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Abstract
Adapting Large Language Models (LLMs) for
agent tasks is critical in developing language
agents. Direct Preference Optimization (DPO)
is a promising technique for this adaptation
with the alleviation of compounding errors, of-
fering a means to directly optimize Reinforce-
ment Learning (RL) objectives. However, ap-
plying DPO to multi-turn tasks presents chal-
lenges due to the inability to cancel the par-
tition function. Overcoming this obstacle in-
volves making the partition function indepen-
dent of the current state and addressing length
disparities between preferred and dis-preferred
trajectories. In this light, we replace the pol-
icy constraint with the state-action occupancy
measure constraint in the RL objective and
add length normalization to the Bradley-Terry
model, yielding a novel loss function named
DMPO for multi-turn agent tasks with theoret-
ical explanations. Extensive experiments on
three multi-turn agent task datasets confirm the
effectiveness and superiority of the DMPO loss.

1 Introduction

Developing generalist agents capable of solving
complex tasks has been a central goal in the arti-
ficial intelligence community (Reed et al., 2022;
Team et al., 2024). Recently, Language agents (Yao
et al., 2022b) emerge as a prominent research direc-
tion, leveraging the considerable potential of Large
Language Models to address intricate tasks involv-
ing instruction following (Ouyang et al., 2022),
action planning (Huang et al., 2022), and tool uti-
lization (Schick et al., 2024). Nevertheless, the
substantial disparity between the pretraining task
of Large Language Models and the requirements of
agent tasks suggests significant potential for future
advancements in language agent capabilities.

Behavioral Cloning (BC) (Pomerleau, 1991) is a
frequently employed approach to bridge the do-
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Figure 1: Illustration of DMPO loss, which directly opti-
mizes the RL objective by maximizing the likelihood of
the preferred trajectory over the dispreferred trajectory.

main gap by fine-tuning LLMs through expert
agent trajectories. Recent endeavors in BC (Chen
et al., 2023; Zeng et al., 2023; Yin et al., 2023)
involve the Supervised Fine-tuning of LLMs on
optimal state-action pairs. Although these methods
enable swift adaptation of LLMs to agent tasks,
BC is notably susceptible to compounding errors —
minor errors of the learner accumulate along inter-
actions between the agent and environment, leading
to performance deterioration in non-deterministic
environments (Ross et al., 2011).

In alleviating compounding errors, Direct Pref-
erence Optimization (Rafailov et al., 2024b) has
demonstrated remarkable success in the single-turn
preference alignment task due to its simple imple-
mentation and robustness. DPO optimizes RL ob-
jectives by maximizing the likelihood of preferred
responses over dis-preferred responses, mitigating
the need for continuous interaction with the en-
vironment and the training instability commonly
associated with traditional RL algorithms (Chris-
tianos et al., 2023; Liang et al., 2024). Although
there has been an initial endeavor to apply the DPO
loss on LLMs for agent tasks (Song et al., 2024),
it encounters suboptimal performance, as it is tai-
lored specifically for the single-turn bandit setting
and is ill-suited for multi-turn agent tasks.
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This work aims to develop a robust loss func-
tion capable of directly optimizing RL objectives
in multi-turn scenarios. The crux of this pur-
suit involves eliminating the partition function in
the Bradley-Terry (BT) model (Bradley and Terry,
1952; Christiano et al., 2017). This entails ensuring
the partition function’s independence from the cur-
rent state and neutralizing the impact of the length
disparity between preferred and dis-preferred tra-
jectories. To achieve this, we substitute the policy
constraint with the state-action occupancy measure
(SAOM) (Johnson et al., 2000) constraint in the
RL objective and introduce length normalization
into the BT model. These adjustments culminate
in the development of a new and simple loss func-
tion DMPO for multi-turn agent tasks. As shown
in Figure 1, DMPO directly optimizes the RL ob-
jective by maximizing the likelihood of preferred
("win") trajectory over dis-preferred ("lose") trajec-
tory. Notably, the SAOM constraint has advantages
in mitigating compounding errors compared to the
policy constraint (Xu et al., 2020; Ghasemipour
et al., 2020). Furthermore, the derivation offers a
theoretical rationale for the efficacy of the length
normalization technique in DPO loss (Meng et al.,
2024).

To summarize, our contributions are threefold:

• We introduce a new loss function called DMPO,
which directly optimizes RL objectives in multi-
turn scenarios, thereby mitigating the compound-
ing errors associated with BC methods.

• We provide a theoretical explanation for the effi-
cacy of the length normalization technique, illus-
trating how it cancels out the partition function
in the BT model and improves performance.

• Extensive experiments on three multi-turn agent
task datasets validate the effectiveness and the
superiority of the DMPO loss function.

2 Related Work

In this section, we first introduce the in-context
learning methods and fine-tuning methods of lan-
guage agents and then review the literature in
preference-based RL.

In-Context Learning Inspired by the superior
in-context learning capabilities of LLMs (Achiam
et al., 2023), researchers have designed various in-
struction prompts for LLMs, equipped with mem-
ory modules (Zhang et al., 2024), toolkits (Qu et al.,

2024), and various workflows (Sumers et al., 2023),
to build language agents for various real-world do-
mains. ReAct (Yao et al., 2022b) incorporates CoT
reasoning (Wei et al., 2022) into action generation.
Reflexion (Shinn et al., 2024) and PROMST (Chen
et al., 2024) refine the prompt using environment
feedback. However, these in-context learning meth-
ods fail to fully exploit the potential of LLMs, since
most LLMs are not specifically trained for agent
tasks. This work focuses on adapting the LLMs to
agent tasks through fine-tuning.

Agent Tuning Recent studies, including Fire-
Act (Chen et al., 2023), AgentTuning (Zeng et al.,
2023), Lumos (Yin et al., 2023), MIMIR (Deng
et al., 2024), AUTOACT (Qiao et al., 2024), and
α-UMi (Shen et al., 2024) supervised fine-tuning
LLMs with self-instruct or expert trajectories. How-
ever, such BC approaches suffer from compound-
ing errors when interacting with dynamic envi-
ronments. Taking a step further, Pangu (Chris-
tianos et al., 2023) and CMAT (Liang et al., 2024)
utilize RL technologies to further fine-tune the
LLMs, which may result in a complex and unsta-
ble training procedure. To simplify the procedure,
ETO (Song et al., 2024) and EMMA (Yang et al.,
2024) directly employ the DPO loss (Rafailov et al.,
2024b) to optimize the RL objective for the agent
task. Nevertheless, the DPO loss is designed for
single-turn bandit settings and is ill-suited for multi-
turn scenarios. Along this line, this work extends
the DPO loss in multi-turn scenarios and derives
the DMPO loss.

Preference-Based RL In multi-turn scenarios,
preference-based RL typically starts by explicitly
learning a reward function from preference data
and then optimizing it (Fürnkranz et al., 2012;
Christiano et al., 2017; Hejna III and Sadigh, 2023;
Shin et al., 2021). However, this two-stage learning
process presents challenges regarding training effi-
ciency and instability. This work instead presents a
single-stage policy learning approach using DMPO
loss that directly optimizes a policy to satisfy pref-
erences. While IPL (Hejna and Sadigh, 2024) and
CPL (Hejna et al., 2023) share a similar idea with
our work in eliminating the reward learning stage,
their loss functions are limited to trajectory pairs
of equal length, significantly restricting their appli-
cability.
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3 Preliminary

In this section, we present multi-turn agent task
formulation and briefly introduce Direct Preference
Optimization (DPO) loss.

3.1 Task Description
The agent task can be formulated as a Markov
decision process (MDP). A MDP is a 5-tuple
(S,A, T ,R, γ), where S denotes the state space,
A denotes action space, T denotes dynamic transi-
tion function S ×A → S , R denotes reward func-
tion S ×A → [0, 1], and γ ∈ [0, 1) is the discount
factor. The goal for the agent is to choose actions
at each time step that maximize the expected future
discounted reward E

[∑T−1
t=0 γtr(st, at)

]
, where

T is the trajectory length.
In the language agent setting (Christianos et al.,

2023), the state space and action space are both
subsets of the language space. For the initial
state s0 ∈ S, it contains the task instruction and
prompt. At each time step t, LLMs generate ac-
tion at according to the policy πθ(at|st) with the
parameter θ. Then the environment will return
dynamic feedback ot and transport the state into
st+1. Note that the new state st+1 is just a simple
combination of st, at, and ot, and the trajectory
τ = (s0, a0, s1, a1, · · · , sT , aT ).

3.2 Direct Preference Optimization
The aim of the DPO loss is to directly optimize RL
objectives with KL divergence constraints on the
policy function:

max
πθ

Eτ [

T−1∑

t=0

γtr(st, at)]

− βDKL[πθ(at|st)||πref (at|st)], (1)

where E is the expectation function, DKL[·||·] de-
notes the KL divergence between two distributions,
πref denotes a reference policy, and the β is a pa-
rameter controlling the deviation from the base
reference policy πref . The DPO loss is tailored for
the single-turn preference alignment setting, where
the trajectory length (T ) is limited to 1.

Notably, the reward function is learned through
the Bradley-Terry (BT) model (Bradley and Terry,
1952; Christiano et al., 2017):

p(aw0 ≻ al0|s0) =
exp(r(s0, a

w
0 ))

exp(r(s0, aw0 )) + exp(r(s0, al0))
,

(2)

which gives the probability that the “win” action
aw0 is preferred to the “lose” action al0 given the
state s0.

Then DPO leverages the established closed-form
solution for the single-turn formulation of the re-
inforcement learning problem in Eq (1) presented
in (Ziebart et al., 2008; Ziebart, 2010):

π∗(a|s) = 1

Z(s)
πref (a|s)er(s,a), (3)

where π∗ denotes the optimal policy and Z(s) de-
notes the partition function that normalizes it. We
can easily rearrange Eq (3) and substitute it into
Eq (2) to get the BT model over policy:

p(aw0 ≻ al0|s0) =

σ

(
β log

πθ(a
w
0 |s0)

πref (a
w
0 |s0)

− β log
πθ(a

l
0|s0)

πref (a
l
0|s0)

)
,

(4)

where the partition function Z(s) is canceled from
the BT model and σ is the sigmoid function. The
DPO loss obtains the optimal policy π∗

θ by maxi-
mizing the likelihood:

LDPO = −E(s0,aw0 ,al0)∼D log
[
p(aw0 ≻ al0|s0)

]
,

(5)
where D represents the preference dataset.
Nonetheless, such concise and elegant derivations
are only suitable for single-turn preference opti-
mization tasks. As shown in Eq (3), the partition
function Z(s) is dependent on the current state s,
which precludes its cancellation under the policy
constraint in the multi-turn setting.

4 Method

In this section, we will outline the definition and
benefits of the state-action occupancy measure.
Subsequently, we will introduce two adjustments
to derive the DMPO loss. Finally, we will delve
deeper into the analysis of the DMPO loss.

4.1 State-Action Occupancy Measure
The discounted state-action occupancy measure
dπ(s, a) of a policy π describes the distribution of
state-action pairs that an agent visits in the space
with policy π:

dπ(s, a) =
1− γ

1− γT

T−1∑

t=0

γtP(st = s, at = a|π),

(6)
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Figure 2: Illustration of expert trajectories and trajec-
tories learned under the constraints of policy and state-
action occupancy measure.

where P(·) denotes the probability and the coeffi-
cient (1 − γ)/(1 − γT ) is used to normalize the
probability distribution.

First, we will provide an intuitive explanation
of how the SAOM constraint can reduce the com-
pounding error. In imitation learning, the conven-
tional SFT learning objective aims to minimize the
KL divergence between the expert policy and the
current policy:

min
πθ

E(s,a)∼dE [DKL(πE(a|s)||πθ(a|s)]

=−max
πθ

E(s,a)∼dE [log(πθ(a|s)],
(7)

where πE is the expert policy and dE is the SAOM
with policy πE . As shown in Figure 2, the trajec-
tories learned under policy constraints are suscep-
tible to significant compounding error. This vul-
nerability stems from the fact that expert datasets
are unable to comprehensively cover all possible
states. Consequently, the SFT loss leads the model
to choose random actions in states that are not repre-
sented in the expert datasets. As a result, the model
gradually deviates from the expert trajectories after
the initial error, illustrating the phenomenon known
as compounding error.

To alleviate the compounding error, subsequent
imitation learning research such as (Abbeel and Ng,
2004; Ghasemipour et al., 2020; Ho and Ermon,
2016) employ the SAOM constraint:

min
πθ

E(s,a)∼dE [D(·)(d
πθ(a|s)||dπE (a|s))], (8)

where different approaches utilize different distri-
bution distance measures D(·). The strength of
SAOM constraint lies in its ability to steer action
selection towards distributions that closely mimic
expert state-action pairs, especially in unexplored
states within the expert datasets. Illustrated in Fig-
ure 2, at state s2, policy constraints lead the model
to choose actions uniformly, whereas SAOM con-
straints aim to lead the model toward actions that

bring the next state back onto the expert trajectory.
This effectively mitigates compounding errors and
enhances the cumulative reward.

4.2 DMPO
Inspired by imitation learning, we substitute the
policy constraint with the SAOM constraint in
Eq (1) and get the following RL objective:

max
πθ

E(s,a)∼dπθ (s,a)[r(s, a)]

− βDKL[d
πθ(s, a)||dπref (s, a)], (9)

where πref represents the reference policy. Similar
to (Rafailov et al., 2024b), it is straightforward to
show that the optimal solution to the RL objective
in Eq (9) takes the form:

dπ
∗
(s, a) =

1

Z
dπref (s, a) exp(

1

β
r(s, a)), (10)

where π∗ represents the optimal policy, Z is the
partition function that normalizes the probability.
It’s noteworthy that as dπ(s, a) is a function of
(s, a) pairs, normalizing it results in the partition
functions Z being independent of the current state
s. Consequently, Z remains constant for all (s, a)
pairs, providing us with the opportunity to elimi-
nate them. Easily, we can rearrange Eq (10) into:

r(s, a) = β log
dπ

∗
(s, a)

dπref (s, a)
+ β logZ. (11)

Similar to Eq (2), we learn the reward function for
multi-turn scenarios through the BT model:

p(τw ≻ τ l|s0) =

σ

(
Tw−1∑

t=0

γtr(swt , a
w
t )−

Tl−1∑

t=0

γtr(slt, a
l
t)

)
, (12)

where τw and τ l represent the "win" and "lose"
trajectories respectively, Tw and Tl represent the
"win" and "loss" trajectory length respectively.
However, since Tw ̸= T l, the partition function
Z cannot be canceled directly in Eq (12).

To overcome this obstacle, we introduce the
length normalization technique to Eq (12):

p(τw ≻ τ l|s0) = σ

(
1− γ

1− γTw

Tw−1∑

t=0

γtr(swt , a
w
t )

− 1− γ

1− γTl

Tl−1∑

t=0

γtr(slt, a
l
t)

)
. (13)
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In this way, we can eliminate the partition function
Z in Eq (13) by substituting the reward function
r(s, a) in Eq (11). Then we maximize the likeli-
hood and obtain:

LDMPO = −E(s0,τw,τ l)∼D log σ
[

1− γ

1− γTw

Tw−1∑

t=0

βγt log
dπθ(swt , a

w
t )

dπref (swt , a
w
t )

−

1− γ

1− γTl

Tl−1∑

t=0

βγt log
dπθ(slt, a

l
t)

dπref (slt, a
l
t)

]
, (14)

where the dπ(st, at) can be further written as:

dπ(s = swt , a = awt ) = γt · P (s0)·
t−1∏

k=0

π(awk |swk )P (swk+1|swk , awk ), (15)

where P (s0) represents the probability of the ini-
tial state s0 and P (sk+1|sk, ak) denotes the tran-
sition functions. In general, obtaining the SAOM
dπ(st, at) is challenging because we do not know
the transition function P (sk+1|sk, ak) in dynamic
environments. However, in Eq (14) we simply
calculate the ratio between the current SAOM
dπθ(st, at) and the reference SAOM dπref (st, at).
It is important to note that the transition function
remains consistent for both, allowing for cancella-
tion. By substituting the Eq (15) into Eq (14), we
can obtain the DMPO loss function:

LDMPO = −E(s0,τw,τ l)∼D log σ
[
Tw−1∑

t=0

βϕ(t, Tw) log
πθ(a

w
t |swt )

πref (a
w
t |swt )

−
Tl−1∑

t=0

βϕ(t, Tl) log
πθ(a

l
t|slt)

πref (a
l
t|slt)

]
, (16)

where the discount function ϕ(t, T ) = (1 −
γT−t)/(1 − γT ). It’s noteworthy that DMPO
reweights state-action pairs at various steps using a
discount function ϕ(t, T ).

4.3 In-Depth Analysis
In this subsection, we will explore the advantages
of the DMPO loss and present some lemmas and
observations.

Corollary 4.0.1. The DMPO loss assigns higher
weights to state-action pairs at early steps, where
the weight is related to discount factor γ.

Proof. To prove the lemma, we analyze the gradi-
ent of the loss function LDMPO according to θ:

∇θLDMPO = −E(s0,τw,τ l)∼Dσ[Φ(τ
l)−Φ(τw)]

[
Tw−1∑

t=0

βϕ(t, Tw)∇θ log πθ(a
w
t |swt )

−
Tl−1∑

t=0

βϕ(t, Tl)∇θ log πθ(a
l
t|slt)

]
, (17)

where function Φ(τ) =∑T−1
t=0 βϕ(t, T ) log πθ(at|st)

πref (at|st) and ϕ(t, T ) =

(1 − γT−t)/(1 − γT ). The discount function
ϕ(t, T ) decreases as t increases and is related
to the discounted factor γ. This completes the
proof.

Corollary 4.0.2. The DMPO loss degenerates into
the single-turn DPO loss when the discount factor
γ approaches zero.

Proof. When γ equals 0, the function ϕ(t, T ) is 1
at t = 0, and 0 otherwise, which is equivalent to a
single-turn DPO loss.

Based on the analysis above, we have the follow-
ing observations:

Observation 4.0.1. Similar to the DPO loss, the
DMPO loss increases the likelihood of the pre-
ferred trajectories τw and decreases the likelihood
of the dispreferred trajectories τl.

Observation 4.0.2. If the reward Φ(τl) of dispre-
ferred trajectory is estimated higher by the policy
πθ, the weight σ[Φ(τ l)− Φ(τw)] will be larger.

Length Normalization Explanation In
SimPO (Meng et al., 2024), the effectiveness
of the length normalization technique was em-
pirically demonstrated. However, a theoretical
explanation was not provided. Our derivation
shows that it assists in eliminating the partition
function. Without length normalization in Eq (13),
a length-dependent bias term arises in the BT
model, degrading model performance as the
disparity in trajectory lengths between preferred
and dispreferred samples increases.

Further Discussion As discussed in Section 4.2,
the optimal solution to the RL objective in Eq (9)
takes the form shown in Eq (10). However, it is
contended that achieving the optimal solution may
not always be feasible when dealing with an arbi-
trary reward function r(s, a) within the context of
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Dataset WebShop ScienceWorld ALFWorld

Train 1938 1483 3321
Test-Seen 200 194 140
Test-UnSeen - 241 134

Table 1: Statistics of three agent datasets. “Train”, “Test-
Seen”, and “Test-Unseen” refer to the number of tasks
in each set respectively.

a language agent setting. This limitation arises due
to the definition of the new state st+1 as a compos-
ite of st, at, and ot, which introduces an inherent
constraint on the transition function between states.
In general, in multi-turn dynamic environments,
no loss function can rigorously optimize the RL
objective, and the DMPO loss serves as a good ap-
proximation. In many cases, the DMPO loss can
precisely optimize the RL objective in Eq (9).

5 Experiments

In this section, we conduct extensive experiments
on three agent tasks to demonstrate the effective-
ness of the proposed DMPO loss function. Our ex-
periments aim to address the following questions:
• RQ1: Can the DMPO loss function exhibit ro-
bustness to noisy training trajectories data and mit-
igate compounding errors?
• RQ2: How does the DMPO loss function per-
form compared to other baselines?
• RQ3: What is the impact of the discount factor
γ and the trajectory length on the DMPO loss?

5.1 Experiment Setting

Datasets Following prior work (Song et al.,
2024), we conduct experiments on three representa-
tive agent datasets, including WebShop (Yao et al.,
2022a), ScienceWorld (Wang et al., 2022), and
ALFWorld (Shridhar et al., 2020b).
• WebShop is a simulated shopping website envi-
ronment where agents find and purchase products
according to specifications provided in a natural
language instruction. The final reward r ∈ [0, 1]
is calculated based on how closely the purchased
products match the specified criteria.
• ScienceWorld is an interactive text environment
that tests agents’ scientific reasoning abilities in
elementary science experiments with 10 task types.
The final reward r ∈ [0, 1] is computed based on
the number of subgoals the agent successfully ac-
complishes within each task.
• ALFWorld is a simulated text-based environment

that enables agents to complete embodied house-
hold tasks from the ALFRED benchmark (Shridhar
et al., 2020a). The final binary rewards signify the
completion status of the task.

All three environments can be formally de-
scribed as MDP and conducted by language agents.
The statistical details of our datasets are outlined
in Table 1. Following (Song et al., 2024), in ad-
dition to the in-distribution “seen” test sets, both
ScienceWorld and ALFWorld include “unseen” test
sets that include out-of-distribution tasks. These
additional test sets enable us to evaluate the gener-
alization capabilities of different agents.

Training Setting We assess the robustness and
effectiveness of the DMPO loss function by em-
ploying two distinct training scenarios: Noisy set-
ting and Clean setting. Following (Song et al.,
2024), we adopt the experts’ trajectories as the
"win" trajectories to form preference trajectory data
in both noisy setting and clean setting. Initially, we
utilize the LLMs, which have been fine-tuned with
expert trajectories, to generate new trajectories on
the training set. We observe that the LLMs have
a tendency to generate trajectories with repeated
actions or meaningless words. In the noisy setting,
these noisy trajectories are used as "lose" trajecto-
ries for preference data. Conversely, in the Clean
setting, we eliminate the noisy trajectories and em-
ploy the remaining ones as "lose" trajectories for
preference data.

Parameter Settings In this work, we utilize two
different base models Llama-2-7B-Chat (Touvron
et al., 2023) and Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023) to build language agents. Follow-
ing (Song et al., 2024), we utilize the AdamW
optimizer. When supervised fine-tuning the base
models to get the reference model, we set the batch
size to 64. The learning rate is selected from {1e-5,
2e-5, 3e-5} with 3% warm up and a cosine sched-
uler. When refining the agents with DMPO loss
function, we set the batch size to 32 and tune the
hyperparameters β and γ within the ranges of {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } and {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} respectively.
We conduct all experiments on 8 NVIDIA A100
GPUs.

Evaluation Setting Following (Song et al.,
2024), we evaluate all methods using the ReAct-
style interaction format (Yao et al., 2022b), which
generates both reasoning traces and actions in an in-
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Method WebShop ScienceWorld ALFWorld

Seen Unseen Seen Unseen

Llama-2-7B-Chat + DPO 0.641 ± 0.002 0.601 ± 0.004 0.576 ± 0.001 0.474±0.004 0.540 ± 0.005

Llama-2-7B-Chat + DMPO 0.666 ± 0.007 0.619 ± 0.003 0.584 ± 0.005 0.433 ± 0.004 0.550 ± 0.004

Mistral-7B-Instructv0.2 + DPO 0.637 ± 0.007 0.700 ± 0.003 0.629 ± 0.008 0.745 ± 0.004 0.883 ± 0.004

Mistral-7B-Instructv0.2 + DMPO 0.643 ± 0.008 0.708 ± 0.015 0.651 ± 0.004 0.742 ± 0.012 0.888 ± 0.000

Table 2: Noisy setting: The average reward of different base LLMs on three agent datasets. "Seen" denotes
in-distribution test sets, while "Unseen" denotes out-of-distribution test sets. The results are averaged with three
distinct random seeds. The best results for each base model are highlighted in bold.

Method WebShop ScienceWorld

Seen Unseen

GPT-4* 0.632 0.648 0.644
GPT-3.5-Turbo* 0.624 0.165 0.130

Base* 0.179 0.380 0.310
Best-of-N* 0.638 0.702 0.576
RFT* 0.636 0.716 0.543
PPO* 0.642 0.594 0.517

SFT 0.631 0.568 0.560
ETO 0.698±0.003 0.685±0.004 0.611±0.003

DMPO 0.701±0.003 0.724±0.005 0.617±0.002

Table 3: Clean setting: The average reward of different
methods on two agent datasets based on Llama-2-7B-
Chat. The best results of tuning methods are highlighted
in bold. *Results are taken from (Song et al., 2024).

terleaved manner. For each task, we add 1-shot ex-
amples for each task, which can be found in (Song
et al., 2024). Unless otherwise stated, we set the
decoding generate temperature as 0.0.

5.2 Noisy Setting Results (RQ1)

In the noisy setting, we utilize the noisy trajectories
as "lose" trajectories for preference data to inves-
tigate the robustness of the DMPO loss function.
As shown in Table 2, we evaluate the DMPO loss
function with two different base models on two
representative agent tasks and observe that:
• In all Unseen test sets and most Seen test sets
for both base models, the DMPO loss function out-
performs the DPO loss function. This superiority
stems from DMPO assigning greater importance to
initial state-action pairs, prioritizing high-quality
expert actions from the early stages, and reducing
the influence of noisy "lose" actions in later stages.
This mitigates the influence of noise, endowing the
model with enhanced generalization capabilities.
Meanwhile, the DPO loss is not appropriate for
multi-turn settings and cannot cancel out the parti-
tion function in the BT model, thereby resulting in
its inferior performance.
• The performance of Mistral-7B-Instruct-v0.2 is

significantly better than that of Llama-2-7B-Chat
on Scienceworld and AlfWorld. This observation
suggests a positive correlation between the effec-
tiveness of the base model and its performance
enhancement after fine-tuning for agent tasks using
the DMPO loss function.

5.3 Clean Setting Results (RQ2)

In clean setting, we filter out the noisy trajectories
and select high-quality trajectories as the "lose" tra-
jectories for preference data, enabling us to utilize
the DMPO loss function fully.

Baselines Following (Song et al., 2024), we com-
pare our models trained by DMPO loss function
with the following representative baselines. 1)
Base: default LLM without tuning. 2) SFT: LLM
fine-tuned through supervised learning on expert
trajectories. 3) Best-of-N: This approach involves
using an SFT-based agent for sampling and se-
lecting the trajectory with the highest reward out
of N samples. Here, N is specified as 10. 4)
RFT (Rejection sampling Fine-Tuning) (Yuan et al.,
2023): This approach augments the expert trajec-
tory dataset by incorporating successful trajecto-
ries and subsequently trains the agent on the aug-
mented dataset. 5) PPO (Proximal Policy Opti-
mization) (Schulman et al., 2017) directly optimize
RL objectives to maximize the cumulative rewards.
6) ETO (Exploration-based Trajectory Optimiza-
tion) (Song et al., 2024) iteratively explores the en-
vironment to enhance the training preference data
and utilizes DPO loss to learn from preference data.

Results Based on the Llama-2-7B-Chat model,
we show the comparison results under clean setting
in Table 3. Notably, we observe that:
• All fine-tuning methods significantly outperform
the base model on both datasets, with improve-
ments of at least 49%. On Webshop, they even sur-
pass the performance of advanced closed-source
LLMs. This underscores the significant gap be-
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Figure 3: The effect of hyperparameter γ on the relative
performance of the model trained with DMPO loss on
the WebShop dataset in both noisy and clean settings.

tween the pre-training tasks of LLMs and the agent
tasks. By fine-tuning LLMs, language agents ex-
hibit substantial potential for improvement.
• The model trained using DMPO loss achieved
optimal performance on both datasets, highlighting
the effectiveness of DMPO loss in learning from
preference data. The improvement over the SFT
model suggests that DMPO reduces the compound-
ing errors, resulting in higher rewards.
• The model trained using DMPO loss exhibits
substantial performance improvements compared
to the noisy setting, achieving an average increase
of 5.2% on Webshop and 11.3% on Scienceworld.
This highlights the importance of selecting high-
quality "lose" trajectories in constructing prefer-
ence data, as opting for such trajectories yields
superior performance.

5.4 Ablation Study (RQ3)

Hyperparamter Analysis To verify the impact
of reweight function ϕ(t, T ) in Eq (17), we tune
the the hyperparameter γ on WebShop and present
the results in Figure 3. Our findings reveal that both
base models achieve optimal performance with a
smaller γ in the noisy setting and a larger γ in the
clean setting. According to Eq (17), a smaller γ
implies that the DMPO loss assigns reduced weight
to the state-action pairs in later steps. This indi-
cates that DMPO can balance the impact of noise
by adjusting the parameter γ. When faced with
noisy "loss" trajectories, selecting a smaller γ can

Figure 4: The effect of "loss" trajectories length on the
performance of the model trained with DPO and DMPO
loss in the noisy setting on ScienceWorld. The base
model is Mistral-7B-Instruct-v0.2.

help alleviate noise impact. Conversely, when deal-
ing with high-quality "loss" trajectories, a larger
gamma can be selected to better learn strategies
from the state-action pairs in later steps.

Length Analysis To examine the impact of tra-
jectory length on model performance, we con-
ducted an experiment by categorizing the noisy
trajectories into three groups based on their maxi-
mum length. We ensure that the number of prefer-
ence data in each group is the same. As shown in
Figure 4, we observe that the performance of the
model trained with DPO loss function decreases
rapidly as the length of noisy "loss" trajectories
increases. In contrast, the model trained with the
DMPO loss function exhibits robustness against
noisy "loss" trajectory length. This is attributed to
the length normalization employed in the DMPO
loss, which mitigates the influence of inconsistent
lengths between "win" and "lose" trajectories.

6 Conclusion

In this work, we propose a simple and robust loss
function DMPO loss, which directly optimizes the
RL objective for multi-turn agent tasks. By sub-
stituting the policy constraint with the SAOM con-
straint and introducing the length normalization
into BT model, we eliminate the partition function
in the BT model and derive the DMPO loss func-
tion. The SAOM constraint has played a pivotal
role in mitigating compounding errors. Meanwhile,
this derivation offers a theoretical rationale for the
efficacy of the length normalization technique. Ex-
tensive experiments on three agent datasets demon-
strate the effectiveness of DMPO loss, highlighting
its capability to reduce compounding errors and its
resilience to trajectory length disparity.
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7 Limitation

This paper primarily focuses on issues when fine-
tuning LLMs on the agent tasks and derives a sim-
ple and robust loss function. However, our study
has several limitations: 1) We solely concentrate on
turn-wise task formulation which results in sparse
rewards for LLMs. Exploring token-wise task for-
mulation as suggested in (Rafailov et al., 2024a)
would be a valuable avenue for future investigation.
2) The experiments in this work are conducted us-
ing 7B-sized models on simulated datasets. Future
experiments on larger models and datasets can pro-
vide stronger validation of our conclusions.

8 Ethical Considerations

In this paper, we present a new DMPO loss function
for refining LLMs in agent tasks, without bringing
forth additional ethical dilemmas. We utilize pub-
licly accessible data while conscientiously steering
clear of sensitive information. Additionally, the
use of LLMs could perpetuate unnoticed societal
biases. We suggest thorough risk assessments and
advise users to be mindful of the potential risks
linked to model deployment.
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A Case Study

In this section, we compare the performance of DPO and DMPO using an example from WebShop. In
the example, DPO lost the price information required in the first step of the answer. In contrast, DMPO
provided comprehensive answers in the initial steps, leading to a successful outcome.

Case Study of WebShop

DPO
Task Instruction: I want green modern velvet
dining chairs for the dining room, and price
lower than 200.00 dollars
Thought 1: I should search for g̈reen modern
velvet dining chairsf̈irst.
Action 1: search[green modern velvet dining
chairs]
Observation 1: <searching results>
Thought 2: The chair with the code
B08TW9LTLM seems to be a green modern
velvet dining chair within the price range. I
should click on it to get more information.
Action 2: click[B08TW9LTLM]
Observation 2: <product details>
Thought 3: The item has options for different
quantities and colors. I should select the quan-
tity that matches my needs.
Action 3: click[2]
Observation 3: <product details>
Thought 4: Now I should click on the B̈uy
Nowb̈utton to purchase the item.
Action 4: click[Buy Now]
Reward: 0.33

# The selected item does not meet the price
requirement.

DMPO
Task Instruction: I want green modern velvet
dining chairs for the dining room, and price
lower than 200.00 dollars
Thought 1: I need to find green modern velvet
dining chairs that are less than $200.00, so I’ll
start by searching for that specific description.
Action 1: search[green modern velvet dining
chairs]
Observation 1: <searching results>
Thought 2: There are several options, but many
are over my budget. The ZHENGHAO Mod-
ern Velvet Dining Chairs Set of 2 for $173.99
seems to fit my criteria, even though it’s slightly
over my budget. I’ll click on it to see more de-
tails.
Action 2: click[B07R9KFCKY]
Observation 2: <product details>
Thought 3: This set of chairs is available in
emerald green, which is the color I want. I’ll
select this color option.
Action 3: click[emerald green]
Observation 3: <searching results>
Thought 4: Now I need to decide if I want a
set of 2 or a set of 4. Since I’m looking for a
long-lasting chair and a set of 4 might be more
durable, I’ll choose the set of 4 option.
Action 4: click[set of 4]
Observation 4: <searching results>
Thought 5: I’ve selected the color and the set of
chairs I want, and the price is slightly over my
budget. However, I’m proceeding with the pur-
chase, possibly because I’ve decided the chairs
are worth the extra cost or because I’ve adjusted
my budget.
Action 5: click[buy now]
Reward: 1.0

Figure 5: Case study of WebShop.
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First Turn Second Turn
Win Rate Lose Rate Tie Rate Win Rate Lose Rate Tie Rate

WebShop 25% 21.3% 53.7% 26.3% 20% 53.7%
ScienceWorld 23.8% 17.5% 58.7% 28.8% 12.5% 58.7%
ALFWorld 13.8% 6.2% 80% 23.8% 6.2% 70%

Table 4: Evaluation results of the models trained with DMPO vs DPO on various datasets using MT-bench.

B MT-Bench

In this section, we evaluate and compare the models trained with DMPO vs DPO on various datasets
using MT-bench (Zheng et al., 2023), and the results are presented in Table 4.

The analysis of win rates presented in the table indicates that DMPO consistently outperforms DPO
across all training datasets on the MT-bench. Notably, DMPO achieves a much higher win rate over DPO
in the second-turn evaluation of the MT-bench, demonstrating the effectiveness of DMPO.
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