
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 2325–2347
November 12-16, 2024 ©2024 Association for Computational Linguistics

Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models

Leonardo Ranaldi (†) André Freitas(†,∗,‡)
† Idiap Research Institute, Martigny, Switzerland

∗Department of Computer Science, University of Manchester, UK
‡National Biomarker Centre (NBC), CRUK Manchester Institute, UK

[name].[surname]@idiap.ch

Abstract
The alignment of reasoning abilities between
smaller and larger Language Models are largely
conducted via supervised fine-tuning using
demonstrations generated from robust Large
Language Models (LLMs). Although these
approaches deliver more performant models,
they do not show sufficiently strong generaliza-
tion as the training only relies on the provided
demonstrations.

In this paper, we propose a self-refine
Instruction-tuning method that allows for
Smaller Language Models to self-improve their
reasoning abilities. Our approach is based on a
two-stage process, where reasoning abilities are
first transferred between LLMs and Small Lan-
guage Models (SLMs) via Instruction-tuning
on synthetic demonstrations provided by LLMs,
and then the instructed models self-improve
through preference optimization strategies. In
particular, the second phase operates refine-
ment heuristics based on Direct Preference Op-
timization, where the SLMs are prompted to
deliver a series of reasoning paths by automat-
ically sampling the generated responses and
providing rewards using ground truths from
the LLMs. Results obtained on commonsense
and math reasoning tasks show that this ap-
proach consistently outperforms Instruction-
tuning in both in-domain and out-domain
scenarios, aligning the reasoning abilities of
smaller and larger language models.

1 Introduction

Previous works have demonstrated that Chain-of-
Thought (CoT) prompting can improve the Large
Language Models (LLMs) capacity to perform
complex reasoning tasks by decomposing a rea-
soning task into a sequence of intermediate steps
(Wei et al., 2022), where the generation of multi-
step controlled reasoning can improve results in
commonsense (Bubeck et al., 2023), symbolic and
mathematical (Gaur and Saunshi, 2023; Liu et al.,
2023) reasoning datasets.

Since the size of LLMs represents an adoption
barrier for many use cases, and smaller models do
not seem to have the same emergent reasoning abil-
ities as LLMs, several state-of-the-art alignment ap-
proaches for solving mathematical problems have
emerged, where Supervised Fine-Tuning (SFT) has
been used to train Small Language Models (SLMs)
using CoT annotations. However, these annotations
outline the intermediate reasoning steps for solv-
ing a given problem, which consists of a reasoning
pathway generated by the LLM for a specific case.
This phenomenon can lead to a relatively weaker
capacity of tuned models that have a few and lim-
ited number of samples. Indeed, there are often
multiple valid CoT annotations for the same ques-
tion (Cobbe et al., 2021; Zhang et al., 2023), which
underlines the need for a more general CoT-based
fine-tuning approach.

In this paper, we propose Self-refine Instruction-
tuning, which is a method to enable CoT reasoning
over SLMs. Our approach starts by performing
Instruction-tuning on SLMs via demonstrations de-
livered by LLMs and then applies preference op-
timization based on reinforcement learning (RL)
heuristics to let the SLMs refine their abilities to
solve a task in a step-wise manner. Hence, propos-
ing a teacher-student alignment method, we inves-
tigate the impact of transferring Chain-of-Thought
reasoning abilities through the support of demon-
strations "taught" by LLMs to SLMs as a warm-up
to the Self-refine process. Therefore, to reinforce
the Instruction-tuning phase, we analyze whether
preference optimization methods could strengthen
student models’ step-wise reasoning abilities.

Complementing the foundation work of Wang
et al. (2023c), we introduce Self-refinement based
on reinforcement learning, and in contrast to (Ue-
sato et al., 2022; Luo et al., 2023; Luong et al.,
2024; Paul et al., 2024), we use an Instruction-
tuning via synthetic demonstrations approach as
proposed by Ranaldi and Freitas (2024) (i.e., a task-

2325

Figure 1: In Self-refine Instruction-tuning, the demonstrations delivered by teacher models are used to align
reasoning abilities in a teacher-student setting. Following the transference of step-wise reasoning knowledge via
instruction tuning, the students self-refine their abilities with the support of Direct Preference Optimization methods.

oriented specialization of Supervised Fine-Tuning)
through which we instruct SLMs using demonstra-
tions delivered from different teachers prompted
via a CoT mechanism.

This leads to the target research questions, which
are the focus of this paper:

RQ1: How does Instruction-tuning via demon-
strations initialize the SLMs’ reasoning abilities?

RQ2: What is the effect of the preference op-
timization algorithm on the alignment between
teacher and student models?

RQ3: How much does the ability to solve tasks
in a multi-step manner improve across different
scenarios?

We answer these questions by selecting three
different SLMs: Llama2-7b, Llama2-13b (Tou-
vron et al., 2023), Mistral-7b (Jiang et al., 2023);
and three LLMs Llama2-70b, Mixtral (Jiang et al.,
2024) and GPT-3.5 (OpenAI, 2023).

In the teacher-student alignment phase, we oper-
ate via LLMs (teachers) to deliver synthetic demon-
strations at the core of the Instruction-tuning pro-
cess (see left side of Figure 1) used to instruct
SLMs (students). In the self-refine phase, the
students improve their step-wise reasoning abil-
ities via Direct Preference Optimization (DPO)
(Rafailov et al., 2023). This phase allows the stu-
dents to sample different reasoning paths and CoT
demonstrations and learn from them (see right side
of Figure 1). Moreover, differently from previous
works (based on teacher-student alignments), pref-
erences are self-generated, and there is no need for
a separately trained reward model as in the previous
approaches (Ouyang et al., 2022).

We demonstrate the effectiveness of the pro-
posed refinement technique in aligning teacher-
student models, overcoming the differences high-
lighted by Ranaldi and Freitas (2024), from the
same family, and in maximizing efficiency in in-
domain and out-domain tasks.

Our contributions can be summarized as follows:

• We propose the Self-refined Instruction-tuning
approach that is a task-oriented Supervised
Fine-Tuning (SFT), which utilizes DPO
heuristics to conduct a self-refinement process
starting from instructed SLMs.

• We analyze the impact of different configura-
tions of Instruction-tuning on the SLMs be-
fore and after the Self-refining phase by con-
ducting in-depth experiments on mathemat-
ical problems and common sense question-
answering tasks using synthetic demonstra-
tions delivered by teacher models of the same
family (in-family) or not (out-family). Hence,
we show the downstream functionalities in
both scenarios.

• Finally, we display the in- and out-domain
abilities acquired via Self-refined Instruction-
tuning through a systematic evaluation using
demonstrations provided by in-family and out-
family teachers in different tasks.

2 Method

To transfer the step-wise reasoning properties from
Large Language Models (LLMs) to Small Lan-
guage Models (SLMs), we propose Self-refine
Instruction-tuning, a two-step approach as shown
in Figure 1. In the first phase, there is a transfer of
step-wise (CoT) reasoning via Instruction-tuning,
where LLMs systematically generate demonstra-
tions which are used by SLMs to initialize their
step-wise (CoT) alignment (Section 2.1). In the
second phase, the instructed SLMs Self-refine their
internal CoT model via the preference optimization
technique presented in Section 2.2.

2326

2.1 Instruction-tuning Phase
A significant part of the state-of-the-art works em-
ploys standard Supervised Fine-Tuning (SFT) per-
formed on annotations produced by a single LLM
(Large Language Model) as a mechanism to im-
prove SLMs. In our contribution, we take a step
further and use Instruction-tuning, which is a task-
oriented specialization of SFT (Supervised Fine-
Tuning), in coordination with a teacher-student
alignment approach (detailed in Appendix A). In
this phase, the SLM (student) is fine-tuned on a
dataset produced by LLM (teacher) comprising a
set of tuples in the form of (i, q, ai), where i repre-
sents a specific instruction, q is the input question
(e.g., math-word problem), and ai is the expected
output and CoT answers generated from the teacher
in response to the instruction and input. This setup
is intended to transfer to the student models foun-
dational problem-solving abilities, emphasizing the
generation of outputs that conform to the provided
instructions. The CoT answer ai is articulated as:

ai = [w1, w2, . . . , wl−1, wl]

with l indicating the sequence length. At each time
step t, the action wt is derived from the policy
πθ(·|st), where wt can be any token from the mod-
els vocabulary, and the state st encapsulates the
concatenation of all previously generated tokens
and the optional input x if provided. The state
transition is defined as:

st+1 =

{
(x, i) if t = 0

[st, wt] if 1 ≤ t ≤ l

The Instruction-tuning loss function explicitly
integrates the instruction i, aligning the models’
learning process with the instructional context.
This loss function is formulated as:

Linst(θ) = −E(i,q,ai)∼D

[
L∑

t=1

log πθ(wt|st, i)
]

Here, πθ is conditioned on both the state st, the
input q, and the instruction i, ensuring that the
model prioritizes instruction compliance in its out-
put generation. This methodological shift from
SFT to Instruction-tuning underlines the principle
of enhancing the models’ ability to accurately in-
terpret and execute complex instructions.

2.2 Self-refinement Phase
In the second phase, the instructed SLMs (students)
that have improved CoT properties via Instruction-
tuning (Section 2.1) self-refine these properties

with the support of Direct Preference Optimization
(DPO) (Rafailov et al., 2023). This refinement can
be conducted in an SFT style, relying exclusively
on labeled preference data. The policy model, de-
fined as πθ, learns by repeatedly sampling the an-
swers generated by teachers and students.

Direct Preference Optimization In the standard
DPO approach (Rafailov et al., 2023), a human an-
notator ranks the outputs from a reference policy,
labeling winning and losing pairs yw = πinst(x)
and yl = πinst(x). However, we propose an op-
timization step via Self-generated annotation by
the students πinst, which, after Instruction-tuning,
should have a more robust performance and reliably
follow the intent of the questions.

For each demonstration (i, x, ai), we prompt the
students using the input x = i+q (q = question+
"Let’s think step by step") (blue block in
Figure 1). Hence, for each instance within the
demonstrations, we collect the Answers (ya =
πinst(x)) that are the answers generated by the stu-
dent given the input x (in additional analysis we
also consider the non-CoT version).

In particular, we would like the model to gener-
ate responses that deliver a CoT (in fact, we elicit
the models to do it) just as the corresponding LLM
teacher would do. To achieve this, we propose an
alignment by exploiting DPO optimization. This
aims to move the default style of our model (re-
sponse generated by the student) towards the de-
sired style (answers that deliver CoT). Different
configurations are proposed depending on the de-
sired result. Starting from equation 1:

LDPO(πθ;πinst) = −E(x,yw,yl)∼D

[log σ(M(x, yw, yl))]
(1)

where σ is the sigmoid function, and

M(x, yw, yl) = β log
πθ(yw|x)
πinst(yw|x)

− β log
πθ(yl|x)
πinst(yl|x)

(2)

where β is a hyperparameter.
We propose the Self-refine Instruction-tuning

that uses as optimization technique DPO (described
in details in Appendix B in Equation 3. In particu-
lar, in our DPOCoT

1, the answers that deliver a CoT
response, which is self-generated from the students,
are referred to as the preferred response.

1For the purposes of exhaustiveness in the additional ex-
periments, we perform the proposed method without CoT.

2327

3 Experimental Setup

To evaluate the proposed method, we use common-
sense and mathematical reasoning tasks (Section
3.1) that are used to assess the step-wise inference
properties of Large Language Models(LLMs). Re-
garding the Self-refine Instruction-tuning on the
Small Language Models (SLMs), we use the ap-
proach presented in Section 3.2.

3.1 Tasks & Datasets

Commonsense Task We adopt two benchmarks
to evaluate commonsense reasoning: Common-
SenseQA (Talmor et al., 2019) (CSQA) and Open-
BookQA (Mihaylov et al., 2018) (OBQA) are two
multi-choice commonsense question-answering
tasks.

Physical & Social Interaction Task We adopt
two benchmarks to evaluate reasoning in the con-
text of everyday situations, aiming to establish the
most reasonable solution: Interaction Question An-
swering (PIQA) (Bisk et al., 2019) and Social In-
teraction Question Answering (SIQA) (Sap et al.,
2019), which emphasizes people’s actions and so-
cial implications.

Mathematical Task We use two math word prob-
lem benchmarks to evaluate the models of math-
ematical reasoning. MultiArith (Roy and Roth,
2015) covers a set of multi-step arithmetic reason-
ing tasks, while GSM8k (Cobbe et al., 2021) covers
primary school-level mathematical problems.

Additional benchmarks Finally, to evaluate the
adaptability of our proposal, we conduct further
analysis on two additional evaluation benchmarks:
MATH (Hendrycks et al., 2021b) and MMLU
(Hendrycks et al., 2021a).

Datasets Since the test split is not prescribed for
all the benchmarks, we adopt the following strat-
egy: for SIQA, PIQA, CSQA, and OBQA, we
use 4000 examples with equally distributed tar-
get classes as training data and the validation ver-
sions found on huggingface as test data, while for
GSM8K and MultiArith we use the full hugging-
face datasets. In Table 8, we report the descrip-
tive statistics and splitting ratios, while in Table 7,
we report one example for each benchmark. The
supporting datasets are publicly accessible as de-
scribed in Table 9.

3.2 Self-refine Instruction-tuning Pipeline

The Self-refine Instruction-tuning comprises the
annotation process conducted by the teacher LLM
models that are prompted in the zero-shot scenario
(as shown in Table 6), as explained in Appendix
A. We selected Llama-2-70 (Touvron et al., 2023),
Mixtral7x8 (Jiang et al., 2024) and GPT-3.5 (Ope-
nAI, 2023) as LLMs (teachers) and Llama2-7, -13
(Touvron et al., 2023) and Mistral-7 (Jiang et al.,
2023) SLMs (students) models.

Hence, the student models are tuned, as proposed
in (Taori et al., 2023) and evaluated with probing
pipelines (detailed in Section 3.3). The students
are instructed via demonstrations that contain the
answers generated by the teachers, as explained in
Section 2.1. Downstream of the teacher-student
CoT transference process, the optimization tech-
nique (proposed in Section 2.2 and detailed in Ap-
pendix B) is employed to improve alignment and
self-refine the quality of the generation.

3.2.1 Models Setup

We conduct the Self-refined Instruction-tuning
in two different phases. Firstly, we start with
Instruction-tuning phase using QLoRA Dettmers
et al. (2023). This approach allows Instruction-
tuning to be performed while reducing memory
usage. In particular, Dettmers et al. (2023) pro-
pose several techniques for tuning models with
many parameters on GPUs with limited resources
while preserving 16-bit tuning performance. We
follow the training approach proposed in (Taori
et al., 2023), setting four training epochs using a
learning rate 2e-5 with a 1e-4 weight decay. We use
the cosine learning rate scheduler with a warm-up
ratio of 0.03. Furthermore, we conduct the Self-
refine phase following the approach proposed in
(Rafailov et al., 2023). In particular, we use the hug-
gingface DPOtrainer to support its reproducibility.
We follow the parameters proposed in (Rafailov
et al., 2023). Hence, for the DPO policy, our work
employs a learning rate of 1e-6, β set at 0.1, and a
warm-up step count of 100. The batch size is con-
figured to 128. The optimization process is capped
at a maximum of 1000 steps, where we save the
checkpoint corresponding to the lowest loss on the
validation set. The experiments were conducted on
a workstation with four Nvidia RTX A6000 and
48GB of VRAM. 2

2The code is accessible at the following link.

2328

https://github.com/lranaldii/Aligning_LLMs

Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines and Baseline
CoT), after Instruction-tuning (IT) performed on demonstrations delivering CoT and finally behind the Self-refine
Instruction-tuning phase (Self IT). In particular, the models were instructed via demonstrations delivered by
in-family LLMs (as described in the legend, we use the notation method(Teacher->Student)).

3.3 Evaluation

The most commonly used evaluation methods for
question-answering tasks are language-model prob-
ing, in which the option with the highest probabil-
ity is selected (Brown et al., 2020), and multiple-
choice probing, in which the models are asked to
commit to an answer. The evaluation in the first
case is performed with a function taking the argmax
and, in the second case, with a direct string match-
ing. The second method is more widely used in
recent evaluations as it can be inclusive to the larger
GPT family models(OpenAI, 2023), where prob-
ability values are not readily accessible. In the
experiments, we chose the latter to have a compa-
rable and scalable pipeline (Details provided in Ap-
pendix C.2). Finally, string matching is performed
between the generated outputs and the target choice
to evaluate the percentages of the correct answers.

4 Results & Discussion

The Self-refine Instruction-tuning improves the
alignment between Large Language Models
(LLMs) and Small (SLMs) in both in-family and
out-family settings. These conclusions can be ob-
served in Figure 2 and Figure 3, which reports
the downstream accuracies without tuning (see
the Baselines), with only the Instruction-tuning
phase on demonstrations and after the Self-refine
phase. As discussed in Section 4.1, the models
with only Instruction-tuning on synthetic demon-
strations (generated by LLMs) transfers the reason-

ing properties in a marginal way (see Instruction-
tuned in Figures 2).

However, although teacher-student alignment
via Instruction-tuning produces better students, an
improved alignment is achieved through the Self-
refine phase, as discussed in 4.2. In particular,
the ’Self-refine Instruction-tuning’ bars in Figure
2 show that the self-refined student models out-
performed the student models tuned only with
Instruction-tuning (’Instruction-tuning’ bars on Fig-
ure 2). Furthermore, the alignment via demon-
strations generated by teachers outside the same
family (out-family) delivers more robust students
(see Figure 3 the Self-refine Instruction-tuning and
(in-family) bars).

Finally, student models behind the self-refine
phase outperformed others in both in-domain
and out-domain tasks (discussed in Section 4.3).
Hence, the self-refine mechanism effectively aligns
teacher-student capabilities in out-domain tasks by
enhancing performance even in the presence of
fewer demonstrations (Section 4.4).

4.1 The Instruction-tuning alignment
Instruction-tuning led by Larger Language Models
(teacher models), which are able to deliver multi-
step reasoned answers, induces this property within
Smaller Language Models (student models). This
can be seen in the experiments in Figure 2, Figure
3. The student models behind instruction-tuning
on demonstrations produced by teacher models out-
performed the baselines of the six proposed bench-

2329

Figure 3: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (Baseline CoT), behind first phase
performed on demonstrations delivering CoT (i.e., Instruction-tuned (IT)) and finally behind the Self-refine phase
(i.e., Self-refine IT). In particular, the models were instructed via demonstrations delivered by out-family LLMs (as
described in the legend, we use the notation method(Teacher->Student)).

marks and additional ones in Appendix L.

While one can observe consistent improvements
in performance across the board, there are moder-
ate variations across models and tasks. The teacher
models that generate demonstrations stem from dif-
ferent families and perform differently, as shown in
Table 5. The consequence of this phenomenon can
be seen in Figure 2 and Figure 3 (horizontal lines
that are the reported performance of the teachers
and bars ’Instruction-tuning’ that are the perfor-
mance of the students). Therefore, the teacher-
student alignment is not complete as there is a gap
between the performances of the teachers and the
students tuned via Instruction-tuning (only phase
presented in Section 2.1). In addition, it is possible
to differentiate between in-family and out-family
alignment. In the in-family, where students are
instructed with demonstrations delivered by the
teachers of the same family, performances vary
from 6.3 points on average in question-answering
(QA) tasks and 8.2 points on average in math word
problems (MWP) tasks. Meanwhile, in the out-
family alignment, the performances vary by 8.5 on
the QA and 8.7 on the MWP.

Hence, to improve the alignment both in-family
and consistently out-family, we have proposed an
optimization technique based on a self-refinement
approach (introduced in Section 2.2), the results of
which we discuss in Section 4.2.

4.2 The Self-refine Impact

The Self-refine process enables complete in-family
student-teacher alignment by consistently increas-
ing performance in out-family settings and improv-
ing the qualities of generated answers. The results
in Figure 2 show that the students (SLMs instructed
with Self-refine Instruction-tuning) outperform the
non-self-refined students and perform comparably
to their teachers. The same behaviour can be ob-
served from the out-family setting shown in Figure
3. In particular, the teacher GPT-3.5 showed a
more robust baseline performance (Table 5). Al-
though Instruction-tuning alone transfers some of
the abilities to the student models, they were sig-
nificantly lower when compared to the out-family
teacher models. In contrast, the teacher-student
performances significantly converged after the self-
refine phase, leading to the alignment completion.
Finally, a positive impact can also be observed on
the quality of students’ generations (reported in Ap-
pendix H), as shown in the additional experiment
discussed in Appendix J.

The performances appear completely aligned,
but the students were tested only for in-domain
tasks. The proposed approach could cause students
to over-specialize in in-domain tasks, running the
risk of losing the ability to solve out-domain tasks.
For this reason, we performed a set of assessments
evaluating students on in-domain and out-domain
tasks and discussed the results in Section 4.3.

2330

Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 53.6±.2 50.6±.4 61.6±.1 46.5±.3 68.2±.5 69.5±.2

Baseline CoT - 49.5±.4 55.8±.3 63.8±.1 51.3±.5 71.3±.2 72.6±.4

OBQA
Instruction-tuning 65.3±.3 65.4±.2 66.3±.4 59.2±.2 61.4±.2 60.2±.3

+ Self-refine 70.8±.3 73.2±.2 75.3±.1 62.6±.3 68.7±.4 69.8±.3

Cross Self-refine - 78.4±.1 78.3±.5 64.5±.3 74.4±.4 83.2±.2

CSQA
Instruction-tuning 57.8±.1 71.4±.3 65.5±.4 61.8±.2 60.1±.5 59.3±.1

+ Self-refine 69.5±.5 79.8±.3 74.2±.1 66.3±.2 61.2±.3 60.3±.3

Cross Self-refine 68.7±.4 - 78.4±.2 64.1±.3 72.1±.4 73.4±.2

PIQA
Instruction-tuning 56.9±.1 64.3±.2 80.2±.3 57.3±.3 58.3±.1 59.1±.3

+ Self-refine 68.2±.4 67.3±.5 84.6±.3 63.4±.2 67.8±.1 66.9±.3

Cross Self-refine 68.2±.3 71.3±.3 - 64.2±.1 68.7±.4 67.6±.1

SIQA
Instruction-tuning 58.9±.2 62.8±.5 63.2±.1 62.8±.3 59.6±.1 60.2±.3

+ Self-refine 68.3±.3 68.5±.2 78.3±.3 66.2±.4 61.3±.5 60.9±.4

Cross Self-refine 69.4±.2 68.5±.2 77.9±.3 - 65.1±.3 64.7±.2

GSM8K
Instruction-tuning 53.2±.4 54.9±.5 63.7±.1 52.5±.2 71.2±.3 70.3±.2

+ Self-refine 58.6±.3 61.7±.4 62.3±.2 52.4±.3 76.9±.1 74.3±.2

Cross Self-refine 64.6±.5 64.3±.2 77.6±.4 60.3±.2 - 75.3±.3

MultiArith
Instruction-tuning 53.6±.2 55.7±.3 53.8±.3 51.5±.3 69.3±.1 75.6±.2

+ Self-refine 59.1±.2 63.2±.5 58.3±.3 58.6±.1 70.2±.4 85.8±.2

Cross Self-refine 65.3±.4 61.3±.1 62.1±.2 60.7±.5 73.4±.3 -

Table 1: Evaluation of Llama-2-7 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain bench-
mark, and orange the same benchmark on which perform the evaluation phase. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenario where we optimize the model on the training set related to the evaluated
task.

4.3 In-Domain and Out-Domain

The Self-refine Instruction-tuning approach com-
plements student-teacher alignment and improves
students’ performances in out-domain tasks. These
results can be observed in Table 1 with Llama2-7
as students and Llama2-70 as teachers (in Ap-
pendix Table 10 with Llama2-13 Table 11 with
Mistral-7). In particular, behind the evaluations
performed on in-domain and out-domain tasks,
the students Self-refine Instruction-tuned outper-
form the baselines and the Instruction-tuned mod-
els. These results also affect downstream perplexi-
ties as shown in the experiments in the Appendix
I. Furthermore, to observe the impact of the opti-
mization phase (introduced in Section 2.2) on the
downstream performance, we conducted a further
experiment by fixing the Instruction-tuning phase
and switching the Self-refine ones across different
evaluation tasks (e.g., we instructed a student on
OBQA and then optimized via self-refine approach
on CSQA). As shown in lines Cross Self-refine
of Table 1, students warmed up on tasks other than
those they are optimized, outperformed the oth-
ers, and obtained similar performances to those
obtained from in-domain models. This shows that

optimization positively impacts the alignment of
abilities in out-domain tasks. Finally, following
evaluations in out-domain tasks and across scenar-
ios, we evaluate the performance of the proposed
approach by reducing the number of demonstra-
tions available for alignment in Section 4.4.

4.4 Low-resource Optimization

Self-refine Instruction-tuning achieves sustainable
performance in low-resource settings. In fact, per-
forming additional tuning phases does not substan-
tially improve the models’ performance (experi-
ments in Appendix K). Moreover, in Figure 4, it is
possible to observe that the performance achieved
by the self-refined students consistently outper-
forms that of the non-self-refined students (where
only phase 1 described in Section 2.1 was per-
formed) (technical details on the breakdown can be
found in Appendix C.1). Although it emerges that
only the optimization process via DPO is more per-
formant than the instruction-tuning process alone,
the combination of the two phases achieves the
best results in both in-family and out-family align-
ment in each proposed splitting that are described
in Appendix C.1.

2331

5 Related Work

5.1 Multi-step Reasoning

Previous works focus on Chain-of-Thought (CoT)
prompting techniques, investigating the impact
of prompting design and engineering, proposing
specialized interventions to improve CoT perfor-
mances and fine-grained multi-step reasoning prop-
erties (Wei et al., 2022).

On the prompting design side, several works pro-
posed using programs-like demonstrations as a CoT
prompt, achieving more accurate reasoning steps
and significant improvements behind CoT prompt-
ing. In parallel, there have been improvements
in the accessibility of lower-parameter versions of
Large Language Models (LLMs), which we define
as Small Language Models (SLMs), on which pre-
vious CoT improvements cannot be fully observed
(Shridhar et al., 2023; Ho et al., 2023; Ranaldi and
Pucci, 2024). Therefore, several contributions are
emerging at this gap, aiming to transfer LLM rea-
soning properties to SLMs. Pioneering proposals in
this direction proposed teacher-student alignment
methods through a series of approaches geared to-
wards the distillation of the knowledge generated
by the teacher for the fine-tuning of the student
(Li et al., 2023b; Magister et al., 2023; Shridhar
et al., 2023). Later, Yue et al. (2023) proposed spe-
cialized Instruction-tuning using Alpaca-like style
demonstrations (Taori et al., 2023) specialized for
mathematical tasks, while Luo et al. (2023); Xu
et al. (2023) proposed supervised fine-tuning rein-
forced with rewarding algorithms.

5.2 Reinforcement Learning (RL)

A significant component that promotes the gen-
erative reasoning delivering CoT is provided by
refinement via RL methods. Foundational work ap-
plies Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) for aligning human preferences
(Ouyang et al., 2022). Several methods have been
proposed to improve the efficiency of alignment
(Azar et al., 2023; Loem et al., 2024), including
Direct Preference Optimization (DPO) (Rafailov
et al., 2023).

In this work, we adopt RL to refine performance
over conventional SFT. For mathematical problem
solving, Uesato et al. (2022) trained an outcome- or
process-based reward model to perform re-ranking
(Cobbe et al., 2021), achieving better performance
than SFT and majority voting (Wang et al., 2023b).
(Luong et al., 2024) adopted reinforcement learn-

ing as an extension of traditional supervised tuning.
We adopt DPO and automate the reward process in
a teacher-student context. We focus on the transfer
of CoT-style, step-wise reasoning and propose a re-
finement technique applied to models downstream
of the instruction-tuning phase.

5.3 Self-refined Instruction-tuning
Complementing and enhancing foundational ap-
proaches (Magister et al., 2023; Uesato et al., 2022;
Li et al., 2023a; Ho et al., 2023), several papers
have been published simultaneously Wang et al.
(2023d); Luo et al. (2023); Wang et al. (2023a);
Paul et al. (2024); Luong et al. (2024); Ranaldi
and Freitas (2024) (Table 15 summarises the main
features). These works prove the effect of super-
vised fine-tuning to transfer the ability to produce
multi-step reasoned answers from larger to smaller
models, as described in Section 5.2. Our work goes
beyond the state-of-the-art by:

• proposing a method for aligning CoT abilities
by introducing Instruction-tuning via demon-
strations produced by answers generated by
different LLMs, decentralizing the unique
teacher model (in many cases GPT-3.5,4).

• analyzing the alignment performance between
in-family and out-family models on different
tasks related to commonsense and math rea-
soning, identifying crucial alignment factors
that arise between teachers and students.

• investigating the impact of teacher-student
alignment by adapting and promoting DPO
(Rafailov et al., 2023) as a cornerstone method
for eliminating performance gaps.

6 Conclusion

This paper proposes a novel approach for align-
ing multi-step CoT reasoning between teacher
Large Language Models (LLMs) and student
Smaller LMs (SLMs). In particular, our Self-
refine Instruction-tuning is framed as an instruc-
tion tuning via Chain-of-Thought demonstrations
method based on explanations delivered by LLMs
prompted by the CoT mechanism, which is then
reinforced via the Self-refine phase that uses Direct
Preference Optimization. We also contrast the im-
pact of in-family and out-family alignment across
teacher and student models.

The investigation of Large Language Models’
(LLMs) reasoning capabilities is a rapidly evolv-

2332

ing domain. Multiple studies have been proposing
techniques to increase, transfer, and align reason-
ing capabilities in English (detailed reported in
Section 5). Several works are emerging that aim
to transfer these reasoning capabilities beyond En-
glish (Ranaldi and Pucci, 2023). In future devel-
opments, we would like to extend our contribution
to non-English languages to broaden their benefi-
cial impacts and operability by extending previous
alignment (Ranaldi et al., 2024c,a) and augmenta-
tion (Ranaldi et al., 2023, 2024b) approaches.

Limitations

In this paper, we analyzed the impact of Answers
delivered by Large Language Models using them
as demonstrations to reinforce the abilities of Small
Language Models. Although we proposed an ex-
tensive study, there are several limitations:

• only English-language prompting methods
and tasks are considered. The understanding
of these methods across different languages
still needs to be established.

• dependence on Large Language Models,
where the supporting training sets are not al-
ways fully known. Consequently, character-
izing the differences in pre-training data be-
tween models is not fully possible, where the
analysis is constrained to observing the out-
puts in natural language.

In conclusion, learning from and with demonstra-
tions carries some specific risks. Although a model
may generalize its predictions using a seemingly
consistent series of natural language steps, even
if the prediction is ultimately correct, there is no
guarantee that the predicted output comes from a
process represented by the generalization. A end-
user might be overconfident in the model based on
the CoT mechanism.

Ethical Statement

Although this research enhances the reasoning abil-
ities of Smaller Language Models, they still need
to be made sufficiently robust to be applied within
more critical domains. Further safety and out-of-
distribution generalisation mechanisms needs to be
developed in tandem with the application of the
methods described in this paper, in order to estab-
lish the robustness of the described mechanisms.

Acknowledgements

This paper has been partially supported by the SIN-
FONIA project funded by Innosuisse n. 104.170
IP-ICT. We would like to thank the reviewers for
their constructive comments.

References
Mohammad Gheshlaghi Azar, Mark Rowland, Bilal

Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piqa: Reasoning about
physical commonsense in natural language.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. ArXiv, abs/2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Vedant Gaur and Nikunj Saunshi. 2023. Reasoning
in large language models through symbolic math
word problems. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5889–
5903, Toronto, Canada. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset.

2333

http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 14852–14882, Toronto,
Canada. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xi-
ang Ren, Kai-Wei Chang, and Yejin Choi. 2023a.
Symbolic chain-of-thought distillation: Small mod-
els can also “think” step-by-step. In Proceedings
of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2665–2679, Toronto, Canada. Associ-
ation for Computational Linguistics.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023b. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333,
Toronto, Canada. Association for Computational Lin-
guistics.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023. Evaluating the logical
reasoning ability of chatgpt and gpt-4.

Mengsay Loem, Masahiro Kaneko, and Naoaki Okazaki.
2024. Saie framework: Support alone isn’t enough –
advancing llm training with adversarial remarks.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Reason-
ing with reinforced fine-tuning.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2023.
Teaching small language models to reason. In

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1773–1781, Toronto, Canada.
Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2024. Refiner: Reasoning feedback on in-
termediate representations.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Leonardo Ranaldi and Andre Freitas. 2024. Align-
ing large and small language models via chain-
of-thought reasoning. In Proceedings of the
18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1812–1827, St. Julian’s,
Malta. Association for Computational Linguistics.

Leonardo Ranaldi and Giulia Pucci. 2023. Does the En-
glish matter? elicit cross-lingual abilities of large lan-
guage models. In Proceedings of the 3rd Workshop
on Multi-lingual Representation Learning (MRL),
pages 173–183, Singapore. Association for Compu-
tational Linguistics.

Leonardo Ranaldi and Giulia Pucci. 2024. When large
language models contradict humans? large language
models’ sycophantic behaviour.

Leonardo Ranaldi, Giulia Pucci, and André Freitas.
2024a. Does the language matter? curriculum
learning over neo-Latin languages. In Proceedings
of the 2024 Joint International Conference on
Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 5212–
5220, Torino, Italia. ELRA and ICCL.

Leonardo Ranaldi, Giulia Pucci, and Andre Fre-
itas. 2024b. Empowering cross-lingual abilities
of instruction-tuned large language models by
translation-following demonstrations. In Findings of
the Association for Computational Linguistics ACL
2024, pages 7961–7973, Bangkok, Thailand and vir-
tual meeting. Association for Computational Linguis-
tics.

2334

https://doi.org/10.18653/v1/2023.acl-long.830
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.150
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2311.08107
http://arxiv.org/abs/2311.08107
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2401.08967
http://arxiv.org/abs/2401.08967
https://doi.org/10.18653/v1/2023.acl-short.151
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/1809.02789
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://aclanthology.org/2024.eacl-long.109
https://doi.org/10.18653/v1/2023.mrl-1.14
https://doi.org/10.18653/v1/2023.mrl-1.14
https://doi.org/10.18653/v1/2023.mrl-1.14
http://arxiv.org/abs/2311.09410
http://arxiv.org/abs/2311.09410
http://arxiv.org/abs/2311.09410
https://aclanthology.org/2024.lrec-main.464
https://aclanthology.org/2024.lrec-main.464
https://doi.org/10.18653/v1/2024.findings-acl.473
https://doi.org/10.18653/v1/2024.findings-acl.473
https://doi.org/10.18653/v1/2024.findings-acl.473

Leonardo Ranaldi, Giulia Pucci, Federico Ranaldi,
Elena Sofia Ruzzetti, and Fabio Massimo Zanzotto.
2024c. A tree-of-thoughts to broaden multi-step
reasoning across languages. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1229–1241, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Leonardo Ranaldi, Giulia Pucci, and Fabio Massimo
Zanzotto. 2023. Modeling easiness for training trans-
formers with curriculum learning. In Proceedings
of the 14th International Conference on Recent
Advances in Natural Language Processing, pages
937–948, Varna, Bulgaria. INCOMA Ltd., Shoumen,
Bulgaria.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752, Lisbon,
Portugal. Association for Computational Linguistics.

Maarten Sap, Hannah Rashkin, Derek Chen, Ro-
nan Le Bras, and Yejin Choi. 2019. Social
IQa: Commonsense reasoning about social interac-
tions. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 4463–4473, Hong Kong, China. Association
for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2023. Distilling reasoning capabilities
into smaller language models. In Findings of the
Association for Computational Linguistics: ACL
2023, pages 7059–7073, Toronto, Canada. Associa-
tion for Computational Linguistics.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4149–4158, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solving
math word problems with process- and outcome-
based feedback.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai
Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui. 2023a.
Making large language models better reasoners with
alignment.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2023c. Self-instruct: Aligning
language models with self-generated instructions.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 13484–13508, Toronto,
Canada. Association for Computational Linguistics.

Zhaoyang Wang, Shaohan Huang, Yuxuan Liu, Jia-
hai Wang, Minghui Song, Zihan Zhang, Haizhen
Huang, Furu Wei, Weiwei Deng, Feng Sun, and
Qi Zhang. 2023d. Democratizing reasoning abil-
ity: Tailored learning from large language model. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
1948–1966, Singapore. Association for Computa-
tional Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

2335

https://doi.org/10.18653/v1/2024.findings-naacl.78
https://doi.org/10.18653/v1/2024.findings-naacl.78
https://aclanthology.org/2023.ranlp-1.101
https://aclanthology.org/2023.ranlp-1.101
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/2023.findings-acl.441
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2211.14275
http://arxiv.org/abs/2309.02144
http://arxiv.org/abs/2309.02144
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.emnlp-main.120
https://doi.org/10.18653/v1/2023.emnlp-main.120
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2206.07682
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023.
Mammoth: Building math generalist models through
hybrid instruction tuning.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning.

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi
Feng, and Andrew Lan. 2023. Interpretable math
word problem solution generation via step-by-step
planning.

2336

http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2203.14465
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784
http://arxiv.org/abs/2306.00784

A Instruction-tuning

The Instruction-tuning proposed in our contribution follows the pipeline proposed in (Ranaldi and Freitas,
2024) to achieve teacher-student alignment, which comprises two steps: annotation and knowledge transfer.
In the annotation phase, Large Language Models (teachers) are prompted with questions (Table 3). The
answers are collated and form the demonstrations (Table 6). This is followed by an Instruction-tuning
phase, conducted using what was proposed in (Taori et al., 2023). In particular, the demonstrations are
constructed with triples formed by the instruction (a pattern that guides the generation related to the
task), the input, the question related to the mathematical problem or the desired question, and the output
the prompted LLM generated. Note that instruction and input can oftentimes be concatenated, but this
depends on the basic configurations of the patterns and the type of task to be solved. The instruction-tuning
process, a specialization of fine-tuning, is similar to the latter and is described in Section 2.1. In order to
facilitate reproducibility, we shared our code along with the submission.

B Self-refine Tuning

In order to refine Small Language Models (students) instructed via demonstrations delivered by Large
Language Models (teachers), we propose the Self-refine phase (introduced in Section 2.2). In particular,
this is based on a variant of the DPO optimization algorithm (Rafailov et al., 2023).
Starting from the demonstrations defined as D = (ii, qi, ai) where i ∈ D (note that ai are generated using
CoT prompt as showed in Appendix D), we prompt the students using the input xi = ii + q and x̂i = q+
"Let’s think step by step") ∀i ∈ D (the latter is the proposed one in the main paper).
Hence, for each element in demonstrations, we collect the Answers (yi = πinst(xi)) that are the answers
generated by the student given the input xi, and the CoT-Answers (ŷCoT = πinst(x̂i)) are the answers
that deliver CoT generated by the student elicited via CoT mechanism x̂i.
Hence, we introduce:

• Oracle or Target ti that is the target answer given the input xi.

• Demonstration Answer âi and ai: that are target answer given the input xi or x̂i.

• Answer yi = πinst(x): is the answer generated by the student given the input x (without CoT
prompt).

• CoT Answer yCoT = πinst(xCoT): is the answer that delivers CoT generated by the student elicited
via CoT mechanism xCoT .

In the following lines, we formalize the structuring of DPOCoT , DPOanswer and other configurations.

DPOCoT We propose DPOCoT where the answers that deliver correct CoT are referred to as the preferred
response, while the others are the answers without CoT defined as:

LDPOCoT (πθ;πinst) = −E(xCoT ,yw,yl)∼D [log σ(M(xCoT , yw, yl))] (3)

Where LDPOCoT (πtheta;πtextinst) the same LDPO introduced in Section 2.2 but in particular to elicit pre-
ferred generations the yw and yl components are defined as follows, ∀i ∈ D :

yw =

{
ŷi if ti ∈ ŷi

âi
(4)

while the discouraged answers are yl that are yi ∀i ∈ D.

DPOanswer In contrast, we propose DPOanswer and where the answers without CoT are referred to as the
preferred.

LDPOanswer(πθ;πinst) = −E(x,yp,yCoT)∼D [log σ(M(x, yp, yCoT))] (5)

However, since our contribution is focused on CoT, we only consider DPOCoT . In the Table 4, we have
reported DPOanswer results. 2337

C Experimental Details

C.1 Data Splitting
In order to observe the impact of the demonstrations, we produced a series of experiments by systematically
decreasing the Instruction-tuning data. In particular, we chose three sub-sets with 75%, 50%, and 25%
from the total number of demonstrations. In detail, the Self-refine Instruction phases on the number of
equal demonstrations are performed by taking about 3000 examples in splitting 100%, 2250 in splitting
50%, 1500 in splitting 50%, and 750 in splitting 25%. We chose the value 3000 because it has the smallest
CoT demonstrations available. For the total demonstrations, we selected random samples. Using this split,
we performed the evaluations incrementally as the demonstrations were used to perform Instruction-tuning,
Self-refine, and Self-refine Instruction-tuning.

C.2 Parameters
The annotation phase that the Teachers performed was done on the training set. The evaluation phase of
both the basic models and the Students and the Teachers was done on the test splitting. The evaluation,
described in Section 3.3, was done with question probing and string matching of the generated answers.
More specifically:

Teachers We performed the annotation phase for each benchmark by delivering to GPT-3.5-turbo,
Mixtral7x8 and Llama-2-70-chat the prompts structured as shown in Table 2 and Table 3 (customized
for each benchmark). We set the temperatures to 0.7 for GPT-3.5-turbo and 0.1 for Llama-2-70-chat as
recommended in technical reports. Moreover, we kept all the other parameters as default. All parameters
are shown in our code available at the following link.

Baseline & Students We evaluated the performance of the Small Language Models (Llama-2-7-chat,
Llama-2-13-chat, Mistral-7b) by prompting them with the same format used for the Teachers. For
both the baselines and the instructed models, we set the temperature to 0.1 and kept all the other parameters
as default. The evaluation pipelines and generation parameters are available in our code.

Figure 4: Accuracies (%) on the test set of benchmarks. The Self-refine Instruction-tuning performed on different
splits (see Appendix C.1 for major details).

2338

https://github.com/lranaldii/Aligning_LLMs

D Prompting Approaches

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer:

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer:

Table 2: Example of input-prompt for multiple-choices (left) and mathematical (right) question-answering bench-
marks.

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer: Let’s think step by step

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer: Let’s think step by step

Table 3: Example Zero-shot CoT of input-prompt for multiple-choices (left) and mathematical (right) question-
answering benchmarks (approach used in this work).

E Models
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/Llama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7 mistralai/Mistral-7B-Instruct-v0.1
Mixtral7x8 mistralai/Mixtral-8x7B-v0.1

Table 4: List and specific versions of the models proposed in this work, which can be found on huggingface.co.
For each model we used all the default configurations proposed in the repositories.

2339

huggingface.co

F Accuracy of LLMs on different Benchhmark

Benchmarks Llama-2-70 GPT-3.5 Mixtral7x8
Baseline CoT Baseline CoT Baseline CoT

Training

OpenBook QA 65.6±.3 71.3±.1 66.2±.2 75.4±.4 77.9±.3 81.2±.1

CommonSesnse QA 74.2±.1 79.6±.3 79.3±.4 84.8±.1 78.2±.2 82.3±.3

Social Interaction QA 65.4±.2 67.5±.3 67.6±.5 70.3±.4 65.5±.2 68.2±.3

Physical Interaction QA 82.6±.2 85.8±.2±.3 83.5±.3 85.3±.1 80.2±.3 84.1±.3

GSM8K 74.6±.1 77.2±.2 83.2±.2 86.5±.1 65.6±.4 67.9±.2

MultiArith 88.6±.4 90.8±.3 94.9±.4 96.7±.1 89.3±.1 91.5±.4

Testing

OpenBook QA 65.9±.2 70.8±.1 67.8±.1 74.6±.4 78.4±.3 84.6±.2

CommonSesnse QA 73.4±.2 81.8±.3 80.2±.2 83.7±.1 77.6±.3 81.5±.1

Social Interaction QA 64.2±.2 66.9±.4 66.9 71.3±.3 64.3±.3 65.4±.2

Physical Interaction QA 82.6±.3 85.6±.5 84.3±.2 85.8±.5 79.9±.3 83.5±.1

GSM8K 75.2±.5 77.8±.5 82.8±.2 84.6±.4 63.4±.3 62.8±.5

MultiArith 89.2±.1 92.3±.2 95.6±.2 97.4±3 88.9±.1 90.2±.3

Table 5: Accuracy (%) of Llama-2-70, GPT-3.5 and Mixtral7x8 (teachers) on training and testing data with CoT
prompt (CoT) and with the standard prompt (Baseline).

Instruction
Choose the answer to the question only from options A, B, C, D.

Input
Question: Which form can be made into a triangle?
Choices:
A) ice
B) steam
C) water
D) salt water
Answer: Let’s think step-by-step

Output (that is the Answer produced by teacher model)
Answer:
A) ice: Ice is a solid form of water. In solid form, substances can be molded or shaped into
various forms, including triangles. If you had a block of ice, you could carve or mold it
into a triangular shape.
B) steam: Steam is the gaseous form of water. Being a gas, it doesn’t have a fixed shape. You
can’t shape steam into a triangle without containing it within some form of solid boundary,
and even then, the steam itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the shape of its container. You can pour water into
a triangular container, and while the volume inside would be triangular, the water itself
isn’t inherently triangular.
D) salt water: This is essentially the same as option C, but with salt dissolved in it. Being
a liquid, it takes the shape of its container.
Given these considerations, the only substance among the options that can be shaped into a
triangle by itself is A) Ice.

Table 6: Example of demonstration produced by the GPT-3.5 answer on an Open Book Question Answering
benchmark instance. The structure is composed by: Instruction, Input and Output.

2340

G Description of proposed Benchmark
Dataset Example

Open Book Question Answering When birds migrate south for the winter, they do it because
(OBQA) (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.

C) it is important to their happiness. D) they decide to each.
Common Sense Question Answering Aside from water and nourishment what does your dog need?
(CSQA) (Talmor et al., 2019) A) bone. B) charm. C) petted.

D) lots of attention. E) walked.
Physical Interaction Question Answering How do you attach toilet paper to a glass jar? A) Press a piece of double-sided
(PIQA) (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.

B) Spread mayonnaise all over the jar with your palms and then roll the jar in toilet paper.
Social Interaction Question Answering Taylor gave help to a friend who was having trouble keeping up with their bills.
(SIQA) (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher

paying job. B) Thank Taylor for the generosity. C) pay some of their late employees.
Tina makes $18.00 an hour. If she works more than 8 hours per shift,

(GSM8K) (Cobbe et al., 2021) she is eligible for overtime, which is paid by your wage + 1/2 your hourly
hourly wage. If she works 10 hours every day for 5 days,

how much money does she make?
Chloe was playing a video game where she scores 9 points for each

(MultiArith) (Roy and Roth, 2015) treasure she finds. If she found 6 treasures on the
first level and 3 on the second,

what would her score be?

Table 7: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA GSM8K MultiArith

classes 4 5 2 3 - -

Training
examples for 1000 800 2000 1330 4000 420
each class

Test
examples for 125∗ 235∗ 924∗ 640∗ 1318 180
each class (± 8) (± 11) (± 18) (± 19)

Table 8: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal. GMS8K e MultiArith
are not closed-ended question answering; they only have a question and a numerical solution.

Name Repository

CommonSenseQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_qa
OpenBookQA (Mihaylov et al., 2018) huggingface.co/datasets/openbookqa
StrategyQA () huggingface.co/datasets/voidful/StrategyQA
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa
SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qa
GSM8K (Cobbe et al., 2021) huggingface.co/datasets/gsm8k
MultiArith (Roy and Roth, 2015) huggingface.co/datasets/ChilleD/MultiArith

Table 9: In this table, we list the versions of the benchmark proposed in this work, which can be found on
huggingface.

2341

huggingface.co/datasets/commonsense_qa
huggingface.co/datasets/openbookqa
huggingface.co/datasets/voidful/StrategyQA
huggingface.co/datasets/piqa
huggingface.co/datasets/social_i_qa
huggingface.co/datasets/gsm8k
huggingface.co/datasets/ChilleD/MultiArith

Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 55.4±.2 63.4±.3 66.4±.2 48.3±.2 65.6±.4 63.4±.2

Baseline CoT - 54.2±.2 62.8±.4 71.2±.3 46.9±.5 70.5±.1 62.8±.2

OBQA
Instruction-tuning 68.5±.4 67.5±.3 69.4±.1 60.1±.2 62.3±.4 61.5±.5

+ Self-refine 71.2±.4 74.1±.2 76.2±.3 63.4±.3 69.9±.4 70.7±.2

Cross Self-refine - 79.2±.1 79.5±.2 65.6±.3 75.2±.4 84.3±.5

CSQA
Instruction-tuning 58.4±.4 77.5±.2 66.4±.2 61.8±.3 62.4±.4 60.2±.2

+ Self-refine 69.5±.5 81.4±.2 74.2±.5 67.9±.1 62.1±.3 61.4±.4

Cross Self-refine 70.2±.4 - 79.5±.3 65.2±.1 73.3±.3 75.3±.5

PIQA
Instruction-tuning 57.8±.2 65.2±.3 81.9±.4 58.5±.4 59.2±.4 60.3±.3

+ Self-refine 69.6±.2 68.2±.4 85.1±.5 64.3±.1 69.3±.2 68.1±.3

Cross Self-refine 69.9±.1 71.3±.1 - 65.3±.1 69.6±.4 69.2±.2

SIQA
Instruction-tuning 59.6±.1 63.9±.4 67.1±.2 64.5±.3 60.3±.4 61.3±.2

+ Self-refine 69.2±.2 69.4±.1 79.2±.4 66.7±.3 62.4±.4 61.8±.2

Cross Self-refine 71.2±.2 69.2±.1 80.4±.2 - 66.5±.1 66.7±.2

GSM8K
Instruction-tuning 54.3±.2 55.8±.3 64.3±.4 53.2±.3 72.3±.3 71.6±.2

+ Self-refine 59.3±.4 62.2±.2 63.5±.3 53.5±.5 77.2±.4 75.2±.3

Cross Self-refine 65.7±.1 65.2±.5 78.1±.3 61.6±.4 - 76.2±.2

MultiArith
Instruction-tuning 54.7±.2 56.6±.3 54.5±.3 52.4±.3 70.2±.1 75.8±.2

+ Self-refine 60.3±.2 64.1±.4 59.4±.3 59.7±.1 72.1±.4 86.2±.3

Cross Self-refine 66.2±.3 62.4±.1 63.2±.3 61.5±.4 73.9±.2 -

Table 10: Evaluation of Llama-2-13 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed models. Results colored in green indicate the in-domain benchmark, blue the out-domain benchmark,
and orange the same benchmark on which the evaluation phase is performed. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenarios where we optimize the model on the training set related to the evaluated
task.

Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 62.7±.3 69.2±.4 67.3±.1 55.3±.2 54.2±.2 88.4±.1

Baseline CoT - 60.4±.3 68.7±.2 66.1±.2 54.8±.4 55.6±.3 87.3±.2

OBQA
Instruction-tuning 78.3±.2 65.4±.2 67.2±.3 59.2±.1 64.2±.2 62.1±.3

+ Self-refine 87.6±.2 73.1±.2 76.1±.1 63.3±.3 69.1±.4 70.7±.3

Cross Self-refine - 79.4±.1 80.1±.2 68.2±.4 75.2±.4 81.3±.1

CSQA
Instruction-tuning 58.9±.1 73.1±.4 65.8±.2 62.1±.1 62.2±.3 60.2±.2

+ Self-refine 69.5±.5 81.3±.1 75.1±.1 66.5±.2 61.1±.4 62.4±.1

Cross Self-refine 69.2±.2 - 79.3±.1 65.2±.4 72.8±.4 74.4±.2

PIQA
Instruction-tuning 58.6±.2 64.8±.2 81.6±.2 59.2±.4 60.2±.2 60.3±.4

+ Self-refine 68.2±.4 68.2±.5 85.6±.2 63.8±.2 67.9±.2 67.2±.4

Cross Self-refine 69.2±.3 71.9±.3 - 63.2±.1 68.4±.5 69.6±.1

SIQA
Instruction-tuning 59.3±.2 66.8±.2 63.2±.4 61.5±.2 60.2±.1 61.3±.3

+ Self-refine 68.3±.3 68.5±.2 78.3±.3 65.8±.4 62.4±.5 61.3±.4

Cross Self-refine 71.3±.4 69.2±.2 78.1±.2 - 65.6±.3 68.3±.1

GSM8K
Instruction-tuning 52.4±.1 54.9±.5 58.7±.1 51.8±.3 56.1±.1 65.2±.

+ Self-refine 57.6±.3 58.7±.4 59.3±.2 51.4±.2 63.4±.1 60.3±.1

Cross Self-refine 61.3±.5 64.3±.2 70.1±.4 58.2±.1 - 70.5±.3

MultiArith
Instruction-tuning 57.9±.2 59.2±.3 53.8±.4 51.5±.3 69.3±.2 89.6±.4

+ Self-refine 59.1±.2 63.2±.4 59.4±.5 59.9±.2 68.2±.1 91.4±.3

Cross Self-refine 64.7±.4 65.8±.2 64.1±.4 61.5±.4 70.1±.3 -

Table 11: Evaluation of Mistral-7 Instruction-tuned (Instruction-tuned) and with completely Self-refine
Instruction-tuning (+ Self-refine Instruction-tuned) on demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baselines" are referred to the
non-instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain bench-
mark, and orange the same benchmark on which perform the evaluation phase. Moreover, we propose Self-refine
Instruction-tuning in cross-setting scenario where we optimize the model on the training set related to the evaluated
task.

2342

H Quality of Generations

To demonstrate the quality of the demonstrations generated by the teachers and students, we propose
annotating the responses provided by the teacher and student models automatically. In particular, we
sampled 300 questions (50 questions for each task from the testing set split). Hence, we systematically
prompt both the teacher LLMs and students. Finally, we estimated the quality of the responses generated
by systematically prompting a judge LLM (we chose GPT-4 as it is not among the models used in this
work).

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user instruction displayed below. Your
evaluation should consider factors such as quality, accuracy, depth, and
level of detail. Begin your assessment with a short explanation. Be as
objective as possible. After providing your explanation, please rate the
response on a scale of 1 to 3 strictly following this format:“[[rating]]”,
for example: “Rating: [[2]]”.
[question]
${question}
[AI assistant’s response]
${response}

Table 12: Using this prompt, we systematically query GPT-4 to note the answers’ quality.

Model Llama2-70b Mixtral8x7b GPT-3.5
Baseline 1.63 1.34 1.68
Baseline CoT 2.72 2.56 2.89
Target Answers 1 1 1

Table 13: Averages quality scores obtained by LLMs’ answers by using GPT-4 as judge (see Table H).

Model Llama2-7b Llama2-13b Mistral-7b
Baseline 1.26 1.39 1.16
Baseline CoT 1.47 1.56 1.21

in-family

Instruction-tuning (target answer)* 1.70 1.62 1.65
Instruction-tuning 2.43 2.66 2.36
Self-refine Instruction-tuning (target answer)* 1.82 1.75 1.74
Self-refine Instruction-tuning 2.75 2.83 2.54

out-family (GPT-3.5)

Instruction-tuning(target answer)* 1.38 1.49 1.46
Instruction-tuning 1.99 2.17 1.76
Self-refine Instruction-tuning(target answer)* 2.04 1.90 1.86
Self-refine Instruction-tuning 2.86 2.79 2.82

Table 14: Averages quality scores obtained by students’ answers by using GPT-4 as judge (see Table H). We denoted
with * the models instructed via demonstrations without CoT prompting (see Appendix B for details).

2343

work approach teacher/s students/s tasks
(Zelikman et al., 2022) Self-SFT - GPT-J, LaMDA GSM8k, CSQA
(Magister et al., 2023) SFT PaLM T5-small, -medium GSM8k, StrategyQA,

GPT-3.5 T5-large, -xxl MArith
(Li et al., 2023a) SFT GPT-3 175B OPT-1.3b CSQA, OBQA, QARel

(Shridhar et al., 2023) SFT GPT-3 175B GPT-2 GSM8k, StrategyQA
SVAMP

(Ho et al., 2023) SFT InstructGPT GPT-3 GSM8k, StrategyQA, MArith,
(text-davinci-002) (ada,babbage,curie) SVAMP, AddSub

(Wang et al., 2023d) IT+RL GPT-3 GPT-J GSM8K, MultiArith, SVAMP
CSQA, StrategyQA

(Luong et al., 2024) SFT+RL GPT-3.5 Galactica, CodeLlama GSM8k SVAMP MathQA
(Ranaldi and Freitas, 2024) IT GPT-3.5, Llama2-70 Llama2-7,13, Mistral-7 GSM8k, PIQA, MathQA

CSQA, OBQA, SIQA
(Wang et al., 2023a) SFT+RL GPT-3.5 Llama2-7,13 GSM8k, EAQA
(Paul et al., 2024) SFT GPT-3.5 CodeT5 s,m GSM8k, SVAMP, MArith

IT+RL (DPO) GPT-3.5, Llama2-70 Llama2-7,Llama2-13, GSM8k, CSQA, OBQA
Ours (in-family vs out-family) Mixtral8x7 Mistral-7 PIQA, SIQA, MArith

MATH, MMLU

Table 15: Summary of methods, teacher and student models of previous work, we indicate Supervised Fine-tuning
as (SFT), Instruction-tuning as (IT), and Reinforcement Learning (RL). *note that previous works do not use DPO
(Rafailov et al., 2023)

I Perplexity Score

In this experiment, we reported the perplexity scores of our models on out-domain demonstrations. In
particular, we assess the perplexity score of student models by providing them with texts generated by an
in-family and an out-family teacher. We want to show that although Instruction-tuning (IT) is a stable
method for alignment, it is not enough for the out-family student (GPT demonstrations are less formed
than Llama2-70 if the student is Llama-2-7). On the other hand, after SFT+DPO, the final perplexities are
significantly lower on out-od-domain tasks.

Teacher Method OBQA CSQA PIQA SIQA GSM8K MArith

- (baseline no tuning) 18.5677 19.4245 19.0120 19.2374 18.8741 18.3510
GPT-3.5 IT 14.5677 15.5703 14.8912 14.4767 14.9075 15.1030
Llama2-70 IT 9.23455 8.85731 9.1743 8.0671 8.1953 8.7361
GPT-3.5 DPO 16.6317 17.0356 16.1761 15.9112 16.0320 16.3347
Llama2-70 DPO 11.6322 11.9523 11.7023 12.0344 11.9720 11.5036
GPT-3.5 IT double 12.3350 12.6630 13.0470 13.8451 12.9701 13.1649
Llama2-70 IT double 9.0077 8.3401 7.9028 8.2193 8.0517 7.9597
GPT-3.5 IT+DPO 6.0271 6.6742 6.4318 6.3184 6.9512 6.9364
Llama2-70 IT+DPO 6.2378 6.85191 7.0678 6.0287 6.8461 7.0523

Table 16: Perplexities scores of our models on out-domain demonstrations (we defined *double in Appendix K).

2344

J Evaluation on Answers without CoT

In these experiments, we studied the impact of demonstrations that do not deliver multi step-reasoned
and negative answers. Hence, we replicated the experimental setting proposed in Section 2 with different
training data. Specifically, we reproduced the two phases considering only non-CoT demonstrations
(we prompted Teachers without CoT elicitation as in Appendix D). Secondly, we collected the correct
"(positive)" and incorrect "(negative)" answers and performed a further evaluation separately. In this
further experiment, we want to show that the quality of demonstrations plays a significant role, and in
particular, demonstrations that deliver misleading multi-step reasoned CoT affect the functioning of the
proposed method.

Method GSM8k MultiArith OBQA CSQA PIQA SIQA

IT 71.2 76.5 65.3 71.4 80.2 62.8
IT+DPO (negative) 68.3 69.2 59.8 54.2 63.6 49.2
IT+DPO (positive) 73.5 71.2 60.3 61.2 66.7 52.4
IT+DPO (negative CoT) 71.5 72.7 64.2 65.5 65.2 50.9
IT+DPO (positive CoT) 76.9 85.8 70.8 72.8 84.6 66.2

Table 17: Tuning phases performed using Llama2-70 as Teacher and Llama2-7 as student.

Method GSM8k MultiArith OBQA CSQA PIQA SIQA

IT 76.9 85.8 70.8 79.8 84.6 66.2
IT+DPO (negative) 69.6 74.3 57.8 56.4 65.4 51.4
IT+DPO (positive) 71.2 76.2 64.3 66.7 68.6 57.2
IT+DPO (negative CoT) 73.8 77.8 63.8 64.8 64.7 52.3
IT+DPO (positive CoT) 81.9 89.1 75.9 83.6 85.9 69.9

Table 18: Tuning phases performed using GPT-3.5 as Teacher and Llama2-7 as student.

2345

K Evaluation on Additional tuning

In the setup proposed in Section 2, we proposed to use Instruction-tuning (IT) plus Direct Preference
Optimization (DPO). Here, we reported the performances achieved by only IT and DPO. Moreover, in
Section 3.2.1, we have adopted standard experimental set-ups (commonly used by similar works Table
15). However, we have strengthened this experiment’s IT and DPO phases by doubling the epochs and
refinement steps and named them as double.

Method GSM8k MultiArith OBQA CSQA PIQA SIQA

IT 71.2 76.5 65.3 71.4 80.2 62.8
IT double 74.7 77.9 66.5 74.3 81.6 63.1
DPO 66.4 62.8 57.3 59.4 63.0 51.7
DPO double 70.5 68.6 58.3 60.8 63.7 52.9
IT+DPO 76.9 85.8 70.8 72.8 84.6 66.2
IT+DPO double (positive CoT) 78.2 86.3 71.4 73.9 85.0 66.8

Table 19: Evaluation performed using Llama2-70 as Teacher and Llama2-7 as student.

Method GSM8k MultiArith OBQA CSQA PIQA SIQA

IT 76.9 85.8 70.8 79.8 84.6 66.2
IT double 77.7 86.3 70.1 80.9 85.2 68.3
DPO 70.2 70.8 61.3 60.1 63.4 55.8
DPO double 71.6 75.4 63.8 65.2 67.8 57.9
IT+DPO 81.9 89.1 75.9 83.6 85.9 69.9
IT+DPO (double) 82.3 88.9 76.3 82.8 86.7 72.5

Table 20: Evaluation performed using GPT-3.5 as Teacher and Llama2-7 as student.

2346

L Additional Evaluations

Figure 5: Accuracies (%) additional benchmarks as described in Section 3.1. Applying the same pipeline proposed
in Section 2 and the same experimental set-up (Section 3) as the experiments shown in Figure 2 and Figure 3. In
this experiment, we showed that the approach proposed in Section 2 is also scalable on multi-task benchmarks such
as MATH (Hendrycks et al., 2021b) and MMLU (Hendrycks et al., 2021a). (Self-refine Instruction-tuning phase
performed using 25% as the training set and omitted in the evaluation phase) (as described in the legend, we use the
notation method(Teacher->Student)).

2347

