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Abstract

Information Extraction (IE), aiming to extract
structured information from unstructured nat-
ural language texts, can significantly benefit
from pre-trained language models. However,
existing pre-training methods solely focus on
exploiting the textual knowledge, relying exten-
sively on annotated large-scale datasets, which
is labor-intensive and thus limits the scalability
and versatility of the resulting models. To ad-
dress these issues, we propose SKIE, a novel
pre-training framework tailored for IE that inte-
grates structural semantic knowledge via con-
trastive learning, effectively alleviating the an-
notation burden. Specifically, SKIE utilizes Ab-
stract Meaning Representation (AMR) as a low-
cost supervision source to boost model perfor-
mance without human intervention. By enhanc-
ing the topology of AMR graphs, SKIE derives
high-quality cohesive subgraphs as additional
training samples, providing diverse multi-level
structural semantic knowledge. Furthermore,
SKIE refines the graph encoder to better cap-
ture cohesive information and edge relation in-
formation, thereby improving the pre-training
efficacy. Extensive experimental results demon-
strate that SKIE outperforms state-of-the-art
baselines across multiple IE tasks and show-
cases exceptional performance in few-shot and
zero-shot settings.

1 Introduction

Information Extraction (IE) aims to extract struc-
tured information from unstructured natural lan-
guage texts (Grishman and Sundheim, 1996; Gr-
ishman, 2019), which encompasses several sub-
tasks such as Named Entity Recognition (NER)
(Shen et al., 2023; Ghosh et al., 2023), Relation
Extraction (RE) (Sun et al., 2023; Wu et al., 2023),
and Event Extraction (EE) (Guzman Nateras et al.,
2023; Liu et al., 2023). Considering the inherent
connections among these subtasks, recent methods
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Figure 1: An example from the WikiEvents dataset.
The AMR graph (left) highlights key elements: the
entities driver and house are connected by the relation
"source". The event trigger is come out, with the entities
themselves serving as the arguments for the event.

propose to jointly resolve them within a unified
framework, capitalizing on the generalization ver-
satility of pre-trained language models (PLMs).

For instance, UIE (Lu et al., 2022) embeds
schema-based prompts into the corpora to pre-
train a text-to-structure generative PLM, enabling
it to generate uniform representations. USM (Lou
et al., 2023) utilizes three kinds of supervised
datasets and employs unified token linking to struc-
ture information during pre-training. Mirror (Zhu
et al., 2023) designs a unified data interface to
reorganize datasets into multi-slot tuples for pre-
training. MetaRetriever (Cong et al., 2023) in-
troduces a Meta-Pretraining Algorithm to retrieve
task-specific knowledge from PLMs for IE tasks.

However, existing pre-training methods suffer
from two major challenges. First, the high cost of
annotation restricts existing datasets for IE tasks to
a few predefined categories and small data volumes
(Lou et al., 2023), limiting the amount of super-
vised datasets available for pre-training. Second,
these methods are constrained to solely utilizing
annotated textual knowledge, neglecting the poten-
tial structural semantic knowledge inherent in texts,
which hinders their ability to leverage complex
structural knowledge.
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A feasible solution is to generate self-supervised
signals from extensive unsupervised data by lever-
aging their structural semantic knowledge, instead
of relying on limited supervised data. Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013), which has demonstrated its ability to cap-
ture structural semantic knowledge within texts
without additional human effort (Bai et al., 2022;
Wang et al., 2015), stands out as a fitting choice.
Figure 1 illustrates an example of a text segment
and its corresponding AMR graph. The text is con-
verted into an AMR graph through AMR parsing,
where nodes represent basic semantic units such
as entities and predicates, while edges denote their
semantic relations (Bai et al., 2022).

Armed with this insight, we propose SKIE, a
novel pre-training method that integrates Structural
semantic Knowledge to enhance the model’s ver-
satility across multiple IE tasks. SKIE leverages
AMR parsing to generate self-supervised signals,
offering a flexible and general approach to semantic
representations. To capture more diverse semantic
structures, SKIE introduces cohesive subgraphs,
which are densely connected subsets of pivotal
nodes within the graph. Then, contrastive learn-
ing is employed to bridge the associations between
texts and graphs.

Specifically, SKIE comprises three key modules:
the topology enhancement module, the encoding
cohesion module, and the contrastive learning mod-
ule. Capitalizing on the cohesion-guided topology
enhancement, we extract cohesive subgraphs from
AMR graphs to acquire diverse multi-level struc-
tural semantic knowledge. To preserve edge rela-
tion information and cohesive information in the
graphs, we propose a topology-aware encoder for
cohesive encoding. By learning from correlations
and distinctions between texts and graphs via con-
trastive learning, SKIE can comprehend semantic
associations and intrinsic patterns within the texts,
enabling better adaptation to IE tasks.

Our contributions are as follows:

• We propose a novel pre-training method,
which incorporates structural semantic knowl-
edge from AMR graphs into the training pro-
cess to enhance the capability and versatility
of the resulting models, without additional
annotation needs.

• To provide diverse structural knowledge, we
elaborately design a topology-aware encoder,

and then employ it to encode high-quality
AMR cohesive subgraphs extracted accord-
ing to two topology enhancement strategies.

• Experimental results demonstrate that our
pre-training method achieves superior perfor-
mance across multiple IE tasks, showcasing
exceptional capabilities in both few-shot and
zero-shot settings.

2 Related Work

2.1 Information Extraction

IE can be formulated as a text-to-structure task,
with different IE subtasks corresponding to dif-
ferent target structures. OneIE (Lin et al., 2020)
extracts optimal global information from input
texts through global graph searching. Addition-
ally, TANL (Paolini et al., 2021) translates struc-
tured prediction language tasks into IE processes
through enhanced translation tasks between natural
languages.

Recently, researchers have delved into univer-
sal frameworks for IE tasks. UIE (Lu et al., 2022)
achieves generic modeling and adaptive structure
generation for various IE tasks through structured
language extraction and pattern-based prompting
mechanisms. USM (Lou et al., 2023) decouples
IE tasks and employs a unified semantic matching
framework alongside unified token linking opera-
tions. UniEX (Ping et al., 2023) and UTC-IE (Yan
et al., 2023) transform text-based IE tasks into a uni-
fied token-pair problem. UniEX leverages pattern-
based cues and text information encoding, whereas
UTC-IE achieves unified IE through axis-aware in-
teractions and local interactions on the token-pair
feature matrix.

2.2 Abstract Meaning Representation

AMR graph is a single-rooted directed graph used
to represent the meaning of texts. AMR parsing
translates texts into corresponding AMR graphs
(Cai and Lam, 2020; Hoang et al., 2021; Wang
et al., 2022; Vasylenko et al., 2023). With the
continuous development of deep learning, there
has been a gradual emergence of neural transition-
based parsers, sequence-to-graph parsers, and
sequence-to-sequence parsers (Bai et al., 2022).

The neural transition-based parsers (Fernan-
dez Astudillo et al., 2020; Zhou et al., 2021; Droz-
dov et al., 2022) incrementally construct AMR
graphs by applying basic operations (e.g., SHIFT,
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Figure 2: The overall framework of SKIE, which comprises three key modules: topology enhancement, encoding co-
hesion, and contrastive learning. The topology enhancement constructs cohesive subgraphs using both deterministic
and probabilistic topology enhancement strategies. The encoding cohesion independently extracts features from
texts and graphs. Finally, the contrastive learning analyzes the semantic correspondences between texts and graphs.

LEFT-ARC, RIGHT-ARC) in transition-based pars-
ing. Sequence-to-graph parsers (Zhang et al., 2019;
Cai and Lam, 2020; Xia et al., 2021) directly gener-
ate AMR graphs from texts. In addition, sequence-
to-sequence parsers (Bevilacqua et al., 2021; Yu
and Gildea, 2022; Gao et al., 2023) are employed
to transform AMR parsing into a "linearized" se-
quence generation task.

3 Methodology

The overall framework is shown in Figure 2, con-
sisting of three key modules: topology enhance-
ment, encoding cohesion, and contrastive learning,
which are introduced in section 3.1, section 3.2,
and section 3.3, respectively. Section 3.4 describes
how to fine-tune our PLM to adapt to IE tasks.

3.1 Topology Enhancement Module

3.1.1 AMR Parsing
For a given text s, we employ a transformer-based
automatic AMR parser (Fernandez Astudillo et al.,
2020) to obtain the corresponding AMR graph G =
(V,E). Here, nodes V represent basic semantic
units such as entities and predicates, while edges E
denote semantic relations. Each edge eij = (vi, vj)

is associated with a relation r from a predefined set
of relations R, which can be formulated as E =
{(vi, vj , r) | (vi, vj) ∈ V × V, r ∈ R}.

3.1.2 Cohesive Subgraphs

After obtaining AMR graphs, we introduce co-
hesive subgraphs to derive semantic representa-
tions at different levels. These cohesive subgraphs
aim to capture tight structures and semantic cor-
relations within AMR graphs, revealing multi-
level structural cohesion contained in the texts.
We primarily focus on the k-core (Kong et al.,
2019) due to its effectiveness in identifying core
structures within graphs and its applicability to
large-scale networks (King et al., 2023). For
an AMR graph G = (V,E), we extract a set
of k-core cohesive subgraphs, denoted as G ={
Gk|k = kmin, kmin+1, . . . , kmax

}
.

First, we utilize a deterministic topological en-
hancement strategy, which employs deterministic
rules to generate subgraphs and select them based
on predefined conditions. To further improve co-
hesion during graph diffusion, we strategically as-
sign higher weights to edges within these cohesive
subgraphs, thereby emphasizing key relations and
enhancing overall structure connectivity.
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For a node vi ∈ V in the original AMR graph,
we obtain its importance weight wv(vi) by calculat-
ing the number of times it appears in the subgraph
set. Given Gk =

(
V k, Ek

)
, we have:

wv(vi) =
∑

Gk∈G
1vi∈V k (1)

where 1vi∈V k is an indicator function that outputs
1 if vi is in V k and 0 otherwise.

Then, the weight wv(vi) is normalized to obtain
w

′
v(vi), so that the uniformly initialized weight

we(eij) of the edge eij between vi and vj can be
continuously updated to derive weights w

′
e(eij) dur-

ing graph diffusion:

w
′
e(eij) =

1

2
(w

′
v(vi) + w

′
v(vj))we(eij) (2)

In this way, we refer to the deterministic topol-
ogy enhancement strategies (Klicpera et al., 2019;
Hassani and Khasahmadi, 2020; Wu et al., 2024)
for graph diffusion:

SPPR = α(I− (1− α)D−1/2AD−1/2)−1 (3)

where α ∈ (0, 1) is the teleport probability, I is the
degree matrix of nodes, D is the diagonal degree
matrix, and A ⊇ Ai,j is the adjacency matrix with
Ai,j = w

′
e(eij).

Second, to compensate for the potential knowl-
edge missing in deterministic topological enhance-
ment, we incorporate a probabilistic topological
enhancement strategy. This method typically gen-
erates subgraphs based on certain probability distri-
butions or random processes, introducing random-
ness in subgraph generation, resulting in potentially
different subgraphs each time.

Specifically, we introduce probabilistic mech-
anisms with the original dropping probability P
to modify edges or nodes in the graph, thereby
altering its topological structure. To maintain co-
hesion in the subgraphs generated by probabilistic
topological enhancement, we employ a decay fac-
tor ε ∈ (0, 1) to limit the probability P , which is
initialized based on the node weights. The proba-
bilities P

′
(vi) for nodes vi and P

′
(eij) for edges

eij are:

P
′
(vi) = (1− w

′
v(vi) · ε) · P (4)

P
′
(eij) =

1

2
(P

′
(vi) + P

′
(vj)) (5)

Ultimately, we acquire a set of cohesive sub-
graphs that not only depict the multi-level struc-
tural cohesion of AMR graphs but also facilitate

the capture of profound semantic knowledge from
the original texts.

3.2 Encoding Cohesion Module

3.2.1 Text Encoder
To ensure a direct correspondence between AMR
graphs and the original texts, we utilize Roberta-
Large (Liu et al., 2019) as the text encoder, aligning
its encoding structure with that of the AMR parser.
Roberta-Large is a PLM based on Transformer ar-
chitecture, known for its ability to effectively model
diverse information across extensive unsupervised
corpora. Given a text s, it is encoded through mul-
tiple layers of self-attention mechanisms to obtain
the resulting vector from the last hidden layer. The
vector encapsulate not only superficial information
(such as vocabularies and phrases) but also contex-
tual nuances.

3.2.2 Graph Encoder
We employ a graph encoder to extract correspond-
ing vectors from AMR graphs and their cohesive
subgraphs. However, traditional graph encoders
exhibit shortcomings in handling such graphs in
two primary aspects. First, they operate within the
message-passing neural network framework, which
concentrates on integrating neighbor information
into a comprehensive representation, leading to the
loss of substructure details. Second, since cohesive
subgraphs are extracted based on node connectivity
and feature-dense relations among nodes, it is cru-
cial to preserve such semantic knowledge during
the encoding process. Therefore, the graph encoder
must prioritize maintaining both detailed substruc-
ture information and dynamic node relations.

In light of these limitations, we propose a
Topology-aware Graph Substructure Network (T-
GSN) that incorporates structural topology into
GSN (Bouritsas et al., 2023). Specifically, we in-
troduce relation-specific transformations to handle
information uniquely according to the type of rela-
tions, allowing for tailored information processing
from neighbors to derive the aggregated feature for
each node. The update equation is articulated as
follows:

h
(l+1)
i = σ(

∑

r∈R

∑

j∈N r
i

1

ni,r
W(l)

r h
(l)
j +W(l)

o h
(l)
i )

(6)
where h

(l)
i denotes the feature of node vi at layer l.

σ represents the activation function, such as ReLU.
N r

i represents the set of neighbor nodes of node
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vi under relation r. W(l)
r denotes the weight ma-

trix for relation r at layer l, and W
(l)
o represents

the self-connection weight matrix to maintain own
features of the nodes. ni,r is the normalization con-
stant, typically chosen as |N r

i |, which represents
the number of neighbors of node vi associated with
relation r.

Then, the updated feature h
(l+1)
i and the en-

coded feature xi of node vi in the AMR graph
are fed into T-GSN:

T-GSN(vi) = AGG(h
(l+1)
i ,h

(l+1)
j ,xi,xj) (7)

where AGG denotes a neighborhood aggregation
function, which may involve utilizing a multi-layer
perceptron to aggregate features of node vi from
its neighbors j ∈ N r

i .
Ultimately, we encode the graphs not only based

on their topological structures but also by consid-
ering the semantic relations within substructures.
T-GSN significantly amplifies the expressive capa-
bilities of GNNs, allowing them to more accurately
capture and comprehend the intricate structures and
representations of AMR graphs and their cohesive
subgraphs.

3.3 Contrastive Learning Module

Contrastive learning has made significant strides
in the field of representation learning, particu-
larly demonstrating outstanding results in self-
supervised training. It learns the intrinsic represen-
tation of data by maximizing the distance among
negative sample pairs and minimizing the distance
among positive sample pairs. During pre-training,
contrastive learning can help models distinguish
between graph-text pairs with different similari-
ties, enabling them to more accurately capture the
correspondence between texts and graphs.

Specifically, we employ triplet loss (Schroff
et al., 2015) as our contrastive learning loss func-
tion, structured in triplets <anchor, positive, nega-
tive>. For a given text s, we designate it as an an-
chor, forming positive pairs with its corresponding
AMR graph and AMR cohesive subgraphs, while
generating negative pairs with non-matching AMR
graphs and AMR cohesive subgraphs. Our core
concept revolves around ensuring a certain mar-
gin separation between positive and negative pairs.
This optimization ensures that samples of the same
category in the embedding space are sufficiently
close, while samples of different categories are ad-
equately distant. In essence, the distance between

the anchor sample and the negative sample should
significantly exceed the distance between the an-
chor and the positive sample:

L = max(0, |s− g+|2 − |s− g−|2 + m) (8)

here, s, g+, and g− respectively represent the vec-
tors that map the text s, the positive graphs corre-
sponding to the text, and the negative graphs into
the embedding space. | · | denotes the Euclidean dis-
tance (or other distance metric), and m is a positive
number defining the minimum separation between
positive and negative sample pairs.

SKIE can better comprehend the semantic corre-
spondence between texts and graphs by minimiz-
ing loss to enhance performance in downstream IE
tasks. This effect is particularly pronounced when
dealing with semantically complex texts.

3.4 Task-specific Fine-tuning
Since the focus of this paper is on pre-training
rather than fine-tuning, we adopt fine-tuning tech-
niques from previous work (Zhu et al., 2023) to
efficiently adapt the PLM to different IE tasks and
settings. First, we convert the text s into an input
ti in a unified data format by embedding an in-
struction and a schema label. The instruction starts
with a leading token [I] and includes a sentence to
prompt the model with a specific task (e.g., "Please
extract event information from the given text, in-
cluding triggers and arguments"). The schema
label serves as guidance for different IE tasks (e.g.,
[LM] for entities or event types and [LR] for rela-
tions or argument roles).

Then, we use the PLM to convert ti into the
vector zi ∈ Rdz and obtain the adjacency matrix
B of the multi-span cyclic graph through biaffine
attention (Dozat and Manning, 2017). The multi-
span cyclic graph includes three types of connec-
tions: consecutive connections within the same
entity span, jump connections linking different
slots within tuples, and tail-to-head connections
marking the boundaries of the graph. The con-
nection probability pcij (c ∈ {continuous, jump,
tail-to-head}) between ti and tj in the matrix B
(pcij > 0.5,Bc

ij = 1, otherwise Bc
ij = 0) is formu-

lated as:

pcij = sigmoid(z
′⊤
i Uz′

j/
√
dz) (9)

where z′
i = FFNNs(zi), z′

j = FFNNe(zj), U ∈
Rdb×3×db is the trainable parameter, with db denot-
ing the biaffine size, 3 representing three types of
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Task Datasets TANL UIE UniEX USM UTC-UIE Mirror MetaRetriever SKIE

NER

ACE04 - 86.89 87.12 87.62 87.54 87.16 86.10 88.12

ACE05 84.90 85.78 87.02 87.14 87.75 85.34 84.01 88.52

CoNLL03 91.70 92.99 92.65 93.16 93.45 92.73 92.38 93.62

RE

ACE05 63.70 66.06 66.06 67.88 67.79 67.86 63.37 72.36

CoNLL04 71.40 75.00 73.40 78.84 - 75.22 73.66 78.91

SciERC - 36.53 38.00 37.36 38.77 36.89 35.77 46.90

EE

ACE05-Tgg 68.40 73.36 74.08 72.41 73.46 74.44 72.38 75.15

ACE05-Arg 47.60 54.79 53.92 55.83 56.51 55.88 52.62 61.77

CASIE-Tgg - 69.33 71.46 71.73 - 71.81 69.76 71.95

CASIE-Arg - 61.30 62.91 63.26 - 61.27 60.37 63.96

Table 1: Overall F1-scores on 8 IE benchmarks (-Tgg. and -Arg. denote event trigger and arguments, respectively).
These datasets are excluded from the pre-training phase. The results of UIE are reported based on the UIE-Large
model proposed by Lu et al. (2022). The best results are shown in bold.

connections. FFNN is a feedforward neural net-
work incorporating rotary positional embeddings,
as introduced in RoFormer (Su et al., 2024).

Finally, we use Circle Loss (Su et al., 2022) as
the downstream loss function:

L(i, j) = log (1 +
∑

neg

ep
c
ij ) + log (1 +

∑

pos

e−pcij )

(10)
where neg stands for negative samples and pos
denotes positive samples.

4 Experiments

4.1 Experiment Setup

4.1.1 Datasets
We collect a large amount of datasets and transform
them into unified unsupervised corpora for pre-
training. A detailed list of the pre-training corpora
can be found in Appendix A.

We conduct experiments on NER, RE, and
EE tasks, including 8 IE benchmarks: ACE04
(Mitchell et al., 2005), ACE05 (Walker et al.,
2006), CoNLL03 (Tjong Kim Sang and De Meul-
der, 2003), CoNLL04 (Roth and Yih, 2004), Sci-
ERC (Luan et al., 2018), and CASIE (Satyapanich
et al., 2020). Additionally, we employ five subsets
of CrossNER (AI, literature, music, politics, and
science) (Liu et al., 2021) to evaluate the zero-shot
capabilities of SKIE. All extraction tasks adopt an
end-to-end setting, taking texts as input and directly
generating the target structure.

4.1.2 Baselines

We compare SKIE with generation-based TANL
(Paolini et al., 2021), UIE (Lu et al., 2022), MetaRe-
triever (Cong et al., 2023), and extraction-based
UniEX (Ping et al., 2023), USM (Lou et al., 2023),
UTC-IE (Yan et al., 2023), Mirror (Zhu et al.,
2023), respectively. Among them, UIE, USM, Mir-
ror, and MetaRetriever are all pre-training methods
for IE tasks.

During pre-training, we tune the graph encoding
layers, the margin in the triplet loss, and the decay
factor ε in the topology enhancement strategy to im-
prove training outcomes. The implementation de-
tails of the pre-training and fine-tuning phases are
included in Appendix B. The code is available at
https://anonymous.4open.science/r/SKIE.

4.1.3 Evaluation

We employ span-based offset Micro-F1 as the pri-
mary metric to evaluate methods for different IE
tasks: For NER tasks, an entity is considered cor-
rect if its offset and type are correct. For RE tasks,
under strict matching, a relation is correct if the
relation type, the offsets, and the types of related
entities are correct. For event trigger extraction
tasks, an event trigger is considered correct if its
offset and event type match the reference trigger.
For event argument extraction tasks, an event ar-
gument is correct if its offset, role type, and event
type match the reference argument.

2161

https://anonymous.4open.science/r/SKIE


Task Few-Shot UIE USM Mirror MetaRetriever SKIE

NER
(CoNLL03)

1-shot 57.53 71.11 76.49 49.44 77.50
5-shot 75.32 83.25 82.45 69.88 83.75

10-shot 79.12 84.58 84.69 74.19 85.46
Avg. 70.66 79.65 81.21 64.50 82.24

RE
(CoNLL04)

1-shot 34.88 36.17 26.29 29.90 37.54
5-shot 51.64 53.20 47.42 47.02 55.70

10-shot 58.98 60.99 55.77 53.95 61.31
Avg. 48.50 50.12 43.16 43.62 51.52

Event Trigger
(ACE05-Evt)

1-shot 42.37 40.86 47.77 39.85 48.19
5-shot 53.07 55.61 57.90 49.43 58.21

10-shot 54.35 58.79 59.16 53.58 66.27
Avg. 49.93 51.75 54.94 47.62 57.56

Event Argument
(ACE05-Evt)

1-shot 14.56 19.01 23.18 13.30 23.76
5-shot 31.20 36.69 37.74 27.70 35.13

10-shot 35.19 42.48 39.20 32.31 43.84
Avg. 26.98 32.73 33.38 24.44 34.24

Table 2: Few-shot results on IE tasks. Avg. denotes the average performance over 1/5/10-shot. The results of UIE
are reported based on the UIE-Large model proposed by Lu et al. (2022). The best results are shown in bold.

4.2 Main Results

Table 1 shows the performance of all methods on
the aforementioned IE benchmarks. Compared to
other baselines, SKIE outperforms them across
all datasets, achieving an average F1-score im-
provement of 1.49, 6.75, and 3.42 in NER, RE,
and EE tasks, respectively. This strongly demon-
strates the effectiveness of our pre-training method,
which leverages structural semantic knowledge to
enhance the performance on IE tasks.

Meanwhile, our pre-training corpora supplement
more RE and EE datasets compared to pre-training
methods such as Mirror (Zhu et al., 2023), result-
ing in a significant improvement in downstream
RE and EE tasks. SKIE can rapidly adapt to down-
stream IE tasks, enabling efficient and targeted ex-
tractions. Notably, our pre-training corpora do not
require manually setting prompts or annotations,
substantially reducing labor costs and facilitating
the integration of new corpora in the future. Addi-
tionally, it avoids the impact of label errors or label
drift on training.

4.3 Few-shot Results

We focus on the performance of SKIE in low-
resource settings. To validate its rapid adap-
tation capability, we conduct few-shot experi-

ments. Specifically, we sample 1/5/10 texts per
entity/relation/event type in the training set, follow-
ing the experimental setup of previous work (Lou
et al., 2023). To mitigate the impact of random
sampling, each experiment is repeated 10 times
with different samples, and the average F1-score is
used to represent performances.

As shown in Table 2, SKIE achieves excel-
lent results on CoNLL03, CoNLL04, and ACE05.
Among the four tasks, the NER task is relatively
easier to handle and can achieve satisfactory results
with minimal fine-tuning. However, for tasks asso-
ciated with other datasets, there is a significant gap
between the few-shot fine-tuning results and the
full fine-tuning results, highlighting the difficulty
of these tasks and the effectiveness of fine-tuning.
Additionally, SKIE can learn deeper structural se-
mantic knowledge during pre-training, rather than
capturing information specific to a particular task.
Therefore, compared to baselines with limited sam-
ples, SKIE performs better on these tasks even with
only a few samples.

4.4 Zero-shot Results

Table 3 shows the zero-shot results of SKIE on
5 NER datasets, which are eliminated during pre-
training. SKIE outperforms USM and Mirror on
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most of datasets, achieving a superior average F1-
score of 58.03, notably exceeding USM. Empha-
sized that USM trains on the same datasets and
evaluates using the provided labels, while SKIE is
not exposed to these datasets before testing.

Among the above datasets, SKIE achieves the
most outstanding performance enhancement on lit-
erature, with an average F1-score improvement of
10.43, due to using a dataset containing academic
content during pre-training. However, SKIE falls
short of Mirror in the politics dataset, with a lower
F1-score of 3.77, suggesting that enhancing the pre-
training with more diverse and comprehensive data
could potentially improve SKIE’s performance.

Datasets USM Mirror SKIE

AI 28.18 45.23 52.45
Literature 56.00 46.32 56.75

Music 44.93 58.61 59.87
Politics 36.10 67.30 63.53

Science 44.09 54.84 57.57

Avg. 41.98 54.46 58.03

Table 3: Zero-shot results on 5 NER datasets, which
are eliminated during pre-training. The best results are
shown in bold.

4.5 Ablation Results

To validate the effectiveness of SKIE, we explore
the impact of modifications to the graph encoder
and topological enhancement strategies. As shown
in Table 4, GSN can capture local substructure fea-
tures in graphs more precisely, rather than GCN
focusing solely on global features. However, GSN
performs worse than T-GSN, resulting in an aver-
age F1-score drop of 7.69, proving that modifying
the graph encoder enables better capture of the co-
hesive information in AMR graphs and preserves
edge relation information.

Additionally, the results reveal that a single de-
terministic topological enhancement may lead to
knowledge missing, while a single probabilistic
topological enhancement may shift the cohesive
center, thereby affecting the quality of the gener-
ated cohesive subgraphs. Meanwhile, the average
F1-score without cohesive subgraphs decreases by
6.97. This indicates that cohesive subgraphs in-
troduce multi-level structural semantic knowledge
during pre-training, markedly enhancing the ef-

fectiveness and generalization versatility of SKIE.
When removing both cohesive subgraphs and T-
GSN, there are expressive declines in performance
across IE tasks, underscoring the essential roles of
these components.

Model NER RE EE Tgg. EE Arg.

w/ GSN 75.71 70.43 69.32 51.77

w/ GCN 64.73 47.75 57.10 27.16

w/o PTE 81.18 66.41 71.05 59.87

w/o DTE 87.18 67.81 72.42 58.99

w/o CS 76.47 65.85 70.01 57.61

w/o All 70.28 62.74 54.32 45.60

SKIE 88.52 72.36 75.15 61.77

Table 4: Ablation results of SKIE on ACE05. "w/ GSN"
and "w/ GCN" refer to pre-training with a standard
GSN/GCN encoder. "w/o PTE" and "w/o DTE" indicate
the exclusion of probabilistic/deterministic topological
enhancement. "w/o CS" denotes pre-training removal
of cohesive subgraphs. "w/o all" describes pre-training
without both subgraphs and the T-GSN encoder.

4.6 Corpora Validity Results

To evaluate the quality of the corpora used for
pre-training, we conduct an ablation study on dif-
ferent types of pre-training data, as shown in Ta-
ble 5. The results indicate that removing any part
of pre-training data negatively impacts the perfor-
mance, demonstrating the effectiveness of our pre-
training corpora. Additionally, it can be seen that
pre-training with a combination of different types
of pre-training data, rather than relying solely on a
single type, improves the performance of the cor-
responding downstream tasks. This suggests that
there is indeed a correlation between different IE
tasks. Therefore, it is beneficial to perform joint IE
tasks, as this facilitates mutual learning among dif-
ferent IE tasks, leading to better extraction results.

Corpus NER RE EE Tgg. EE Arg.

only NER 84.86 57.80 64.98 53.31

only RE 84.03 67.73 68.27 50.37

only EE 86.47 60.72 69.44 52.70

All 88.52 72.36 75.15 61.77

Table 5: Pre-training corpora validity results on ACE05,
which exclusively include NER, RE, or EE datasets.
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4.7 Language Adaptation Results

To verify language adaptability, we evaluate SKIE
on Multiconel (Malmasi et al., 2022), which is
a common multilingual dataset for NER. Table 6
shows the results of our English AMR parser based
model compared to ChatGPT and GLiNER (Zara-
tiana et al., 2024). GLiNER-En and GLiNER-Multi
are two variants of GLiNER, utilizing two versions
of deBERTa-v3: GLiNER-En uses deBERTa-v3-
Large, while GLiNER-Multi employs mdeBERTa-
v3-base, which is the multilingual version of
deBERTa-v3. It can be seen that even using an
English AMR parser and pre-training on English
corpora, our model can still achieve satisfactory IE
performance on other languages, demonstrating the
generalizability of SKIE.

Language ChatGPT GLi-En GLi-Multi SKIE

German 37.1 35.6 39.5 67.5

English 37.2 42.4 41.7 71.9

Spanish 34.7 38.7 42.1 58.5

Dutch 35.7 35.6 38.9 41.4

Bengali 23.3 0.89 25.9 34.1

Persian 25.9 14.9 30.2 31.6

Hindi 27.3 11.3 27.8 29.4

Korean 30.0 20.5 28.7 28.6

Russian 27.4 30.3 33.3 37.5

Turkish 31.9 22.0 30.0 33.6

Chinese 18.8 6.59 24.3 25.8

Table 6: Language adaptation results on Multiconel.
The results of ChatGPT are taken from Lai et al.
(2023). GLi-En represents GLiNER-En which employs
deBERTa-v3-Large, and GLi-Multi represents GLiNER-
Multi using mdeBERTa-v3-base.

5 Conclusion

In this paper, we propose SKIE, a contrastive pre-
training method designed to enhance IE models
with structural semantic knowledge. Specifically,
SKIE leverages AMR graphs generated from unsu-
pervised texts as self-supervised signals and further
extracts cohesive subgraphs to provide multi-level
structural semantic knowledge. Additionally, SKIE
integrates edge relation information and cohesion
information for the encoder, effectively enhancing

the learning process of PLMs. Compared to exist-
ing methods, SKIE enables the training on unsuper-
vised datasets in a self-supervised manner, signifi-
cantly reducing the annotation burden. The result-
ing models demonstrate proficiency in handling IE
tasks on complex texts by utilizing the structural
semantic knowledge. Experimental results show
that SKIE achieves state-of-the-art performances
across multiple IE tasks and excels in few-shot and
zero-shot settings. Our future work will focus on
refining SKIE to alleviate noise in AMR graphs
and extending its application to broader NLP tasks.

Limitations

Although SKIE has shown outstanding perfor-
mance in IE tasks, it still has some limitations.
Firstly, we use nearly a million datasets during
pre-training, and the need to encode both texts
and graphs separately resulted in lengthy runtime.
Secondly, due to the constraints of existing public
datasets, the NER, RE, and EE pre-training datasets
we found are imbalanced, with the EE dataset being
much smaller in scale compared to NER and RE,
limiting the performance of the EE task. Finally,
the Roberta-Large model we used has a maximum
input sequence length of 512 tokens. However, IE
tasks often require processing longer texts. In the
future, we will consider using a sliding window
approach to handle the input or exploring other
models capable of processing longer sequences,
such as Longformer or BigBird.

Ethics Statement

In the development of our pre-training framework,
we acknowledge several ethical considerations.
Our method requires large-scale corpora collected
from the Internet, which may exhibit common do-
main biases (e.g., in the news domain). Such biases
can lead to errors in domain-specific IE tasks, po-
tentially causing inaccuracies in real-world appli-
cations and affecting the reliability of the resulting
model. It is crucial to recognize and address these
potential ethical issues to ensure that our method is
used responsibly and ethically in real-world appli-
cations.
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A Pre-training Corpora Statistics

Tables 7, 8, and 9 present the detailed statistics
of the pre-training corpora containing NER, RE,
or EE datasets. The datasets underwent a com-
prehensive cleaning process to ensure data quality
and relevance for training purposes, including re-
moving irregular symbols, eliminating non-English
sentences, and deleting excessively short sentences.

Name Instance

AnatEM 5,442

bc2gm 12,088

bc4chemd 30,468

Broad Tweet 329

FabNER 6,595

FindVehicle 21,565

GENIA 8,717

GUM 9,493

HarveyNER 3,768

MIT-movie 8,881

MIT-restaurant 6,669

MultiCoNER 3,388

MultiNERD 80,592

OntoNotes5 49,442

SEC-filings 1,010

TweetNER7 126

WNUT-16 2,310

WNUT-17 3,258

Total 262,138

Table 7: Detailed statistics of NER datasets used for
pre-training.

Additionally, we implement deduplication to
eliminate repetitive data entries and conduct tok-
enization of the text for better processing and analy-
sis. These steps are critical in preparing the datasets
for effective pre-training, aligning with best prac-
tices in data preprocessing for machine learning
applications.

Name Instance

ADE 4,252

FewRel 44,733

GIDS 11,290

kbp37 15,908

NYT10 508,629

NYT10-HRL 70,225

NYT11-HRL 235,750

WebNLG 21,170

Wiki80 5,187

Total 917,144

Table 8: Detailed statistics of RE datasets used for pre-
training.

Name Instance

GENEVA 3,670

MLEE 2,618

PHEE 2,872

RAMS 50,331

WikiEvents 6,129

Total 65,620

Table 9: Detailed statistics of EE datasets used for pre-
training.

B Implementation Details

We conduct experiments on the same NVIDIA
Tesla A100 GPU. The hyper-parameter configu-
rations for pre-training and fine-tuning are detailed
in Table 10 and 11, respectively. Figures 3, 4,
and 5 present the loss trends over 30 epochs dur-
ing pre-training across different hyper-parameter
settings.

Figure 3 examines the impact of decay factors
set at 0.1, 0.2, and 0.3, showing that the decay
factor of 0.2 leads to optimal loss reduction over
time. Figure 4 illustrates the influence of vary-
ing the number of graph encoder layers (2, 3, and
4 layers). Here, the configuration with 3 layers
demonstrates the most effective learning. Figure 5
explores the effects of different margin values (0.1,
0.2, and 0.3). The results indicate that the mar-
gin of 0.1 achieves the most consistent reduction
in loss. These analyses confirm that the optimal
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Parameters Setting

decay factor ε 0.2

graph encoder Layers 3

k 5

margin 0.1

text encoder learning rate 1e-5

graph encoder learning rate 1e-3

epochs 50

batch size 64

dh 128

Table 10: Pre-training hyper-parameter settings.

Parameters Setting

warmup proportion 0.1

epochs 10

epoch patience 3

few-shot epochs 200

batch size 64

PLM learning rate 2e-5

other learning rate 1e-3

max gradient norm 0.5

dh 1024

db 512

dropout 0.4

Table 11: Fine-tuning hyper-parameter settings.

hyper-parameter configurations for our pre-training
process include the decay factor of 0.2, the graph
encoder layers of 3, and the margin of 0.1.

C K-core

A k-core cohesive subgraph is a maximal subgraph
in which every node is connected to at least k other
nodes. The core idea of the k-core algorithm is
to identify core nodes in the graph by iteratively
removing nodes with degrees less than k and their
associated edges. The steps are as follows:

Step 1-Initialization: Calculate the degree of
each node in the graph and store the degrees in a
dictionary.

Step 2-Iterative pruning: Remove all nodes
with degrees less than k and their incident edges
from the graph, resulting in a new subgraph. Then,
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Figure 3: The loss trends during pre-training with dif-
ferent decay factor ε settings.

0 5 10 15 20 25 30
3.975

4.000

4.025

4.050

4.075

4.100

4.125

4.150

4.175

4.200

L
os
s

Epoch

 layer=2
 layer=3
 layer=4

Figure 4: The loss trends during pre-training with dif-
ferent graph encoding layers settings.
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Figure 5: The loss trends during pre-training with dif-
ferent margin settings.

repeat the same operation on this new subgraph
until no more nodes can be removed.

Step 3-Result output: The final subgraph ob-
tained is the k-core cohesive subgraph.

2169



Datasets UniNER (7B) GoLLIE (7B) GLiNER-L (0.3B) Mirror-RL (0.3B) SKIE (0.3B)

AI 53.60 59.10 57.20 48.95 52.45

Literature 59.30 62.70 64.40 50.11 56.75

Music 67.00 67.80 69.60 59.60 59.87

Politics 60.90 57.20 72.60 56.80 63.53

Science 61.10 55.50 62.60 55.29 57.57

Avg. 60.38 60.46 65.28 54.15 58.03

Table 12: Supplementary zero-shot results on 5 NER datasets. The best results are shown in bold.

Figure 6: 24-layer attention distribution map from the text encoder.

We employ the k-core to guide deterministic
and probabilistic topological enhancement strate-
gies to generate more structured cohesive sub-
graphs, thereby enriching contrastive learning sam-
ples. This approach enables the model to better
capture structural and semantic knowledge.

D Supplementary Zero-shot Results

To facilitate a fair comparison, we replace
the DeBERTa-large-v3 model in Mirror with
RoBERTa-large, re-pretrain and fine-tune it, and
then compare the performance under the zero-shot
setting. The comparison results between SKIE and
Mirror-RoBERTa-Large are shown in Table 12. It
can be observed that under the same base model
RoBERTa-large, SKIE is still superior to Mirror,

demonstrating the effectiveness of our approach.
What’s more, we have also included the results

of UniNER (Zhou et al., 2024), GoLLIE (Sainz
et al., 2024), and GLiNER (Zaratiana et al., 2024)
in Table 12 for more comprehensive comparisons.
As our pre-training task employs self-supervised
contrastive learning, it can support a broader range
of unsupervised corpora, but this also inevitably
creates a discrepancy with downstream IE tasks.
Consequently, the results of SKIE are inferior to
these three baselines on 5 NER datasets.

E Error identification

We conduct a comprehensive error identification
analysis in NER experiment on ACE05 from three
aspects.
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Error identification using GSN in SKIE. The
sentence is "Thousands more may have been ig-
nored over the last decade. That is the Bush
record in policing surgeons, why should we trust
him now?" After removing the T-GSN module,
SKIE misclassifies "surgeons" as a location, failing
to grasp the deep semantic meaning of the sen-
tence. The T-GSN module enhances the model’s
contextual understanding and reasoning ability
through additional relational and cohesive informa-
tion. Without it, the model might not fully exploit
the potential relationships between entities.

Error identification without cohesive sub-
graphs in SKIE. The sentence is "The ax fell heav-
ily on government and non-profit workers as many
state and local governments face severe budget
crunches." Without the cohesive subgraph mod-
ule, SKIE struggles to accurately identify long
spans. The cohesive subgraphs, with their multi-
level nodes and connections, provide rich semantic
and logical structures. By leveraging these, the
model can better comprehend complex relation-
ships and concepts in text. Its absence may hinder
the model’s ability to recognize long or complex
entities.

Error identification in other methods but not
in SKIE. The sentence is "An automotive tire shop,
and someone noticed him, recognized him." While
Mirror incorrectly identifies the facility as "shop",
SKIE’s results are flawless. We attribute this to
our method’s ability to capture more structural and
semantic knowledge, granting it an advantage in
long sentences.

F Layers Change Analysis

We conduct layers change of the text encoder analy-
sis using a sentence from ACE05, "Sergeant Chuck
Hagel was seriously wounded twice in Vietnam,"
and input it into our pre-trained model. Figure 6
shows the following observations:

Lower layers (1-5): The attention distribution
is relatively even, with minimal gaps in attention
scores between words, indicating that the model
primarily focuses on basic vocabulary and gram-
matical structures within the sentence.

Middle layers (6-10): The attention scores be-
tween the last word and the preceding text increase,
suggesting that the model is beginning to analyze
the contextual information of the sentence.

Middle layers (11-15): The attention scores for
entities begin to rise significantly, such as "Chuck

Hagel" and "Vietnam", indicating that the model is
gradually comprehending the roles of these entities
within the statement.

Upper layers (16-24): The attention scores for
relationships between entities notably increase. For
instance, "was wounded" receives a marked boost
in attention, demonstrating that the model is en-
hancing its understanding of the relationships be-
tween different entities and the overall semantics
within the sentence.
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