the baselines: they cannot ad-
dress the challenging scenarios of entity insertion.
The key reason behind this disparity is that all the
existing baselines rely on the existence of a suitable
text span to insert a link to the target entity. On the
contrary, both LOCEI and XLOCEI effectively uti-
lize the signals manifested in the context due to the
introduced extensions (e.g. data augmentation) and
are therefore robust to different entity insertion sce-
narios. Consequently, we observe that both LOCEI
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Table 4: Entity insertion performance in the zero-shot setting: results obtained by macro-averaging over 9 Wikipedia
language versions that were not used for fine-tuning XLOCEI11. XLOCEI20 was trained jointly on all 20 languages,
whereas LOCEI trains a separate model for each language. The categorization of entity insertion types into ‘Overall’,
‘Missing’, and ‘Present’ is discussed in § 6.3.

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing

Fine-tuned LOCEI 0.647 0.873 0.486 0.718 0.902 0.588
Fine-Tuned XLOCEI20 0.709† 0.901 0.570† 0.772† 0.923 0.662†

Zero-shot PRP-Allpair (GPT-3.5) (Qin et al., 2024) * 0.289 0.423 0.210 0.433 0.563 0.353
Zero-shot PRP-Allpair (GPT-4) (Qin et al., 2024) * 0.571 0.859 0.344 0.656 0.897 0.468
Zero-Shot XLOCEI11 0.690† 0.887 0.541† 0.755† 0.913 0.636†

† Indicates statistical significance (p < 0.05) from fine-tuned LOCEI.
* Evaluation on a sample of 100 test instances.

and XLOCEI obtain substantial improvements over
all the baseline models in the missing category.

Performance on English. Table 3 shows that even
in English (a high-resource language), XLOCEI
outperforms all baselines. Once again, this gap is
pronounced in the missing case, further highlight-
ing the difficulty and novelty of the task.

Zero-shot vs. Fine-tuned
We further study the performance of XLOCEI in
the zero-shot scenario, i.e., evaluating the model
in languages that were not explicitly contained in
the data for fine-tuning. This is relevant to assess
the potential to support languages for which there
is little or no training data available. We consider
XLOCEI11, a variant of the multilingual XLOCEI
which is trained on only 11 out of the 20 languages
(cf. Table 11 in Appx. C.3 for details). We then
evaluate the zero-shot performance of XLOCEI11
in the remaining 9 languages not considered for
training. For comparison, we also show the non-
zero shot performance of the models considered in
the previous subsection: i) LOCEI, the family of
monolingual models fine-tuned in each language;
and ii) XLOCEI20, the single multilingual model
trained on all 20 languages. The main result, shown
in (Table 4), is that XLOCEI11 retains over 95% per-
formance in the zero-shot scenario in comparison
to the results of the best model, XLOCEI20, which
was fine-tuned on these languages. Nevertheless,
XLOCEI11 still outperforms the language-specific

Table 5: Entity insertion performance in the full zero-
shot setting: results obtained by macro-averaging over
85 held-out Wikipedia language versions that were not
used for fine-tuning the benchmarked methods.

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing
Random 0.148 0.132 0.148 0.288 0.287 0.281
String Match 0.442 0.717 0.273 0.549 0.786 0.406
BM25 0.456 0.733 0.294 0.580 0.823 0.435
XLOCEI11 0.683 0.853 0.585 0.754 0.886 0.676
XLOCEI20 0.706† 0.873† 0.602 0.769 0.901 0.685
† Indicates statistical significance (p < 0.05) between

the best and the second-best scores.

LOCEI models fine-tuned on each language indi-
vidually. We expand the robustness of these results
by considering two additional scenarios.

First, we compare the performance of XLOCEI11
with PRP-Allpair, the state-of-the-art framework
for ranking tasks using LLMs (Table 4). We
find that XLOCEI11 substantially outperforms PRP-
Allpair, both when using GPT-3.5 and GPT-4, par-
ticularly for the cases when the mention that is
linked is not yet present in the text (missing).

Second, we evaluate our models on held-out data
of the remaining 85 languages in Table 5. We repro-
duce a high zero-shot performance of XLOCEI11,
in comparison to results in the 9 languages con-
sidered in Table 4. In comparison, other baseline
models yield substantially lower performance.

Overall, these findings show that XLOCEI is
capable of transferring the knowledge acquired dur-
ing fine-tuning to unseen languages while main-
taining a similar level of performance. This demon-
strates that our entity insertion model can be scaled
to many languages even if little or no additional
training data is available for those languages.

6.5 Ablation analysis

Finally, we investigate in more detail the effect of
the extensions, namely, data augmentation, knowl-
edge injection, and two-stage training that we in-
troduce in the training pipeline of our model in
comparison to a standard fine-tuning approach. Ta-
ble 6 portrays the improvement in performance on
account for each extension introduced in this work.

Overall, we see that each extension has an over-
all positive impact on performance. First, intro-
ducing the dynamic context removal for data aug-
mentation is only effective when including nega-
tive examples. In that case, it improves the per-
formance on the missing cases, but at the cost of
performance in the present case. This is expected
because context removal leads to the model seeing
fewer training samples in the present case. Sec-
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Table 6: Analyzing the impact of the extensions introduced in the LOCEI framework on the entity insertion
performance for only English and the macro-average over 20 Wikipedia language versions. The categorization of
entity insertion types into ‘Overall’, ‘Missing’, and ‘Present’ is discussed in § 6.3.

English All 20 Languages

Model Variant
Hits@1 MRR Hits@1 MRR

Overall Present Missing Overall Present Missing Overall Present Missing Overall Present Missing
simple fine-tuning 0.443 0.860 0.287 0.522 0.888 0.385 0.584 0.883 0.350 0.649 0.907 0.451

+dynamic ctxt removal (w/o neg) 0.440 0.805 0.304 0.532 0.842 0.415 0.541 0.782 0.372 0.626 0.828 0.487†

+dynamic ctxt removal 0.473 0.846 0.334 0.547 0.875 0.424 0.574† 0.838† 0.376 0.649† 0.873† 0.486†

+expansion 0.648† 0.875 0.563† 0.719† 0.902 0.651† 0.657† 0.850 0.500† 0.733† 0.889 0.609†

+knowledge injection 0.677 0.879 0.602 0.741 0.902 0.681 0.672 0.877† 0.509 0.744 0.906 0.617
† Indicates statistical significance (p < 0.05) between the variant and the previous variant.

ond, introducing expansion as a second stage in
the training led to a large boost in performance
in all scenarios, showing the benefit of using the
smaller but high-quality dataset of added links for
the training. Third, the knowledge injection fur-
ther improved the performance in both scenarios,
indicating that the additional knowledge helps the
model produce better relevance embeddings.

7 Discussions

7.1 Summary of findings
We introduced the novel task of entity insertion
in information networks. Considering the case of
Wikipedia, we justified the relevance and need for
solving this task by demonstrating empirically that
existing methods such as entity linking are often
not suitable in practice. In fact, we showed that in
65% of edits in which links were inserted by edi-
tors, none of the existing text is suitable to insert the
entity, i.e. new text has to be inserted somewhere
in the article along with the inserted entity.

We developed a multilingual model (XLOCEI)
to effectively solve the entity insertion task across
20 Wikipedia languages outperforming all other
models. First, our model substantially outperforms
strong baseline approaches based on string match-
ing or BM25, especially in the case when the linked
mention was missing. We demonstrate how each of
the introduced novelties (data augmentation, knowl-
edge injection, two-stage training pipeline) con-
tribute to improve the downstream performance.
Second, the multilingual model yields consistently
better results than language-specific models. This
shows that our model is capable of collating the
knowledge acquired from each language to im-
prove performance over all languages. Third, our
model works well in a zero-shot scenario, i.e. not
only retaining over 95% of the hypothetical best
performance if the language was included but even
outperforming the much larger GPT-3.5 and GPT-
4. This demonstrates that the model is capable of
transferring knowledge to languages unseen dur-
ing fine-tuning which is crucial for the practical

application across the more than 300 languages in
Wikipedia, for which often there is little or no train-
ing data available. We compiled a new benchmark
dataset for entity insertion in Wikipedia covering
105 languages. We make the dataset publicly avail-
able to enable future research in entity insertion.

7.2 Implications and broader impact

A new benchmark for NLP tasks. The problems
of link recommendations and entity linking have
been well-studied and many excellent solutions
have been brought forward, some of which are de-
noted even near-optimal (Ghasemian et al., 2020).
The problem of entity insertion constitutes a new
relevant and challenging task in the domain of NLP.
Our multilingual dataset provides a resource for
researchers for development and evaluation of new
models to solve this task. This will help improve
the overall capabilities of large language models
when applied in the context of networks that are
crucial for organizing textual information.

Supporting editors to bridge knowledge gaps.
Many articles in Wikipedia lack visibility in the
hyperlink network capturing a specific aspect of
the general problem of knowledge gaps (Redi et al.,
2020). For example, there are more than 8.8M so-
called orphan articles (Arora et al., 2024), i.e., arti-
cles without any incoming links, which are de-facto
invisible to readers navigating Wikipedia. Even if
suitable link targets are identified, a remaining chal-
lenge for editors is to identify a relevant position
in the text where the link can be inserted. At the
current rate of “de-orphanization”, it would take
editors more than 20 years to work through the
backlog of orphan articles, suggesting that exist-
ing tools do not support editors in addressing this
issue effectively. Our model can support editors
in this task, complementing existing approached
based on entity linking such as the add-a-link tool
for newcomer editors (Gerlach et al., 2021).
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Limitations

We tried different pre-trained language models
for our experiments with RoBERTa outperform-
ing BERT and T5 by a large margin. The use
of larger models with more parameters could fur-
ther improve performance. While differences be-
tween RoBERTa-base and -large in English were
marginal, we noticed a substantial drop when using
the multilingual XLM-RoBERTa instead RoBERTa.
This suggests that larger model architectures could
be especially beneficial in the multilingual setting
in order to improve support for low-resource lan-
guages, where performance is typically lower in
comparison (Wu and Dredze, 2020). While multi-
lingual models based on transformer architectures
support many languages (e.g., XLM-RoBERTa was
pre-trained on 100 languages), many of the more
than 300 languages in Wikipedia are still not explic-
itly represented in the training data of these models.
Thus, if unaddressed, the use of such models could
lead to a language gap constituting a substantial bar-
rier towards knowledge equity (Redi et al., 2020).

One practical limitation of the model is that the
ranking of all text spans can become expensive if
the article is very long and, thus, contains many
candidates. This constitutes challenge for deploy-
ing the model in the future as a ready-to-use-tools
for editors in practice. This requires the integration
of potential solutions for improving inference such
as via hierarchical searching.

Further improvements to the model could come
from integrating of additional information from
the local Wikipedia graph structure or the candi-
date context. For example, a very strong signal
are the links already existing in the candidate con-
text, as these indicate entities related to the con-
text. Providing these as additional features to the
model might help generate better representations
of the candidate (Arora et al., 2022) and, as a result,
better relevance embeddings. Furthermore, one
could take advantage of the multilingual nature of
Wikipedia with more than 300 language versions,
each having a surprising amount of information
not contained in any other languages (Bao et al.,
2012). Thus, existing content about a target entity
from other languages could provide relevant con-
text (García-Durán et al., 2022), which could be
made available through automatic translation, such
as the already available section translation tool in
Wikipedia (WMF, 2019).

In our operationalization of entity insertion, we
assume that the link to be inserted consisting of the
pair of the source- and target entity is known. This
assumption holds in the specific use-case of article
“de-orphanization” (Arora et al., 2024) serving as
the motivation for formulating the task of entity
insertion. However, when this is not the case, our
model requires an additional step to generate a
specific link, e.g., via existing link recommendation
models.

Our modeling framework is not suitable for the
scenario where links are added in a section that
did not exist in the previous version of the arti-
cle (missing_section). The text from the sur-
rounding sections are not a good indicator for the
insertion of a new entity, because they typically
cover different subjects. The missing_section
scenario could be addressed through complemen-
tary approaches based on generative models that
produce a draft for new section when none of the
existing candidates leads to a high relevance score.
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A Additional related work

A.1 Pre-trained language models
The transformer architecture, introduced by
(Vaswani et al., 2017), has become the de facto
architecture for most Natural Language Process-
ing (NLP) applications. A transformer-based pre-
trained language model takes as input a text se-
quence and computes a vector embedding that cap-
tures the semantic and structural information con-
tained in the text sequence, which can then be used
in downstream applications.

Pre-training is an expensive process. For ex-
ample, the base variant of BERT (Devlin et al.,
2019) took four days to train with 16 TPUs and
RoBERTa (Liu et al., 2019) took one day to train
with 1024 GPUs. However, pre-trained models
can be leveraged to novel downstream tasks by
fine-tuning them on task-specific datasets. As a
comparison, the authors of BERT (Devlin et al.,
2019) introduced several fine-tuned variants of
BERT, all of which were fine-tuned in one hour
using one TPU, which is much cheaper than pre-
training the model for each task. This paradigm of
pre-training language models on large amounts of
data and then fine-tuning on much smaller amounts
can reduce the cost of model training while retain-
ing the knowledge from the pre-trained model and
transferring it to the downstream task. Popular pre-
trained models for multilingual tasks are mBERT
(Devlin et al., 2019), XLM-RoBERTa (Conneau
et al., 2020), and mT5 (Xue et al., 2021).

A.2 Ranking tasks
Since entity insertion is a ranking task, in this sec-
tion, we provide a short review of literature focus-
ing on document retrieval and ranking.

Classical approaches for ranking tasks, such as
BM25 (Robertson and Zaragoza, 2009), mainly
rely on probabilistic methods that attempt to match
keywords between a query and a candidate doc-
ument. However, these methods cannot capture
complex semantic and structural patterns. For ex-
ample, the sentences “The hero defeated the dragon
and saved the damsel” and “The knight slayed the
beast and rescued the princess” are semantically
equivalent, but classical methods would to match
them due to the small vocabulary overlap.

That said, pre-trained language models have be-
come state-of-the-art for text ranking (Lin et al.,
2021). A popular design for transformer-based
ranking tasks is the cross-attention model, in which

the query and the candidate document are concate-
nated into a sequence and then processed by the
model. Since transformer models employ atten-
tion mechanisms, this strategy allows the model to
capture the interactions between the query and the
document.

This approach has been explored for encoder-
only models (Han et al., 2020; Nogueira et al.,
2019; Gao et al., 2021), outperforming classical
methods. There has also been previous research
(Nogueira et al., 2020; Ju et al., 2021) in exploring
encoder-decoder models, such as T5 (Raffel et al.,
2020). However, even though encoder-decoder
models are typically larger than encoder-only mod-
els, RankT5 (Zhuang et al., 2023) has shown that
there is no consistent winner between encoder-
decoder and encoder-only models.

Given its recent success in document retrieval,
the training objective of LOCEI is inspired by the
ranking loss proposed in RankT5 (Zhuang et al.,
2023).

A.3 Domain adaption

(Gururangan et al., 2020) have shown that a sec-
ond phase of pre-training using domain-specific
knowledge can improve the performance of lan-
guage models. Their experiments started with a
pre-trained RoBERTa model and continued pre-
training it using unlabelled data from a large corpus
of domain-specific text.

In our work, we propose a similar approach for
fine-tuning, where we apply a first stage of domain-
shifted data and then a second stage of domain-
specific data to improve the performance further.

B Additional dataset processing details

B.1 Data preparation steps

Existing links. For the existing links, we store the
following data: source and target titles, Wikidata
QIDs, lead paragraphs, the name of the section
containing the link, and a context surrounding the
link. The context is defined as the sentence con-
taining the link and the five sentences before and
after (or until we reach the end of the section). We
additionally keep positional information about the
mention and the sentence containing the mention
relative to the context (i.e., the start and end indices
of the mention and the sentence in the context).
The positional information is relevant to the data
augmentation strategy we introduced (see § B.4).
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Added links. For the added links, we store the
same information as in the existing links, except
for the positional information. This is because
positional information is required primarily for per-
forming data augmentations, which are required
only for processing existing links.

B.2 Dataset statistics
Table 7 shows the summary statistics of the entity
insertion dataset for each of the 105 considered
language versions of Wikipedia, in particular the
number of articles, the number of existing links,
and the number of added links.

Table 8 shows the number of samples contained
in the training and test splits, respectively, for each
of the 20 Wikipedia language versions considered
in the experiments.

B.3 Entity insertion categories
Table 9 shows an example for each of the entity
insertion categories, except for the category miss-
ing_section, demonstrating that the problem of
entity insertion grows in complexity as more text
is missing.

Additionally, Fig. 5 shows the distribution of en-
tity insertion categories for 20 Wikipedia language
versions considered in the experiments.

B.4 Dynamic context removal
Table 10 shows examples of the different types
of dynamic context removal. Specifically, we ran-
domly remove a word (rm_mention simulation), a
sentence (rm_sent simulation), or a span of sen-
tences (rm_span simulation) during training. Be-
fore sending the input to the model, we randomly
select one of the masking strategies mentioned
above (as well as no masking) to modify the in-
put accordingly. However, before applying the
strategy, we verify if the selected strategy does not
produce an empty input. This may happen when,
for example, the context is a single sentence, in
which case simulating the rm_sent strategy would
lead to an empty input. If the sampled strategy
would produce an empty input, we re-sample a less
aggressive strategy.

While performing the rm_span simulation, the
number of sentences to remove is chosen randomly
between 2 and 5. Note that we used a space-based
splitting for ease of implementation, and we ac-
knowledge that this could be an issue for certain
languages, such as Japanese or Chinese, which we
intend to fix in the future.

B.5 Rules for sampling negative candidates

We employ the following rules when constructing
the negative candidates, both for training and vali-
dation.

1. A candidate’s context should not span over
two different sections.

2. A candidate’s context should not contain any
of the mentions previously used to link to the
target entity.

The first rule keeps the content of each context
consistent, as two distinct sections can cover very
different topics. The second rule ensures that all
the candidates used to evaluate the module are cor-
rectly classified as either positive candidates or
negative candidates. For example, if the goal is
to insert the entity “1984” (the book - Q208460)
and there is a sentence in the article with the word
“1984” not linked to the target article, there could
be three reasons for the link to be missing. First,
the mention “1984” could be related to a differ-
ent entity (e.g., the year - Q2432), in which case
the sentence should belong to a negative candidate.
Second, the mention is supposed to be for the tar-
get entity but it is not yet linked, in which case the
sentence should belong to an additional positive
candidate. Finally, the mention is supposed to be
for the target entity but it should not be linked be-
cause of Wikipedia’s editing guidelines, in which
case it is not clear whether the sentence should be-
long to a negative or a positive candidate. Due to
this unclear categorization, we choose to remove
any sentences containing mentions previously as-
sociated with the target entity to be inserted.

C Additional experiments

C.1 Hyperparameters

We train the encoder and MLP with learning rates
of 1e − 5 and 1e− 4, respectively, using N = 9
negative candidates. Moreover, we use 5 sen-
tences on either side as context for each candidate
text span and set |Mtgt | = 10. The first stage of
training uses 20K data points and is trained for 4
epochs, whereas the second stage uses all the avail-
able data for 2 epochs. Mimicking the real-world
entity insertion scenarios, we set rm_nth=40%,
rm_mention=20%, rm_sentence=30%, and rm_-
span=10%.

22809



Table 7: Summary statistics of the full entity insertion dataset collected from 105 different Wikipedia language
versions.

Language Articles Existing Links Added Links Language Articles Existing Links Added Links
en English 6.7M 166M 368K de German 2.8M 78.3M 94.3K
sv Swedish 2.5M 29.9M 10.7K fr French 2.5M 85.1M 64.5K
nl Dutch 2.1M 24.7M 23.6K ru Russian 1.9M 47.6M 33.8K
es Spanish 1.8M 47.9M 66.3K it Italian 1.7M 51.1M 45.6K
pl Polish 1.5M 30.1M 27.2K ja Japanese 1.3M 60.6M 79.0K
zh Chinese 1.3M 23.1M 28.2K vi Vietnamese 1.2M 10.3M 11.9K
ar Arabic 1.2M 16.3M 17.8K pt Portuguese 1.1M 21.9M 24.2K
fa Persian 971K 9.5M 18.1K ca Catalan 732K 14.6M 18.4K
sr Serbian 671K 8.3M 5.4K id Indonesian 650K 8.5M 13.7K
ko Korean 634K 11.2M 21.3K no Norwegian 611K 11.3M 7.2K
ce Chechen 599K 3.0M 48 fi Finnish 554K 9.7M 13.7K
cs Czech 531K 14.4M 12.3K tr Turkish 531K 6.7M 14.9K
hu Hungarian 527K 10.6M 7.8K tt Tatar 496K 3.1M 94
sh Serbo-Croatian 456K 8.3M 807 ro Romanian 439K 6.9M 4.2K
eu Basque 412K 4.4M 5.1K ms Malay 363K 2.9M 2.7K
he Hebrew 341K 14.7M 36.7K eo Esperanto 340K 6.7M 5.8K
hy Armenian 296K 4.5M 3.7K da Danish 294K 5.7M 2.3K
bg Bulgarian 288K 5.2M 4.8K cy Welsh 270K 2.6M 386
sk Slovak 242K 3.4M 3.1K azb South Azerbaijani 242K 1.0M 22

simple Simple English 240K 2.6M 3.8K et Estonian 235K 4.4M 4.7K
kk Kazakh 233K 1.6M 1.5K be Belarusian 232K 3.1M 3.0K
uz Uzbek 230K 1.3M 4.3K min Minangkabau 226K 644K 21
el Greek 224K 4.8M 6.7K lt Lithuanian 210K 3.8M 2.4K
gl Galician 196K 3.9M 4.2K hr Croatian 194K 3.2M 3.4K
ur Urdu 190K 1.4M 5.2K az Azerbaijani 188K 2.4M 6.3K
sl Slovenian 182K 3.1M 1.5K ka Georgian 163K 2.3M 1.7K
ta Tamil 157K 1.6M 1.1K hi Hindi 157K 1.2M 2.3K
la Latin 138K 2.5M 1.2K mk Macedonian 136K 2.3M 923
ast Asturian 128K 2.6M 49 lv Latvian 121K 2.0M 1.9K
af Afrikaans 111K 1.3M 1.4K tg Tajik 108K 567K 123
sq Albanian 97.3K 873K 523 mg Malagasy 95.7K 495K 1.2K
bs Bosnian 89.7K 1.6M 969 oc Occitan 88.3K 1.1M 1.9K
te Telugu 82.2K 934K 1.1K sw Swahili 74.3K 1.0M 558

lmo Lombard 71.9K 380K 26 jv Javanese 70.5K 513K 161
ba Bashkir 62.4K 960K 649 lb Luxembourgish 61.7K 930K 754
mr Marathi 60.9K 409K 67 su Sundanese 60.3K 470K 6
is Icelandic 56.4K 725K 1.0K ga Irish 56.0K 387K 204
ku Kurdish 54.3K 252K 614 fy Western Frisian 51.0K 1.3M 579
pa Punjabi 49.4K 282K 139 cv Chuvash 48.3K 213K 304
br Breton 46.5K 326K 852 tl Tagalog 43.2K 435K 512
an Aragonese 40.8K 620K 70 io Ido 40.7K 422K 230
sco Scots 35.5K 251K 40 vo Volapük 34.6K 134K 7
ne Nepali 32.1K 168K 250 ha Hausa 30.6K 129K 262
gu Gujarati 30.2K 411K 29 kn Kannada 28.0K 253K 514
bar Bavarian 27.0K 207K 21 scn Sicilian 23.8K 132K 5
mn Mongolian 22.5K 187K 467 si Sinhala 20.3K 81.7K 36
ps Pashto 16.2K 49.7K 10 gd Scottish Gaelic 15.8K 207K 14
yi Yiddish 15.2K 185K 21 sd Sindhi 13.4K 49.5K 14
am Amharic 12.9K 69.1K 12 as Assamese 11.9K 104K 459
sa Sanskrit 10.5K 65.2K 18 km Khmer 9.8K 52.3K 95
ary Moroccan Arabic 8.0K 50.5K 129 so Somali 7.4K 64.2K 60
ug Uyghur 5.9K 9.7K 1 lo Lao 4.7K 14.2K 11
om Oromo 1.7K 5.0K 18 xh Xhosa 1.6K 2.8K 1

C.2 Multilingual entity insertion stratified by
language

Figs. 6 and 7 portray the entity insertion perfor-
mance stratified by language of all the bench-
marked methods using hits@1 and MRR, respec-
tively. The results clearly show that, as entity in-
sertion becomes more complex, the baselines start
to decrease in performance, being significantly out-
performed by LOCEI and XLOCEI.

C.3 Zero-shot entity insertion stratified by
language

Table 11 provides additional details about the data
such as the languages and the size of the datasets,
used to train the different variants of the multilin-
gual models employed in the zero-shot setting.

Figs. 8 and 9 portray the zero-shot entity inser-
tion performance stratified by language of all the
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Table 8: Summary statistics of the train and test sets for 20 Wikipedia language versions considered in the
experiments.

Language Articles Existing Links
Added Links
Train Test

en English 6.7M 166M 552K 416K
fr French 2.5M 85M 130K 76K
it Italian 1.8M 51M 101K 56K
ja Japanese 1.4M 61M 150K 111K
pt Portuguese 1.1M 22M 54K 32K
cs Czech 526K 14M 27K 15K
ms Malay 362K 2.9M 6K 3K
cy Welsh 269K 2.7M 1K 455
sk Slovak 240K 3.4M 7K 4.3K

simple Simple English 238K 2.6M 9.4K 4.8K
kk Kazakh 232K 1.6M 2.7K 2.0K
uz Uzbek 224K 1.3M 12K 5.9K
ur Urdu 188K 1.4M 14K 7.5K
hi Hindi 155K 1.2M 3.2K 3.2K
af Afrikaans 111K 1.4M 3.3K 1.7K
sw Swahili 73K 1.0M 1.1K 616
ga Irish 56K 380K 849 256
is Icelandic 51K 610K 1.6K 1.2K
gu Gujarati 30K 410K 197 48
kn Kannada 27K 250K 1.1K 609
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Figure 5: The distribution of entity insertion categories across the 20 considered Wikipedia language versions from
October to November 2023. The x-axis shows the language code and the number of links added in each language.

benchmarked methods using hits@1 and MRR, re-
spectively.

C.4 Impact of the starting model
Since our approach is based on fine-tuning pre-
trained models, the starting pre-trained model may
have an impact on the eventual model performance.
We studied this dependence using three pre-trained
models: BERTBASE, RoBERTaBASE and the en-

coder portion of T5BASE, which we call T5enc
BASE.

We considered BERT and RoBERTa because they
are amongst the most popular transformer encoder
models. We additionally included T5 to see how
encoder-decoder models perform in the entity in-
sertion task. However, as RankT5 (Zhuang et al.,
2023) showed there was no clear benefit in using
the full encoder-decoder architecture, as opposed
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Table 9: Examples of different entity insertion categories observed when adding links in Wikipedia. The added link
is marked in blue.

Strategy First Version Text Second Version Text

Text Present It is best eaten when it is somewhat be-
low normal room temperature. In most
countries, brie-style cheeses are made
with Pasteurized milk.

It is best eaten when it is somewhat be-
low normal room temperature. In most
countries, brie-style cheeses are made
with Pasteurized milk.

Missing Mention Vercetti Regular, also known as Vercetti,
is a free font that can be used for both
commercial and personal purposes. It
became available in 2022 under the Li-
cence Amicale, which allows users to
share the font files with friends and col-
leagues.

Vercetti Regular, also known as Vercetti,
is a free font (freeware) that can be used
for both commercial and personal pur-
poses. It became available in 2022 un-
der the Licence Amicale, which allows
users to share the font files with friends
and colleagues.

Missing Sentence Kivi was born in Nurmijärvi. Kivi lived
in time when all educated people in Fin-
land spoke Swedish. He was the first
professional writer who published his
works in Finnish. Kivi, Mikael Agri-
cola and Elias Lönnrot are regarded fa-
thers of a national literature in Finnish.

Kivi was born in Nurmijärvi. He lived
in time when all educated people in Fin-
land spoke Swedish. He was the first
professional writer who published his
works in Finnish. Kivi, Mikael Agri-
cola and Elias Lönnrot are regarded fa-
thers of a national literature in Finnish.

Missing Span The game will be released for Win-
dows PC, Mac and Linux, with Nin-
tendo Switch being the only console to
receive the game at launch.
During the Xbox & Bethesda Games
Showcase, it was revealed that the game
would be coming to Xbox Game Pass
through PC and Xbox Series X/S. It
was also revealed that the game would
be coming to PlayStation 4 and PlaySta-
tion 5.
Originally, Hornet was planned as a sec-
ond playable character to be included in
a downloadable content pack (DLC) for
Hollow Knight, funded as a stretch goal
in the game’s Kickstarter campaign.

The game will be released for Win-
dows PC, Mac and Linux, with Nin-
tendo Switch being the only console to
receive the game at launch.
During the Xbox & Bethesda Games
Showcase, it was revealed that the game
would be coming to Xbox Game Pass
through PC and Xbox Series X/S. It
was also revealed that the game would
be coming to PlayStation 4 and PlaySta-
tion 5.
Originally, Hornet was planned as a sec-
ond playable character to be included in
a downloadable content pack (DLC) for
Hollow Knight, funded as a stretch goal
in the game’s Kickstarter campaign.

to encoder-only architecture, and thus, for compu-
tational reasons we decided to use the encoder-only
variant of T5, T5enc.

We trained each model on the Simple English
dataset, and we measured their performance on
the test data. Table 12 shows that the RoBERTa
model outperformed both BERT and T5enc in all
entity insertion categories by a large margin. BERT
and T5enc performed similarly, with T5enc doing
slightly better. These results may be explained by

the fact that the RoBERTa tokenizer has a much
larger vocabulary than the tokenizers for BERT
or T5enc. A larger vocabulary might make it pos-
sible for the model to capture more fine-grained
linguistic and structural patterns in the candidate
text spans, enabling the model to exploit patterns
that neither T5enc nor BERT can capture.
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Table 10: Examples of different strategies for dynamic context removal. The mention of the target link is marked in
blue.

Strategy Original Text Modified Text

No removal
(rm_nth)

Pulaski County is a county located in
the central portion of the U.S. state of
Georgia. As of the 2020 census, the
population was 9,855. The county seat
is Hawkinsville.

Pulaski County is a county located in
the central portion of the U.S. state of
Georgia. As of the 2020 census, the
population was 9,855. The county seat
is Hawkinsville.

Mention removal
(rm_mention)

Perthes-lès-Brienne is a commune of
the Aube département in the north-
central part of France.

Perthes-lès-Brienne is a commune of
the Aube in the north-central part of
France.

Sentence removal
(rm_sent)

In this Japanese name, the family name
is Fujita. Yoshiaki Fujita (born 12
January 1983) is a Japanese football
player. He plays for Oita Trinita.

In this Japanese name, the family
name is Fujita.

He plays for Oita Trinita.

Span removal
(rm_span)

Administration
The department of French Guiana is
managed by the Collectivité territorial
de la Guyane in Cayenne. There are
2 arrondissements (districts) and 22
communes (municipalities) in French
Guiana. The cantons of the department
were eliminated on 31 December 2015
by the Law 2011-884 of 27 July 2011.
The 22 communes in the department
are:

Administration

The 22 communes in the depart-
ment are:

Table 11: Details about the languages and size of the dataset used to train the two XLOCEI model variants, i.e.,
XLOCEI20 and XLOCEI11.

Model Starting Model Fine-Tuned Languages
Training Data Size
Stage 1 Stage 2

xLocEI20 XLM-RoBERTaBASE en, fr, it, ja, pt, cs, ms, cy, sk, uz,
simple, kk, ur, hi, af, sw, ga, is,
kn, gu

20K 503K

xLocEI11 XLM-RoBERTaBASE en, it, ja, cs, cy, uz, ur, hi, sw, is,
kn

20K 348K

Table 12: Comparing the entity insertion performance obtained for Simple English with different starting models.
The categorization of entity insertion types into ‘Overall’, ‘Missing’, and ‘Present’ is discussed in § 6.3.

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing
BERT 0.666 0.916 0.492 0.738 0.940 0.598
T5enc 0.710 0.929 0.558 0.774 0.952 0.650

RoBERTa 0.851† 0.957† 0.777† 0.890† 0.968 0.835†

† Indicates statistical significance (p < 0.05) between the best and the second-best scores.
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Figure 6: Entity insertion performance across all 20 Wikipedia language versions measured using hits@1. XLOCEI
trains a single model jointly on all 20 languages, whereas other methods train a separate model for each language.
The categorization of entity insertion types is discussed in § 4.

C.5 Impact of the model size

There is a widely known trend in the deep learn-
ing community that bigger models tend to perform
better than smaller models (Soltanolkotabi et al.,
2019; Brutzkus and Globerson, 2019; Simon et al.,

2024). To this end, we studied how the model size
impacts the entity insertion performance by com-
paring RoBERTaLARGE with RoBERTaBASE on the
Simple English dataset.

Table 13 shows that there is no statistically sig-
nificant difference between the performance of
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Figure 7: Entity insertion performance across all 20 Wikipedia language versions measured using MRR. XLOCEI
trains a single model jointly on all 20 languages, whereas other methods train a separate model for each language.
The categorization of entity insertion types is discussed in § 4.

RoBERTaLARGE and RoBERTaBASE. These results
point to the fact that the increased model complex-
ity is not sufficient to improve model performance.
It is worth noting that these results were obtained
for Simple English. The multilingual problem is
much harder and it might benefit from the increased

complexity and larger parameter space of the larger
model. We leave this study for future work.

Additionally, these findings give more strength
to the hypothesis that the reason why RoBERTa
is significantly better than BERT and T5enc is be-
cause RoBERTa’s larger tokenizer allows the model
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Figure 8: Entity insertion performance measured using hits@1 in the zero-shot setting: results across 9 Wikipedia
language versions that were not used for fine-tuning XLOCEI11. XLOCEI20 was trained jointly on all 20 languages,
whereas LOCEI trains a separate model for each language. The categorization of entity insertion types is discussed
in § 4.
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Figure 9: Entity insertion performance measured using MRR in the zero-shot setting: results across 9 Wikipedia
language versions that were not used for fine-tuning XLOCEI11. XLOCEI20 was trained jointly on all 20 languages,
whereas LOCEI trains a separate model for each language. The categorization of entity insertion types is discussed
in § 4.

to capture more fine-grained linguistic and struc- tural patterns in the candidate. This increased input
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representation space seems to be vital for entity
insertion.

C.6 Impact of the size of training data

As discussed in § 5.2, we use the existing and added
links data during the first and second stages of our
training pipeline, respectively. In this analysis, we
studied how much data is needed for each stage.
To study the impact of the training data size on
the downstream entity insertion performance, we
trained a RoBERTaBASE model with varying por-
tions of the full English dataset.

Fig. 10 shows the performance of LOCEI for
different entity insertion categories with varying
training data sizes og {103,104,105,106} in the
first stage of the training pipeline. Note that LOCEI
was trained using only the first stage for this anal-
ysis. Fig. 11 shows an analogous plot for the
second stage with varying training data sizes of
{102,103,104,105}. For this analysis, LOCEI was
trained using only the second stage.

These results show that it is much more impor-
tant to have more data in the second stage when
compared to the first stage. The performance did
not visibly improve over the data range considered
for the first stage, indicating no benefit in train-
ing on a lot of existing links. On the other hand,
the model performance improved drastically as the
data size increased for the second stage, with no
sign of plateauing. Based on these results, the opti-
mal training schedule for an entity insertion model
using our data seems to be a short first stage, fol-
lowed by a second stage using as much data as
possible.

C.7 Training stages

Table 14 shows the impact of different training
strategies: (1) Warm start (only using the first
stage), (2) Expansion (only using the second stage),
and (3) Warm start + Expansion (using both stages),
on the downstream entity insertion performance of
LOCEI using data extracted from English Wikipe-
dia.

C.8 RoBERTa vs XLM-RoBERTa

We found the scores obtained with RoBERTa on
Simple English to be significantly higher than
the scores achieved by the multilingual XLM-
RoBERTa. In this analysis, we compare the per-
formance of these two models on the full English
dataset, with both models having been fine-tuned

on the same English dataset. Table 15 shows a sta-
tistically significant difference in the performance
of RoBERTa and XLM-RoBERTa, with RoBERTa
scoring higher in all entity insertion strategies, with
gaps up to 25%. We draw two conclusions from
these results.

In our ablations, we found that RoBERTa outper-
formed BERT and T5enc by a large margin, which
leads us to select XLM-RoBERTa as the best can-
didate for the multilingual model to use in our ex-
periments. However, the performance of RoBERTa
does not seem to directly correlate with the per-
formance of XLM-RoBERTa, as seen by the large
drop in English when moving from RoBERTa to
XLM-RoBERTa. This finding casts some doubt
on the decision of the best multilingual model and
opens the doors to models like multilingual BERT
and mT5 (Xue et al., 2021). In the future, it would
be interesting to consider other multilingual models
and see if they can outperform XLM-RoBERTa.

As shown in § 6.4, XLM-RoBERTa fine-tuned
on the multilingual dataset generally outperformed
XLM-RoBERTa fine-tuned on a single language.
However, the results in Table 15 point to the fact
that a model pre-trained on a single language
(RoBERTa) outperforms a model pre-trained on
multiple languages (XLM-RoBERTa). The domi-
nance of the monolingual model is not surprising
as a model pre-trained on a single language had a
much smaller domain to learn than a multilingual
model, and thus, might have been able to learn
linguistic and structural patterns that the multilin-
gual model failed to capture. So, for the languages
where a pre-trained model does exist (for example,
BERT for English, CamemBERT (Müller et al.,
2020) for French, HerBERT (Rybak et al., 2020)
for Polish), that model may outperform the multi-
lingual variant. However, it is unrealistic to assume
that there can be a pre-trained model for each of
the 300+ languages of Wikipedia. The multilin-
gual model becomes essential for the languages for
which there is no pre-trained model. As we saw in
§ 6.4 and § 6.4, the multilingual model is capable of
transferring knowledge to unseen languages, which
proves its potential for low-resource languages for
which a full pre-trained model is not realistic.

C.9 Single Encoder vs Triple Encoder

In early iterations of our work, we explored a differ-
ent model architecture. This architecture used the
additional knowledge of the source article. Given
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Table 13: Comparing the entity insertion performance obtained for Simple English with varying model sizes. The
categorization of entity insertion types is discussed in § 4.

Model
Text Present Missing Mention Missing Sentence Missing Span

Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR
RoBERTaBASE 0.956 0.968 0.696 0.760 0.834 0.884 0.799 0.859

RoBERTaLARGE 0.964 0.975 0.670 0.744 0.856 0.895 0.822 0.873
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Figure 10: Impact of the amount of data used in the first stage on the downstream entity insertion performance. Note
that the model is trained solely using the first stage. The categorization of entity insertion types is discussed in § 4.
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Figure 11: Impact of the amount of data used in the second stage on the downstream entity insertion performance.
Note that the model is trained solely using the second stage. The categorization of entity insertion types is discussed
in § 4.

Table 14: Comparison of the impact of different stages of the training pipeline on the downstream entity insertion
performance. The categorization of entity insertion types into ‘Overall’, ‘Missing’, and ‘Present’ is discussed in
§ 6.3.

Training Stages
Hits@1 MRR

Overall Present Missing Overall Present Missing
Warm start 0.584 0.883 0.350 0.649 0.907 0.451
Expansion 0.604 0.738 0.494† 0.689 0.801 0.603†

Warm start + Expansion 0.672† 0.877† 0.509 0.744† 0.906† 0.617
† Indicates statistical significance (p < 0.05) between the variant and the previous variant.
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Table 15: Comparing the entity insertion performance of our model fine-tuned using the monolingual RoBERTaBASE
and the multilingual XLM-RoBERTaBASE on the data extracted from English Wikipedia. The categorization of
entity insertion types is discussed in § 4.

Model
Text Present Missing Mention Missing Sentence Missing Span

Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR
RoBERTaBASE 0.923† 0.936† 0.737† 0.797† 0.850† 0.898† 0.787† 0.848†

XLM-RoBERTaBASE 0.863 0.892 0.543 0.630 0.595 0.662 0.697 0.615
† Indicates statistical significance (p < 0.05).

Table 16: Comparing the entity insertion performance obtained for Simple English with different loss functions:
pointwise vs. ranking loss. The categorization of entity insertion types into ‘Overall’, ‘Missing’, and ‘Present’ is
discussed in § 6.3.

Method
Hits@1 MRR

Overall Present Missing Overall Present Missing
Pointwise Loss 0.641 0.891 0.477 0.712 0.922 0.574
Ranking Loss 0.658 0.907 0.495 0.731 0.930 0.601

the amount of text that needed to be encoded, and
considering that most transformers have a limited
number of tokens they can process, we chose to
encode each of the three components separately.
We had the following input representations:

• Source Article: [CLS]<Src Title>[SEP]<Src
Lead>

• Candidate: [CLS]<Src Section>[SEP]<Tgt
Mention>[SEP]<Context>

• Target Title: [CLS]<Tgt Title>[SEP]<Tgt
Lead>

Each of the components of the triplet was en-
coded independently, and then stacked together.
Finally, an MLP capturing the interactions between
the three embeddings was used to produce a rele-
vance score.

The key intuition behind this architecture was to
represent a link as a knowledge triplet <src, text,
tgt>, and the overall architecture was supposed to
predict whether the triplet was correct. However,
we found that such an architecture decayed into a
state where the target and source embeddings were
independent of the input, always producing the
same embedding. We believe that the model relied
exclusively on the semantic knowledge contained
in the list of target mentions to identify whether
the entity should be inserted in the candidate text
span, and the source and target article embeddings
decayed into a global average optimum that maxi-
mized the performance of the MLP for the candi-
date embedding. Nevertheless, this meant that all

the knowledge about the target entity contained in
the target lead was being ignored.

To take advantage of the total available infor-
mation, we moved to the architecture described in
§ 5.1. We removed the source title and the source
lead, driven by the token limit of the transformer
architecture. We believed that this knowledge pro-
vided the least marginal gain from the three com-
ponents of the triplet, at a cost of token space for
the candidate and the target, as the source article
knowledge only gave additional context to the can-
didate text span.

We additionally moved to a single encoder for
two reasons. First, the transformer architecture is
more expressive than an MLP, and thus, it was bet-
ter suited to capture the interactions between the
candidate and the target. With only two knowl-
edge sources instead of three, we felt we had
sufficient token space for each source to capture
enough semantic information for each input. Sec-
ond, by relying on one single embedding, the em-
bedding couldn’t decay into a global average op-
timum which provided no information about the
input, because the relevance score was entirely de-
pendent on the representation power of that single
embedding.

C.10 Pointwise Loss vs Ranking Loss
Table 16 shows how the choice of different loss
functions (pointwise vs. ranking) impacts the
downstream entity insertion performance of our
models evaluated on the Simple English dataset.
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