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Abstract
This study explores the proactive ability of
LLMs to seek user support. We propose met-
rics to evaluate the trade-off between perfor-
mance improvements and user burden, and in-
vestigate whether LLMs can determine when
to request help under varying information avail-
ability. Our experiments show that without
external feedback, many LLMs struggle to
recognize their need for user support. The
findings highlight the importance of exter-
nal signals and provide insights for future re-
search on improving support-seeking strate-
gies. Source code: https://github.com/
appier-research/i-need-help.

1 Introduction

The impressive instruction-following (Wei et al.,
2021) abilities of large language models (LLMs)
have enabled their out-of-the-box usage to solve
problems. However, these models generate hallu-
cinated content (Rawte et al., 2023) or incorrect
predictions in their efforts to fulfill user instruc-
tions, which undermines their reliability.

When LLMs generate incorrect outputs for a
given instruction, the issue can be examined from
multiple perspectives. One is that the model simply
lacks the competence to satisfy the instruction, sug-
gesting a straightforward solution: enhancing the
model’s capabilities, which is the focus of most pre-
vious research. Another is that the model could ac-
tually solve the task with additional support. For in-
stance, Pourreza and Rafiei (2023) found that mod-
els often fail due to underspecified natural language
queries. Similarly, Li et al. (2024) showed that
while GPT-4 struggles initially, its performance can
improve by up to 20.01% with human-annotated
external knowledge. In such cases, models should
proactively seek help rather than attempting to sat-
isfy instructions with insufficient information.
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Figure 1: Overview of our experiments on text-to-SQL.
LLMs struggle to determine when they need help based
solely on the instruction (x) or their output (ŷ). They
require external feedback, such as the execution results
(r̂) from the database, to outperform random baselines.

Motivated by these considerations, we aim to
investigate whether LLMs can identify when to
ask for user support. Since providing such sup-
port requires additional effort from users, there is
an inherent trade-off between “LLM performance
improvement from user support” and “user bur-
den”. Therefore, we seek to answer the following
research questions: RQ1: How can we design eval-
uation metrics to quantify this trade-off? RQ2:
How effectively do LLMs manage this trade-off,
and what strategies are effective in improving it?

In this work, we focus on the text-to-SQL task
as a case study to empirically investigate the afore-
mentioned research questions. We chose the text-
to-SQL task for several reasons: (1) Its promis-
ing applicability, empowering lay users to retrieve
data with natural language queries. (2) The inher-
ent ambiguity in some natural language queries,
leading to uncertainty in the generation of SQL
code (Pourreza and Rafiei, 2023), making it suit-
able for scenarios where additional user support
is beneficial. (3) There exists a large-scale BIRD
dataset (Li et al., 2024) with human-annotated ex-
ternal knowledge, providing a valuable source of
user support for our empirical investigation.
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Our contributions can be summarized as follows:

1. We propose metrics for evaluating the trade-
off between performance improvement from
user support and the associated user burden.

2. We conduct experiments using various meth-
ods to balance this trade-off, providing in-
sights into LLMs’ capabilities in seeking user
support and identifying effective strategies for
enhancing their performance.

2 Formulation for Seeking Support

2.1 General Setup
Consider an LLM f parameterized by θ, along with
a prompt template p(·). Given a natural language
instruction x, we use z to represent support, which
should enhance the LLM’s ability to fulfill x. For-
mally, ŷz = f(p(x, z) | θ) is more likely to satisfy
x compared to ŷ = f(p(x) | θ). We denote the
"ask for support" signal emitted by the LLM as â,
defined as a confidence score in the range [0, 1],
where 1 indicates an absolute need for support. A
threshold τ is then used to determine whether to
request z. In practice, â could also be a natural lan-
guage request specifying the type of support needed
by the LLM, which we leave for future work.

2.2 Evaluation
To measure the trade-off between performance im-
provement from user support and user burden, we
need 2-dimensional evaluation. One dimension is
the user burden (B), which we define as the propor-
tion of instances where the LLM ask for support:

B =
Nask

N

where Nask is the number of instances where the
LLM asks for support, and N denotes the total num-
ber of instances in the test set. The other dimension
is the performance improvement (∆, Delta):

∆ =
1

N

Nask∑

i=1

(h(yi, ŷi,z)− h(yi, ŷi))

where h(·) is the evaluation function of a given task,
which takes ground truth yi and model output ŷi
as arguments (ŷi,z is an output with the help of z).
Inspired by the idea behind the ROC curve (Majnik
and Bosnić, 2013), we illustrate this trade-off with
a graph, where the performance curve is plotted by
adjusting the threshold τ from high to low along
the x-axis. We refer to this curve as Delta-Burden
Curve (DBC) (see the leftmost subplot of Figure 2).

2.3 Methods for Seeking Support

We design a prompt template pask(·) to enable
LLMs to request support by â = s(f(pask(w) | θ)).
Here, w represents the textual information that the
LLM f uses to determine whether it needs to seek
support, and s is the scoring function that converts
the probability distribution of output tokens into a
confidence score â ∈ [0, 1]. We propose methods
with varying compositions of w to explore the in-
formation LLMs require to achieve better trade-off
under DBC. Note that pask remains the same across
all methods to minimize prompt engineering. An
overview of these methods is shown in Figure 1.
Direct Ask (DA): w = (db, x), composed of
database schema db and user data requirement x.
Write then Ask (WA): w = (db, x, ŷ), where the
LLM generates the SQL code ŷ = f(p(db, x) | θ)
first and then use this self-generated output as the
additional information in w.
Execute then Ask (EA): w = (db, x, ŷ, r̂), where
the execution results r̂ is returned by the database
by executing LLM-generated SQL ŷ.

3 Experiments

3.1 Dataset
We use BIRD (Li et al., 2024), which includes
human-annotated external knowledge that serves
as z. For example, z might be domain-specific
knowledge, such as how to calculate financial in-
dicators from database values. The instruction x
represents the users’ data requirements, paired with
the ground truth SQL y. It uses Execution Accu-
racy (EX) as the evaluation metric, where h(yi, ŷi)
is defined as 1(ri = r̂i). Here, ri is the SQL ex-
ecution result of yi, and r̂i is the execution result
of ŷi. Simply put, EX is the proportion of testing
instances where ri and r̂i are identical.

3.2 Implementation
For open-weight LLMs, we use WizardCoder-
34B (Luo et al., 2023), Llama-3-70b-chat,
DeepSeek-Coder-33B (Guo et al., 2024), and
Mixtral-8x22B (Jiang et al., 2024) for diversity of
different LLM families. For closed-source LLMs,
we use gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-
09, and gpt-4o-2024-05-13 (OpenAI, 2023). The
prompt pask(w) (included in Appendix A) instructs
the model to output a single token Yes/No to in-
dicate whether it needs support. We define the
scoring function s as the softmax of Yes over log
probabilities of Yes and No to derive â ∈ [0, 1].
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Methods/LLMs Wizard Llama3 DPSeek GPT-3.5 Mixtral GPT-4t GPT-4o

Random Baseline 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Direct Ask 0.4915 0.4834 0.4976 0.4390 0.5301 0.5758 0.5479
Write then Ask 0.4759 0.4497 0.4857 0.4735 0.5677 0.5807 0.5740
Execute then Ask 0.5096 0.4987 0.5848 0.6313 0.6242 0.6641 0.5989

Table 1: Area Under Delta-Burden Curve (AUDBC) across different methods and LLMs. Text in bold denotes the
method with the best performance, while underlined text means better than random (uniform sampling of â ∈ [0, 1]).

Support/LLMs Wizard Llama3 DPSeek GPT-3.5 Mixtral GPT-4t GPT-4o

w/o user support 0.1721 0.1767 0.2360 0.3064 0.2419 0.3142 0.3096
w/ full user support 0.2764 0.3475 0.4185 0.4668 0.4126 0.4889 0.5117

Table 2: Execution accuracy (EX) of different support levels. Full user support means B = 1 (see Section 2.2).

4 Main Results

Using the formulation in Section 2.2, we quantify
the performance of different methods with the Area
Under Delta-Burden Curve (AUDBC) in Table 1.
Visualized DBCs are available in the leftmost sub-
plots in Figure 2. Note that AUDBC should only be
compared between methods under the same LLM,
as it is normalized to the range of [0, 1] by dividing
the area under the curve by the maximum square
area, which depends on the scale of ∆EX and dif-
fers across LLMs, as shown in Table 2.

There are three major findings: (1) Execution
then Ask consistently improves the performance-
burden trade-off for LLMs, although Llama-3-70b-
chat fails to outperform the random baseline. (2)
The leftmost four LLMs in Table 1 do not surpass
the random baseline without the assistance of r̂,
indicating that many current LLMs still struggle to
determine the need for support based on x and ŷ
alone. (3) Despite this, the rightmost three LLMs
outperform the random baseline with the Write
then Ask (x, ŷ) or even Direct Ask (x) methods.
Nevertheless, the inclusion of r̂ remains beneficial
for further enhancing the trade-off between perfor-
mance improvement and user burden. Practical
implications of the third point include the potential
for cost savings by trading off the execution of ŷ to
obtain r̂ in certain resource-constrained scenarios.

5 Discussion

5.1 Analysis on the Delta-Burden Curves

The Delta-Burden Curves (DBCs) plotted in Fig-
ure 2 quantify the following practical question:
Under the same user burden, which method can

achieve more performance boost? To further ana-
lyze how this performance boost is achieved, we
decompose the concept into two abilities:

1. The ability to ask for support when the LLM
cannot satisfy the instruction originally.

2. The ability to utilize support effectively to flip
the incorrect output to the correct output.

1. For the first ability, we introduce the following
metrics inspired by the precision-recall trade-off:
Precision of Asking for Support (Pask) When the
LLM asks for support, it should be the case that the
LLM cannot satisfy the instruction originally, or it
would cause unnecessary user burden:

Pask =
#(AskforSupport & OriginallyWrong)

#AskforSupport

Recall of Asking for Support (Rask) When the
LLM is not able to satisfy the instruction originally,
it should identify this need and ask for support:

Rask =
#(AskforSupport & OriginallyWrong)

#OriginallyWrong

PR Curve of Asking for Support Similar to how
DBC is plotted, one can also adjust the threshold
τ ∈ [0, 1] from high to low along the x-axis to plot
the Precision-Recall Curve of Asking for Support.
2. For the second ability, we introduce Flip Rate:
Flip Rate: This metric is calculated as the propor-
tion of instances where the LLM’s initially incor-
rect answers were corrected after receiving support,
divided by the total number of instances where
support was requested. Formally, it is defined as:

FR =
1

Nask

Nask∑

i=1

(h(yi, ŷi,z)− h(yi, ŷi))
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Figure 2: Performance curves of gpt-3.5-turbo-0125. Curves of other LLMs are shown in Appendix B.

Methods/LLMs Wizard Llama3 DPSeek GPT-3.5 Mixtral GPT-4t GPT-4o Gemini Claude

Random Baseline 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

EA (real logprobs) 0.5096 0.4987 0.5848 0.6313 0.6242 0.6641 0.5989 - -
EA (verbalized) 0.5011 0.5333 0.4964 0.5945 0.6226 0.4850 0.5152 0.5624 0.6174

Table 3: Area Under Delta-Burden Curve (AUDBC) with the verbalized token log probabilities approach. Text in
bold denotes the method with the best performance, while underlined text means better than random.

Different from ∆ defined in Section 2.2, this metric
emphasizes the efficiency of leveraging support in-
stead of the total improvement on the test set. Like
DBC, one may adjust the threshold τ to plot the
Flip Rate Curve (FRC). With the definition of these
two abilities, we plot the DBC, PR Curve, and FRC
on Figure 2. Although the Write then Ask method
shows near-random performance in DBC, the PR
Curve indicates it achieves better-than-random per-
formance in identifying when support is needed.
However, its lower Flip Rate suggests it is less ef-
ficient in utilizing the support to correct mistakes.
These two abilities, represented by the PR Curve
and FRC, respectively, balance each other out, re-
sulting in near-random performance on the DBC.
This finding shows that the ability to identify the
need for support and the ability to utilize that sup-
port are distinct. In future work, it is worth explor-
ing how to further enhance each of these abilities.

5.2 LLMs without Access to Log Probabilities

Given that not all LLMs provide access to token log
probabilities, we discuss how our method can be
adapted for these “black-box” models. We modify
the prompt template pask to pverb, which instructs
the LLM to output the verbalized confidence score
â directly by specifying the range and meaning
of â ∈ [0, 1] in pverb (attached in Appendix A.2).
In addition to the seven LLMs mentioned in Sec-
tion 3.2, we also include two black-box models:
gemini-1.0-pro-001 and claude-3-haiku-20240307.
The results, shown in Table 3, indicate that using

verbalized confidence scores generally degrades
performance for most LLMs. However, it remains
a promising alternative for black-box LLMs such as
Gemini and Claude to surpass the random baseline.

6 Related Work

The ability of LLMs to identify the need for support
relies on their well-calibratedness (Kadavath et al.,
2022), which refers to their capacity to recognize
uncertainty. Previous studies focus on enhancing
the calibration of predictions (Xiao et al., 2022;
Kuhn et al., 2023), or using verbalized token prob-
abilities to achieve better calibration (Tian et al.,
2023). Our work extends this line of research by
exploring how LLMs can effectively seek user sup-
port by leveraging their well-calibrated property.
The major distinction between this and existing
calibration studies lies in extending the focus from
identifying the uncertainty to utilizing support.

7 Conclusion

We propose a framework for LLMs to seek support,
and evaluate methods on Text-to-SQL generation.
Our findings suggest the importance of external
signals, such as SQL execution results, in helping
LLMs better manage performance-burden trade-off.
We further decompose DBC into the ability of iden-
tify the need for support and the ability to utilize
the support. Future works may explore a broader
range of tasks or develop methods to improve both
the identification and utilization of support.
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8 Limitations

8.1 Task Coverage

The scope of our experiments is limited to the Text-
to-SQL task. While this task provides a useful
case study for evaluating LLMs’ ability to seek and
utilize support, it does not encompass the full range
of potential applications for LLMs. Future work
should extend the evaluation to a broader set of
tasks to ensure the generalizability of our findings.

8.2 Types of Support

In this study, we primarily focus on a single type
of support: human-annotated external knowledge.
However, there are many other types of support that
LLMs might require. Future works could explore
how LLMs can request and utilize these various
forms of support to enhance their performance.

8.3 Dependence on External Feedback

Our findings indicate that LLMs significantly ben-
efit from external signals, such as SQL execution
results. However, this reliance on external feedback
may not always be feasible in practical applications,
where immediate execution or access to external
data might be limited. Developing methods that en-
able LLMs to better manage without such feedback
remains an important area for future exploration.
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A Prompt Templates

We include the prompt templates used in this work.

A.1 Prompt for Seeking Support

The prompt template pask(w) used to instruct
LLMs for seeking support is as follows:

You are currently doing the text-to-SQL task.
Based on the information provided ({items}),
you have to determine whether additional
hints are required for you to generate the SQL
correctly to answer the user’s question. You
should only ask for additional hints when you
actually need them, since you will also be eval-
uated based on the number of times you ask
for hints, which would be provided by the user.

information provided (enclosed by triple
backticks):
“‘
{information}
“‘

Answer a single word Yes if you need
hints (since the information provided is not
enough to generate SQL correctly). Answer a
single word No if hints are not required (since
you are already confident to generate SQL).
Do you need additional hints? Answer (Yes /
No):

In this template, the actual contents of {items}
and {information} depend on the method used. The
contents are summarized in Table 4. For example,
w = (db, x, ŷ, r̂) in Execute then Ask (EA), so
{items} will be filled with the four item names and
{information} will be replaced by actual informa-
tion of the four items. Similarly for Write then Ask
(w = (db, x, ŷ)) and Direct Ask (w = (db, x)).

Item Item Name Information

db Database schema {db_schema}
x User’s question {question}
ŷ Generated SQL {gen_sql}
r̂ SQL execution results {exe_results}

Table 4: Contents in the prompt pask(w), where {items}
will be filled with words in the “Item Name” column,
while {information} is replaced with actual information
of text in {red}.

A.2 Prompt for Seeking Support (Verbalized)
The prompt template for generating verbalized
probabilities in LLMs without access to token log
probabilities (e.g., Gemini and Claude families):

You are currently doing the text-to-SQL task.
Based on the information provided ({items}),
you have to determine whether additional
hints are required for you to generate the SQL
correctly to answer the user’s question. You
should only ask for additional hints when you
actually need them, since you will also be eval-
uated based on the number of times you ask
for hints, which would be provided by the user.

information provided (enclosed by triple
backticks):
“‘
{information}
“‘

Do you need additional hints? Provide
the precise probability that you need hints
(closer to 0 means you don’t need hints, closer
to 1 means you need hints).
Give ONLY the precise probability to five
decimal places (format: 0.abcde, where abcde
can be different digits), no other words or
explanations are needed.

The prompt template is similar to the original
template shown in A.1, except that the last few
sentences are modified.
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A.3 Prompt for Generating SQL Code
The prompt template p(·) for converting user data
requirement x into SQL code is as follows:

{db_schema}

– Using valid SQLite, answer the fol-
lowing questions for the tables provided
above.
– Question: {question}
Now, generate the correct SQL code directly in
the format of “‘sql\n<your_SQL_code>\n“‘:

If user support z is provided (i.e., when LLMs
ask for support), the prompt template is slightly
modified as follows:

{db_schema}

– External Knowledge: {support}
– Using valid SQLite, answer the following
questions for the tables provided above. You
can use the provided External Knowledge to
help you generate valid and correct SQLite.
– Question: {question}
Now, generate the correct SQL code directly in
the format of “‘sql\n<your_SQL_code>\n“‘:

In these two templates, {db_schema} is db,
{question} is user data requirement x, and {sup-
port} is user support z, which is human-annotated
external knowledge in BIRD (Li et al., 2024).

B Performance Curves

We present visualizations of all performance curves
in Table 3, 4, 5, 6, 7, 8, and 9.
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Figure 3: Performance curves of WizardCoder-Python-34B-V1.0.
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Figure 4: Performance curves of Llama-3-70b-chat-hf.
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Figure 5: Performance curves of deepseek-coder-33b-instruct.
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Figure 6: Performance curves of gpt-3.5-turbo-0125.
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Figure 7: Performance curves of Mixtral-8x22B-Instruct-v0.1.
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Figure 8: Performance curves of gpt-4-turbo-2024-04-09.
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Figure 9: Performance curves of gpt-4o-2024-05-13.
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