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Abstract

Text style transfer (TST) is crucial in natural
language processing, aiming to endow text with
a new style without altering its meaning. In
real-world scenarios, not all styles have abun-
dant resources. This work introduces TWIST
(reusing Transferable Weight Increments for
Style Text generation), a novel framework to
mitigate data scarcity by utilizing style features
in weight increments to transfer low-resource
styles effectively. During target style learning,
we derive knowledge via a specially designed
weight pool and initialize the parameters for the
unseen style. To enhance the effectiveness of
merging, the target style weight increments are
often merged from multiple source style weight
increments through singular vectors. Consid-
ering the diversity of styles, we also designed
a multi-key memory network that simultane-
ously focuses on task- and instance-level in-
formation to derive the most relevant weight
increments. Results from multiple style trans-
fer datasets show that TWIST demonstrates
remarkable performance across different back-
bones, achieving particularly effective results
in low-resource scenarios.

1 Introduction

Text style transfer (TST) is a significant area in
natural language processing, aiming to endow text
with a new style without altering its meaning. Nu-
merous studies have been successfully applied to
sentiment transfer (Luca, 2016; Lai et al., 2022; Li
et al., 2018), text formalization (Rao and Tetreault,
2018; Jain et al., 2019), writing style imitation (Zhu
et al., 2023; He et al., 2020; Riley et al., 2021), and
role-specific dialogue scripts creation (Xu et al.,
2023a; Niu and Bansal, 2018).

As a sequence-to-sequence generation task, TST
often faces the problem of parallel data scarcity.
However, annotating style-specific data is often
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labor-intensive. Despite efforts to address this chal-
lenge, recent studies still face significant limita-
tions. i) Self-supervised Pre-training (Riley et al.,
2021; Xu et al., 2023a), leverage large amounts of
style corpus for self-supervised pre-training in the
latent space, while performances with a lack of cre-
ativity or formulaic text easily fall short compared
to supervised methods (Lai et al., 2022; Sudhakar
et al., 2019). ii) In-context Learning (Shao et al.,
2023; Wang et al., 2024), utilize the powerful capa-
bilities of ChatGPT-4 (OpenAI, 2023) in few-shot
learning, while the stability is affected by high ac-
curacy in prompt design. Additionally, there is no
guarantee that a single basis of the learned simplex
will correspond to a target attribute such as dialect
due to a lack of scalability. iii) Synthetic Data
Generation (Suzgun et al., 2022; Chen and Huang,
2024), utilize closed-source models to generate
large synthetic datasets, which is hard to guarantee
the quality of synthetic data and may lead to bias.
These issues undermine the efficacy and hinder the
practical applications of TST.

This paper aims to exploit the limited and au-
thentic datasets with supervised signal guidance
to achieve robust and scalable performance. To
this end, we propose a supervised method TWIST
(reusing Transferable Weight Increments for Style
Text generation), which unleashes the potential to
extract knowledge from known styles for unseen
styles. More specifically, TWIST is a two-stage
framework. In the preparation stage, we employ
Low-Rank Adaptation (Hu et al., 2021) (LoRA) to
train weight increments for source styles. Then,
these weight increments containing task-specific
knowledge are stored in a source weight pool,
which is designed for simultaneously capturing
task- and instance-level information. After inter-
nal iterations, the weight pool can export the most
relevant weight increments in a key-value format.
We adaptively handle variable styles by focusing
on dual-level authentic information. In the opti-
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mization stage, TWIST initializes partial parame-
ters specific to target style by reusing weight incre-
ments, thereby reducing data dependency. Inspired
by Ilharco et al. (2023), we involve the weighted
summation of parameter matrices to derive ap-
propriate initial weights. In addition, we employ
Singular Value Decomposition (SVD) to extract
a small subset of parameters from source weight
matrices, which are then injected into the initializa-
tion matrix. We retain the top-q singular values and
their corresponding singular vectors, achieving an
effect similar to sparse matrices. This reduces inter-
ference between weight matrices, making merging
more effective.

Experiments demonstrate the remarkable effi-
cacy and stability of TWIST on widely recognized
benchmarks, achieving state-of-the-art (SOTA) per-
formance across various backbone models, includ-
ing T5 (Ruder et al., 2019) and LLaMA-2 (Touvron
et al., 2023). Compared to other baselines relying
on small-scale models, TWIST based on T5-Large
demonstrates superior performance with only 10%
training data. Notably, the performance based on
LLaMA-2-7B surpasses other fine-tuned methods
and achieves performance comparable to powerful
ChatGPT4 (OpenAI, 2023).

Our contributions are summarized as follows:
I. We propose a new perspective to address data

scarcity in text style transfer. To the best of our
knowledge, this is the first work to explore learning
general knowledge from diverse source styles for
transferring to target styles.

II. We introduce a model-agnostic framework
where the proposed weight pool module is reusable
and scalable by focusing on task- and instance-level
information. Despite requiring additional computa-
tional resources, all weight increments are shared,
enabling flexible and sufficient reuse of informa-
tion from various styles.

III. Experiments across different backbone net-
works demonstrate that TWIST enhances param-
eter initialization, mitigating the impact of data
scarcity. Our study showcases its generalizability,
achieving significant results in low-resource style
scenarios and notable improvements in commonly
encountered high-resource styles.

2 Preliminary

We outline the common paradigms for learning a
target task and describe our problem setup within
the context of these paradigms.

2.1 LoRA Fine-tuned Model
Fine-tuning (Yosinski et al., 2014) is a machine
learning technique where a pre-trained language
model (PLM) is further trained on a task-specific
dataset, adapting its general knowledge to the new
task. The most common practice for learning a new
task t ∈ T involves fine-tuning all parameters (He
et al., 2015) of a PLM on the target task training
data {(x,y)}. Given the pre-trained parameters,
fine-tuning scheme leads to a specialized model θt
by optimizing:

max
θt

Pr(y|x;θt) (1)

To decrease training costs, parameter-efficient
tuning (Houlsby et al., 2019) (PEFT) updates a
small number of parameters for the target task.
LoRA-based fine-tuning (Hu et al., 2021) is a
parameter-efficient method. In this approach, θt ∈
Rdout×din is decomposed as:

θt = θ0 +∆θt = θ0 +AtB
⊤
t (2)

where θ0 is frozen, At ∈ Rdout×r, Bt ∈ Rdin×r,
and r ≪ {din, dout}. The number of parameters re-
quired in LoRA fine-tuning is r×(dout+din), which
is much smaller than fully fine-tuning (dout × din).
Thus each task only requires minimal trainable pa-
rameters and utilizes acceptable memory.

2.2 Transfer Source Weight for Target Style
In addition to the efficiency of LoRA parame-
ters, we further explore the potential of LoRA as
transferable parameters. A typical approach is
interpolation-based methods (Finn et al., 2017),
which aim to learn better parameter initialization
to adapt to unseen tasks, essentially learning to ini-
tialize efficiently. They merge all model weights
as follows: θt = θ0 + Λ

∑S
s=1∆θs, where Λ is

a hyper-parameter, and S is the number of source
tasks. ∆θs can be implemented in various ways,
such as Adapter (Houlsby et al., 2019) or Prompt
tuning (Li et al., 2022). We chose LoRA to re-
duce the network’s depth. The performance of
abovementioned methods is affected by parameter
interference (Yadav et al., 2023). Asai et al. (2022);
Peng et al. (2024) used weighting or attention op-
erations to mitigate this impact, showing superior
performance in comprehension tasks. However, for
generation tasks requiring continuous word predic-
tion, the direct addition of weights amplifies the
negative impact of parameter interference.
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2.3 Problem Setup

Text Style Transfer aims to alter the style of input
text x to produce output text y while preserving the
original content. This task is formulated by model-
ing the conditional probability Pr(y|x;θ), where
x = {w1, . . . , wtx} denotes the sequence of tokens
from the source style, and y = {z1, . . . , zty} rep-
resents the sequence of tokens in the target style.
Here, x and y are token sequences from vocabulary
V , and tx and ty the sequence lengths. However,
the generalization capability of parameters θ is of-
ten influenced by the number of supervised pairs.

Thus, we consider a set S = {s1, . . . , sS} of
source style transfer tasks that are independent of
the target style t. Each task sn = (xn

i ,y
n
i )

kn
i=1 con-

sists of kn tuples where xn
i is input text from the

source style and yn
i is the corresponding output text

in the target style. From these tasks, we extract a set
of weights {∆θ1

s , . . . ,∆θS
s } containing specific

style knowledge from the source. For an unseen tar-
get style t, our goal is to maximize the probability
Pr(yt|xt;θt), where initial θt = θ0+

∑S
s Λs∆θs.

We hypothesize that such knowledge transfer can
enhance the generalization capability of the target
style t in low-resource scenarios. Therefore, how
to effectively transfer and reuse ∆θs is crucial ob-
jective of our work.

3 Method

Our proposed method consists of two stages (de-
picted in Figure 1): In the preparation stage, we
construct a source weight pool (§ 3.1) to store
reusable weight increments. We use a LoRA-based
PEFT method to train weight increments indepen-
dently for each source style in § 3.1.1. Subse-
quently, these weight increments are clustered in
§ 3.1.2 and stored in a specially designed multi-key
memory network in § 3.1.3. Finally, § 3.1.4 de-
scribes a retrieval scheme that considers task-level
and instance-level information. In the optimization
stage (§ 3.2), we discuss transferring the retrieved
information to initialize the model more efficiently.

3.1 The Construction Of Weight Pool

To extract style-related knowledge from the source
TST task, we learn a set of source weight incre-
ments and store them in a weight pool. These
increments can be shared across all target tasks.
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Figure 1: Framework of our method.

3.1.1 Source Weight Increments Pre-training
We first obtain source weight increments ∆θs for a
collection of source tasks {s1, . . . , sS}, where S is
the number of source tasks. In practice, the datasets
for style transfer tasks are typically high-resource
to enable effective knowledge extraction.

Each source weight increment is trained only
once and can be transferred to different target
tasks. We perform the extraction using the
method described in §2.1, aiming to obtain ∆θ =
{∆θ1, . . . ,∆θS}. During training, only ∆θs =
AsB

⊤
s for specific task s is updated by maximizing

the likelihood as follows:

max
∆θs

Pr(y|x;θ0,∆θs) (3)

3.1.2 Clustering Source Weight Increments
We construct the weight pool to identify simi-
larities between source tasks for more effective
style knowledge transfer. In particular, through
the spectral clustering algorithm, we categorize
the source weight increments into several clus-
ters C ∈ G, where G is a weighted undirected
graph. Specifically, each input is treated as a
node p, and the weight between node pi and pj is
wi,j = 1/(1+∥pi−pj∥). To ensure each cluster has
sufficient nodes, we employ the min-max cut strat-
egy to segment G, resulting in C = {C1, . . . , CC},
where C is the number of clusters. When retriev-
ing weight increments, it is better to identify the
suitable weight cluster and select the most relevant
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source knowledge.

3.1.3 Structured Storage Space
The key-value memory network is a common stor-
age structure (Miller et al., 2016a). Inspired by it,
we propose a Multi-Key Memory Network for
simultaneously considering task-level and instance-
level information. Its storage structure is defined
as follows:

P = {kC
c ;k

Θ
s ; ∆θs}Cc=1 (4)

where cluster key kC
c ∈ Rd, weight key kΘ

s ∈ Rd,
and d is the embedding size. Each ∆θs ∈ P is
correlated with a kC

c and kΘ
s . These learned source

weight increments serve as value vectors in our
memory network. The generation and retrieval of
keys will be discussed in the next section.

3.1.4 Adaptive Knowledge Retrieval
Firstly, we initialize a set of learnable parame-
ters with a semi-orthogonal matrix (Saxe et al.,
2014), following Wang et al. (2022). Next, given
a tokenized input x, we use BERT, denoted as
fBERT (Devlin et al., 2019), to extract its seman-
tic features. This maps the original text x to a
hidden feature space, generating the query vector
q. Mathematically, q = fBERT(x) (x ∈ Rl×c,
q ∈ Rd), where l represents the sequence length.
To maintain consistency, fBERT remains frozen at
all stages.

Optimizing weight key kΘ. To reduce the op-
timization cost of the weight key kΘ, we use the
K-nearest neighbors algorithm to calculate the co-
sine similarity between the query and keys for
retrieving the top-W most similar keys KΘ =
{kΘ

1 , . . . ,k
Θ
W } for each query, where W ≤ S.

The weight keys kΘ ∈ KΘ are optimized to
align with the input instance distribution as fol-
lows: kΘ = kΘ + γ∇kΘ cos(q,kΘ) , where γ is
the learning rate and cos(·) denotes cosine simi-
larity. To avoid local optima, we also introduce
a random key masking scheme proposed by Peng
et al. (2024). This approach reduces the retriever’s
tendency to over-prioritize specific keys, encourag-
ing better allocation of attention to other elements.

Optimizing cluster key kC . To compute the
cluster key kC , we take the geometric mean of the
weight keys kΘ within the cluster. The formula

is as follows: kC =
(∏n

i=1 k
Θ
i

) 1
n , where n is the

number of weight keys in the cluster and kΘ
i repre-

sents the individual weight keys within the cluster.

Adaptive Retrieval. For an unseen target task t
and its instance data {(xi,yi)

N
i=1}t ∈ (X ,Y)t, we

use a task-level query qtask and an instance-level
query qins to adaptively retrieve the weight incre-
ments. The task-level query aims to capture overall
information relevant to the specific target task and
is designed as a vector qtask ∈ Rc (Vu et al., 2022).
However, due to the diversity and limitations of
the resources in the pool, to enhance the robust-
ness of retrieval, we design an instance-level query
calculated as follows: qins = 1

N

∑
x∈X fBERT(x).

For each source weight increment ∆θs ∈ P,
we use qtask and qins to lookup its corresponding
cluster key and source key respectively. The Re-
trieval Score Rs between ∆θs and instance x is
calculated as follows:

Rs = softmax(λ ·qtask⊤ ·kC
s +(1−λ) ·qins⊤ ·kΘ

s )
(5)

where λ is a hyper-parameter.

3.2 Reusing LoRA-based Weight Increments
Previous methods for merging weight often en-
counter the issue of dense parameters, particularly
in the complex tasks (Yadav et al., 2023), e.g. gen-
eration tasks. Using interpolation methods directly
leads to instability in initialization. One feasible
approach is to prune AsB

⊤
s (Zhang et al., 2023);

however, initial experiments in Table 9 indicate that
pruning results in significant performance degrada-
tion on interpolation methods. Therefore, we used
singular value decomposition (SVD) to extract a
small subset of parameters from the task-specific
LoRA matrix. These parameters are combined with
Rs and injected into the model requiring initializa-
tion.

Specifically, we first perform SVD for AsB
⊤
s ,

i.e. AsB
⊤
s = UsΣsV

⊤
s , where Us ∈ Rdout×r

and Vs ∈ Rdin×r are orthogonal matrices, and
Σs ∈ Rr×r is a diagonal matrix with its diag-
onal entries sorted from highest to lowest. We
select the top-q singular values and their corre-
sponding singular vectors to reduce the number
of parameters. This involves constructing sub-
matrices: U

(q)
s ∈ Rdout×q, V(q)

s ∈ Rdin×q, and
Σ

(q)
s ∈ Rq×q containing the first q columns of Us,

Vs, and the top q singular values along its diago-
nal, respectively. We then approximate the original
product AsB

⊤
s as U

(q)
s Σ

(q)
s V

(q)⊤
s . This reduces

the number of parameters from r × (dout + din) to
q × (dout + din + 1), because now we only need to
store the top-q singular values and their correspond-
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ing vectors. Finally, according to the Retrieval
Score Rs, the injected target weight increment is
obtained by:

∆θt =

S∑

s=1

Rs ·U(q)
s Σ

(q)
s V

(q)⊤
s (6)

Discussion. Selecting q much smaller than r can
greatly improve computational efficiency. How-
ever, the choice of q is crucial. If q is too close to
r, the approximation will retain more information
from the original LoRA matrix, but it will lose the
sparsity benefit, and parameter interference might
rise. On the other hand, if q is too small, important
information may be lost, negatively impacting the
initialization and overall model performance.

3.2.1 Training for Target Style Generation
The model is expected to learn unseen target tasks,
and for each target task tk, we use the learned pa-
rameters θ0 +∆θk

t to initialize the weight matrix
for the target task. Given the dataset Dk of tk, the
learning objective function is defined as:

L∆θk
t
(Dk) = −

N∑

i=1

log Pr(yi | xi;θ0,∆θk
t )

(7)
where θ0 is the frozen, and {(xi,yi)

N
i=1}tk ∼ Dk

is a training sample. During testing, the source
weight increments ∆θs is unchanged to save origi-
nal information, and ∆θk

t will further optimization
through gradient iteration. The overall training
pipeline is illustrated in Algorithm 1.

4 Experiments

4.1 Experiment Setup
Datasets. We chose the following four datasets
from nine different styles: YELP (Luca, 2016) in-
cludes parallel sentences of positive and negative
reviews. GYAFC (Rao and Tetreault, 2018) pro-
vides sentences of formal and informal expressions.
Shakespeare (Zhu et al., 2023) contains the works
of Shakespeare. Genshin (Xu et al., 2023a) is
based on game roles and contains six sub-datasets:
Xiangling, Hutao, Mona, Diluc, Venti, and Noelle.
The data usage is shown in Table 14.

Source and Target Tasks. In all experiments,
the target task remains unseen for any source task.
Practically, we rotate through different target styles.
If Shakespeare is selected as the target style, we
remove its corresponding weight increment from

the weight pool until training is complete. Then,
we restore the Shakespeare weight increment and
remove the next target style.

Backbones. Our method is a model-agnostic ap-
proach to TST that can be applied to various back-
bones. We selected two models for our study:
the encoder-decoder T5-Large model (Ruder
et al., 2019) and the decoder-only LLaMA2-7B
model (Touvron et al., 2023). Different backbones
are compared against their respective baselines to
ensure a fair comparison, maintaining equivalent
parameter counts.

4.2 Implementation Details

Baselines. For T5-Large, the selected base-
lines include: Fine-tune (FT) T5-Large (Ruder
et al., 2019), CrossAligned (Lai et al., 2022),
Fine-tune BART-Large (Lewis et al., 2019),
Delete&Retrieve (Li et al., 2018), B-GST (Sud-
hakar et al., 2019), BTTS (Xu et al., 2023b) and
TextSETTR (Riley et al., 2021). For LLaMA2-
7B, the selected baselines include: QLoRA-based
Fine-Tuning (QLFT) LLaMA2-7B (Dettmers et al.,
2023), QLoRA-based Fine-Tuning ChatGLM2-
6B (GLM et al., 2024), Few-shot (FS) Alpaca-
7B (Taori et al., 2023), Few-shot Claude-31 (An-
thropic, 2024) and Few-shot ChatGPT-4 2 (Ope-
nAI, 2023). The prompt used by Few-shot Tuning
is shown in Appendix C.

Evaluation Metrics. We use automatic metrics
to assess attribute control, such as style accuracy
(ACC) and content preservation (CP) after trans-
fer. To estimate the output style, we follow the
method proposed by Riley et al. (2021) and train
a classifier for the specific style on the training set.
More details can be found in Appendix B. For con-
tent preservation, we calculate Self-BLEU using
SacreBLEU (Post, 2018), following Sudhakar et al.
(2019) and Xu et al. (2020a). Additionally, we
report the "G-score" (the geometric mean of ACC
and CP), following (Xu et al., 2018).

Parameter Settings. For experiments based on
T5-Large, we utilized 2 NVIDIA RTX4090 GPUs.
The learning rate was set to 2×10−2, with a weight
decay of 0.01 and a batch size of 8. We ran the
model for 50 epochs with 100 warmup steps. For
experiments involving LLaMA2-7B, we employed

1The specific version is claude-3-sonnet-20240229.
2The specific version is gpt-4-1106.
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2 NVIDIA A100 GPUs. The learning rate was ad-
justed to 2 × 10−4, with a weight decay of 0.01
and a batch size of 2. These experiments were con-
ducted over 3 epochs with 0.03 warmup steps. The
key optimization learning rate was 1× 10−3. All
experiments used AdamW (Loshchilov and Hutter,
2019) as the optimizer.

5 Results

5.1 Main Results

Results on T5. We use T5-Large as the back-
bone model for comparison with other small-scale
PLM methods. The training data consists of the
full dataset, and the results are presented in Ta-
ble 1, where ♡ indicates that we folded the re-
sults for this task. Detailed results are provided
in Table 17. TWIST demonstrates stronger gener-
alization capabilities than directly fine-tuning T5-
Large (Ruder et al., 2019). Benefiting from better
initialization, it shows significant improvements in
low-resource writing styles and role dialogue styles,
with increases of 20.6% and 6.1%, respectively.
On average, compared to the previous best method
Delete&Retrieve (Li et al., 2018), TWIST shows
an improvement of 12.5%. On formality transfer,
B-GST (Sudhakar et al., 2019) outperformed it by
a margin of 4.8%.

Results on LLaMA2. The comparison results
based on LLaMA2-7B are shown in Table 2, with
unfolded results provided in Table 18. Compared
to the direct fine-tuning method (Dettmers et al.,
2023), TWIST achieves an overall improvement of
8.3%. We achieve a noticeable content preserva-
tion (CP) lead compared to some few-shot methods
using carefully designed prompts. Regarding style
accuracy, we achieve comparable results to the pow-
erful closed-source model ChatGPT-4 (OpenAI,
2023), trailing by 1.9% and 3.0%.

5.2 Results on Low-resource Setting

In the low-resource setting, we use only a small
number of training instances from the target task.
We perform a secondary sampling of the target task
dataset to obtain a subset of {1%, 2%, 5%, 10%} of
the full training instances. We conducted three ran-
dom samplings in total to reduce the randomness
of the experiment.

Figure 2a and Figure 2b show the performance
of small-scale model-based methods on the Shake-
speare writing style and dialogue styles of specific

1 % 2 % 5 % 1 0 %1 0

1 5

2 0

2 5

3 0

3 5

 T 5 - l a r g e
 C r o s s A l i g n e d
 D e l e t e & R e t r i e v e  
 B - G S T
 T e x t S E T T R
 O u r s

G-
sco

re

(a) Shakespeare
1 % 2 % 5 % 1 0 %

1 8

2 4

3 0

3 6

4 2

4 8

 T 5 - l a r g e
 C r o s s A l i g n e d
 D e l e t e & R e t r i e v e  
 B - G S T
 T e x t S E T T R
 O u r s

(b) Genshin
1 % 2 % 5 % 1 0 %

2 0

2 5

3 0

3 5

4 0

4 5

 Q L F T  o n  S h a k e s p e a r e
 O u r s  o n  S h a k e s p e a r e
 Q L F T  o n  G e n s h i n
 O u r s  o n  G e n s h i n

(c) LLaMA2-7B

Figure 2: Comparison under various shots of instances.

roles in Genshin. Due to the better initialization ca-
pability of our method, it adapts more effectively to
low-resource scenarios. However, as the amount of
data increases, the advantage gradually diminishes.
Additionally, the BLUE line and RED line in Fig-
ure 2c represent two different tasks: writing style
and role dialogue style transfer. The performance
is similar to that of another backbone network.

5.3 Analysis

We compare the performances of TWIST across dif-
ferent scales to explore upper limits. Subsequently,
we analyze the effect of the proposed module on
enhancing style transfer ability.
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Figure 3: Comparison under various parameters.

Power of Scale. As shown in Figure 3, our
method benefits from the size of the parameter
scale, but the improvement brought by increasing
the parameters is not absolute. Test style transfer
task requires a comprehensive consideration of con-
tent preservation and style accuracy. One of the
challenges is balancing content and style. From our
experience, increasing the parameters can lead to
more diverse expressions and redundant represen-
tations. This redundancy can affect the calculation
of ScareBLEU, impacting content preservation at
the data scale level.

Effects of Weight Increment Settings. As men-
tioned in § 3.1, our core objective is to extract ben-
eficial knowledge from the source style to provide
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Dataset YELP GYAFC Shakespeare Genshin♡ avg

Methods CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G

FT T5-Large 56.7 52.0 54.3 53.2 71.5 61.7 15.9 62.1 31.4 53.1 55.6 54.3 44.7 60.3 50.4
FT BART-Large 48.9 55.2 52.0 50.3 70.1 57.9 12.4 72.6 30.4 49.8 55.3 52.5 40.3 63.3 48.2
CrossAligned 2.9 68.2 14.1 21.5 68.2 38.3 4.8 53.7 16.1 14.7 57.5 28.9 11.0 61.9 24.3
Delete&Retrieve 56.9 49.4 53.0 56.2 73.4 64.2 14.0 56.8 28.2 54.1 52.7 53.3 45.3 58.1 49.7
B-GST 54.2 60.2 57.1 63.5 80.0 71.3 17.1 69.5 34.5 30.7 60.1 42.9 41.4 67.5 51.5
TextSETTR 54.4 44.9 49.4 42.7 75.6 56.8 14.2 78.6 33.4 32.5 52.6 41.3 36.0 62.9 45.2
BTTS 54.7 53.7 54.2 52.7 75.9 63.4 16.4 74.6 34.9 30.7 50.7 39.4 38.6 63.7 48.0
Ours T5-Large 51.8 70.3 60.3 65.2 70.7 67.9 17.8 80.7 37.9 55.3 60.2 57.6 47.5 70.5 55.9

Table 1: Comparison of full datasets in TST between small-scale PLM methods.

Dataset Shakespeare Genshin♡

Methods CP ACC G CP ACC G avg.G

QLFT LLaMA2 20.3 86.8 42.0 54.9 64.0 59.2 50.6
QLFT ChatGLM2 12.1 78.8 30.9 45.9 64.4 54.4 42.6
FS Alpaca 14.9 83.1 35.2 41.5 69.3 53.6 44.4
FS ChatGPT-4 15.6 90.2 37.5 43.0 76.3 57.2 47.4
FS Claude-3 15.9 84.2 36.6 42.8 75.6 56.8 46.7
Ours LLaMA2 22.1 88.5 44.2 57.9 74.0 65.4 54.8

Table 2: Comparison of full datasets in TST between
large-scale PLM methods.

Dataset Shakespeare Genshin

Methods CP ACC G CP ACC G

w/o Adaptive Retrieval 21.7 84.5 42.8 55.3 69.2 61.9
w/o Multi-key 21.5 84.7 42.7 55.6 70.3 62.5
w/o LoRA-based Initial 20.3 86.8 42.0 54.9 64.0 59.2
w/o SVD 23.1 83.1 43.8 55.2 67.1 60.9
Ours LLaMA2 22.1 88.5 44.2 57.9 74.0 65.4

Table 3: Ablation study based on LLaMA2-7B.

better initialization for training. In the third row
of Table 3, we ablated the LoRA parameter matrix
and adopted random initialization, which resulted
in a decline in overall performance. Combined with
Figure 2c, a good initialization can indicate both
the upper and lower limits of the ability, especially
in low-resource scenarios.

In § 2.2, we chose LoRA to avoid increasing the
network’s depth. In Appendix D.1, we transfer the
method to adapters and prompts, further analyzing
the differences between LoRA and these methods.
Additionally, LoRA can be applied to different pa-
rameter parts of the network. In Appendix D.2, we
found that the FFN layer may effectively improve
style accuracy. In this work, we applied weight
increments to the output of the attention layer with
a higher G-Score.

Effects of q on SVD. In the fourth row of Table 3,
we show the results of ablating SVD. Mathemat-
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(b) Rank(q) on Single Task

Figure 4: The left shows the performance of our method
under different values of q. The right displays the per-
formance of LoRA under various q singular vectors.

ically, we replaced U
(q)
s Σ

(q)
s V

(q)⊤
s in Equation 6

with AsB
⊤
s . The initial results indicate a signifi-

cant performance improvement.
Furthermore, we analyzed how the selection of

q works. We first conducted comparative exper-
iments on a single task using the LoRA and the
SVD-based LoRA method. In the comparison, we
used efficient tuning without additional modules.
The experimental results in Figure 4b show that
as q increases, the performance of the SVD-based
method gradually approaches that of the LoRA
method. When q exceeds 16, the performance
stabilizes and can be considered equivalent to the
LoRA method. Subsequently, we retested the afore-
mentioned task using the SVD-based Interpolation
module. Figure 4a shows that the model’s over-
all performance after interpolation surpasses that
of the method on the right. However, as we dis-
cussed in §3.2, increasing q does not necessarily
lead to performance improvement. Our findings
align with Jiang et al. (2024), indicating that param-
eters influence each other during interpolation. Al-
though increasing q can enhance the performance
of a single task, suggesting that more information is
contained within the parameters, the effectiveness
of simply increasing information density dimin-
ishes when the total parameter count remains the
same. By reducing q, we can make the parameter
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space sparser, thereby reducing interference and
improving the model’s overall performance.

Effects of Multi-key Retrieval. The first row of
Table 3 shows the results of removing the retrieval
score, i.e. Rs = 1. The significant performance
drop highlights the importance of Adaptive Re-
trieval for retrieving the most relevant knowledge.
Adaptive Retrieval allows dynamic selection of the
most suitable weight increments through query-key
matching. The following row shows the results
of ablating instance-level queries, specifically qins

and kΘ
s . We only used task-level weight increments

for model initialization. The performance decline
indicates that incorporating instance-level features
indeed helps transfer the most useful knowledge to
specific instances in the target task.

5.4 Human Evaluation

Methods Style Content Fluency avg.Rank
QLFT LLaMA2 2.34 1.76 2.52 2.21
FS Alpaca 3.36 3.90 3.40 3.56
FS ChatGPT-4 2.02 2.96 2.00 2.32
Ours LLaMA2 2.28 1.38 2.08 1.92

Table 4: Human evaluation on three metrics.

To supplement automatic metrics, we conducted
human evaluations by sampling 50 instances from
each dataset. The baselines used for comparison
are: QLFT LLaMA2-7B (Dettmers et al., 2023),
FS Alpaca-7B (Taori et al., 2023), and FS ChatGPT-
4 (OpenAI, 2023). Five participants were enlisted
to assess each model based on three criteria: (1)
strength of style transfer, (2) semantic integrity, and
(3) sentence fluidity. Performances were ranked
from best-1 to worst-4. Table 4 presents the rank-
ings of methods, as determined by participant feed-
back. In the Style Accuracy and Fluency assess-
ment, participants seemed to struggle with making
a clear choice; however, TWIST significantly out-
performed the others in terms of Content.

5.5 Visualization
Stylistic Features. We visualize the stylistic fea-
tures via 2D UMAP (McInnes et al., 2020) in Fig-
ure 5. We selected 12 features for visualization
dimensions: these include three stylistic features,
i.e., quantities of punctuation, the number of sen-
tences, and the number of words (Zhu et al., 2023);
and nine less-correlated vertical style types (Kang
and Hovy, 2021), i.e., Humorous, Polite, Formal,
Romantic, Gender, Dominance, Exciting, Sadness,

(a) Hutao (b) Venti (c) Diluc

(d) Noelle (e) Mona

Source
Target
Ours

(f) Xiangling

Figure 5: 2D-Visualization of Stylistic Feature.

and Offense. The first set of features is determined
statistically, while the latter are evaluated using
a classifier (Kang and Hovy, 2021). The results
clearly illustrate that transformed texts (in BLUE)
are distinctly different from the original text style
(in RED) and closely align with the supervised
target results (in GOLDEN).

Task Similarity. To visually represent the rela-
tionships and similarities among all generated key
vectors, we present a similarity matrix visualization
in Table 6. C represents the clustered key kC , and
others are weight key kΘ. The visualization shows
that keys in the same cluster typically exhibit higher
similarity. The keys are roughly divided into five
clusters, with the cluster containing C2 represent-
ing the formality transfer task in two scenarios. The
keys are approximately divided into two clusters
for role dialogue style transfer. Through manual
inspection, we found that roles in the cluster con-
taining C4 tend to be more aggressive, with shorter
sentences and more varied interjections and punc-
tuation. Conversely, roles in the cluster containing
C5 tend to be more conservative, using more formal
language.
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Figure 6: The similarity matrix for generated keys.
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Case Study. We also provide some examples in
Appendix G.

6 Related Work

Text Style Transfer and Style Categories. TST
aims to endow the text with a new style without
altering its meaning (Riley et al., 2021). From the
holistic definition of style, current work can be di-
vided into two paradigms (Zhu et al., 2023). The
first paradigm decouples explicit style from content,
as in Xu et al. (2023a), which added an adversarial
loss function. (Syed et al., 2020) randomly dropped
input words and reconstructed the input for each
author separately. The second paradigm avoids ex-
plicitly decoupling style from content. Dai et al.
(2019) added extra style embeddings in the input.
Yi et al. (2021) employs generative flow techniques
to extract stylistic features from instances of styles.
Previous studies primarily focused on simple style
transfer tasks, like formality (Rao and Tetreault,
2018) or sentiment transfer (Xu et al., 2020b; Sud-
hakar et al., 2019). These tasks achieved satisfac-
tory results via word-level transfers. Recently, Xu
et al. (2023a) defined the cross-style as a compound
style, such as personality (Shao et al., 2023) and
writing styles(Zhu et al., 2023; Tao et al., 2024).

Parameter-Efficient Fine-Tuning and Weight In-
crements. PEFT is an efficient method for fine-
tuning large models by adjusting only a subset of
parameters. LoRA applies low-rank decomposition
to weight matrices and updates the model with in-
cremental parameters (Hu et al., 2021). Adapter in-
troduces small, trainable modules into each layer of
the pre-trained model (Syed et al., 2020). Prompt-
tuning fine-tunes the model efficiently by modi-
fying only the input (Lester et al., 2021). Prefix-
tuning adds a continuous prefix to the input layer
that adapts to tasks through adjustment (Li and
Liang, 2021). Weight Increments refer to the
subset of parameters modified in PEFT, contain-
ing the most relevant knowledge for specific TST
tasks (Yang et al., 2023; Horvitz et al., 2024). Our
goal is to retrieve reusable knowledge from incre-
ments to support low-resource style learning.

7 Conclusion

This paper addresses the challenges of TST by
proposing a novel method called TWIST, which
utilizes transferable weight increments for style
text generation. Our experiments demonstrate that

TWIST outperforms baselines across various mod-
els, achieving state-of-the-art performance and su-
perior adaptability in low-resource scenarios.

8 Limitations

In this paper, we introduce TWIST, a method for
style transfer in text generation. However, our
method introduces an additional retrieval frame-
work, which may increase computational and mem-
ory costs. This overhead is relatively minor com-
pared to the resource demands of large models used
for inference. Further quantitative analysis of this
weakness is provided in Appendix E. In addition,
using LoRA as the format of weight increments
may not be optimal and introduces extra param-
eters, and the tunable parameter quantity varies
across different parts of the model. We further an-
alyze this in Appendix D.1. Lastly, our current
evaluation of TWIST has been limited to English-
language tasks. We recognize the importance of
assessing its performance in other languages to un-
derstand its broader applicability and intend to test
TWIST on non-English tasks in future work.

9 Ethics Statement

TWIST enhances the ability to transfer style in en-
vironments with limited data resources. All experi-
ments were conducted using widely-used general
datasets, which are unlikely to contain harmful con-
tent. However, using role styles may carry certain
risks, as malicious actors could potentially exploit
TWIST for activities such as fraud. Additionally,
the styles can be influenced by the datasets users
provide, which might contain harmful content, bi-
ases, or privacy issues.

For human evaluation, we enlisted five native
English speakers as volunteers to assess the gen-
erated texts. These volunteers have a background
in literary creation, enabling them to distinguish
different text styles. We did not ask for personal
information or collect any private data from the
volunteers.
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A Knowledge Retrieval

A.1 Key-Value Memory Networks

We will provide a clearer explanation of the mo-
tivation and optimization process. Here, we will
elucidate several key concepts, namely Key-value
Memory Neural Networks (KV-MemNNs) (Miller
et al., 2016b).

Specifically, KV-MemNN draws inspiration
from the idea of key-value storage, allowing flexi-
ble storage and retrieval of relevant information. It
consists of two main components: 1. Key-value
Memory: A programmable memory unit designed
to store information in key-value pairs. In our work,
this corresponds to [k,∆θ], where k represents key
vector and ∆θ represents weight increment. ∆θ
can be considered a form of value vector. Please
note that ’key’ is not synonymous with ’weight
increment.’ They operate on different dimensions
and carry distinct meanings, stored in pairs. 2.
Memory Access Mechanism: A learnable atten-
tion mechanism quickly retrieve relevant informa-
tion from memory, denoted as Equation 5. During
training, the optimization goal is to learn effective

storage and access of information in memory to
accomplish the given task. In our work, in the KV
retrieval mechanism, we determine the most rele-
vant keys to the current query by computing the
cosine similarity between the key vector and query
vector via k = k + γ∇k cos(q,k). Subsequently,
we retrieve the value vectors corresponding to these
keys. This similarity-based retrieval method forms
the foundational assumption of KV-MemNN and
underpins information retrieval. How this retrieval
method can return the most relevant information?
Through learning optimization based on neural net-
work frameworks, we achieve this goal, which mo-
tivates our training to optimize initial k and ∆θ.

A.2 Style Representation and Retrieval

We further elaborate on the motivation behind this
approach. As discussed, learned knowledge is
represented as a collection of weight increments
{∆θ1, . . . ,∆θS}, where each ∆θi is associated
with a key vector ki ∈ Rd (for i = 1, . . . , S).
These key vectors approximate the centroids of
their respective task distributions pi, forming key-
value pairs [ki,∆θi]. The optimization process
aligns the task distributions pi with the correspond-
ing ki and ∆θi. For example, given a dataset
based on Shakespeare’s works (X ,Y), each input
xn ∈ X is transformed by BERT into a query vec-
tor qshake

n ∈ Rd. Our objective is to compute a key
vector kshake that maximizes its similarity with all
qshake
n , representing the semantic centroid of the

Shakespearean style.
The pair [kshake,∆θshake] represents the final

key-value pair, where kshake encapsulates the
Shakespearean style at a semantic level, and
∆θshake reflects the style at the weight level. This
pairing is manually specified.

During querying, TWIST identifies the most
relevant pairs by calculating correlations between
the query and key vectors. The pre-trained model
is then re-parameterized using the corresponding
value (∆θ) as specified in Equation 5. Given a
Shakespearean sentence xtest1 and a sentence in an
unrelated style xtest2, we transform them into query
vectors qtest1 and qtest2, respectively. After align-
ing the centroids, the similarity between kshake and
qtest1 will exceed the similarity between kshake and
qtest2, as kshake captures the high-dimensional se-
mantic features averaged across all Shakespearean
queries qshake.

In summary, we do not compute the similarity
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between the weight increment and the query vector,
as they are fundamentally different representations.
Instead, we compute the similarity between the
key vector and the query vector. The key vector
represents the averaged characteristics of queries
specific to a training style, and when a query ex-
hibits high similarity to a key vector, it suggests a
strong correlation between the query and the style.

B Classifier Accuracy for Styles

In this section, following Riley et al. (2021), we
trained a classifier to evaluate the styles. Table 5,
mentioned in § 4.2, presents the classifier used for
automated style testing in our main experiments.
Table 6 shows the vertical style classifier trained
for visualization purposes, using data from (Kang
and Hovy, 2021) and others.

Style Dataset Accuracy %
Sentiment YELP 96.7
Formality GYAFC 89.4
Writing Shakespeare 83.5
Role Genshin 71.6

Table 5: Classifier for Main Experiments.

Style Dataset Accuracy %
Humorous ShortHumor 97.3
Polite SPolite 69.0
Formal GYAFC 89.4
Sadness DailyDialog 93.7
Romantic ShortRomance 99.1
Gender PASTEL 47.1
Dominance EmoBank 43.6
Exciting DailyDialog 98.2
Offense HateOffens 91.9

Table 6: Classifier for Stylistic Features Visualization.

C Prompt Design for Few-shot Methods

The current closed-source LLMs demonstrate out-
standing few-shot performance, but this depends on
carefully crafted prompt engineering. In Table 19,
we have designed a series of prompt schemes aimed
at fully harnessing the potential of these large mod-
els. We selected 100 sets of examples and used
the classifier for style verification. The results
are shown in Table 7. In the main text, we se-
lected prompt 3 as the comparison baseline, which
achieved the highest style accuracy.

D Effects of Various Weight Increments

This section analyzes how different settings for
weight increments can lead to varying impacts.

Dataset Shakespeare Genshin

Methods ACC ACC

FS Prompt1 Alpaca 73.0 57.0
FS Prompt2 Alpaca 71.0 54.0
FS Prompt3 Alpaca 78.0 62.0
FS Prompt1 ChatGPT-4 74.0 63.0
FS Prompt2 ChatGPT-4 77.0 67.0
FS Prompt3 ChatGPT-4 85.0 73.0

Table 7: Test for Designed Prompts.

D.1 Usage of Weight Increments
This section explores further details and compares
various parameter-efficient fine-tuning methods.
We substitute our LoRA-baed weight increment
with other components and conduct ablation exper-
iments on various tasks. For a new TST task t, we
use the Adapter to replace LoRA, and the objective
is to minimize the probability:

L(∆Θk
t ) = −

N∑

i=1

log Pr(yi | xi;θ0,∆Θk
t ) (8)

where θ0 is frozen and we optimize the adapter
parameters ∆Θk

t . For the prompts, we chose the
prefix-tuning approach, and the optimization pro-
cess is as follows:

L(Pk
t ) = −

N∑

i=1

log Pr(yi | [Pk
t ,xi];θ0) (9)

where Pk
t is a trainable prompt. We only used inter-

polation methods instead of SVD for our ablation
experiments, as singular vectors are unsuitable for
single-dimensional prompts. All other settings are
consistent with the main text, and the experimental
results on LLaMA2 are shown in Table 8.

Dataset Shakespeare Genshin

Methods CP ACC G CP ACC G #params

LoRA 23.2 83.1 43.8 55.2 67.1 60.9 32M
Adapter 18.2 82.5 38.7 50.1 60.7 55.2 40M
Prompt 19.7 75.4 38.5 46.7 61.0 53.4 1.7M

Table 8: Comparison between PEFT methods.

D.2 Additional Parameter Parts
In this paper, we use low-rank techniques to pre-
serve transferable knowledge. Compared to other
parameter-efficient methods, such as Adapters.
LoRA can operate across different parameter parts,
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Figure 7: Additional Parameter Parts.

as shown in Figure 7. We selected three distinct
parts: the embedding layer, the attention layer, and
the feed-forward layer. In our ablation experiments,
we adjusted the rank size as much as possible to en-
sure that the number of trainable parameters across
the three groups remained consistent.

Table 15 shows that different parameter parts
slightly impact performance. However, using the at-
tention layer as the additional parameter was more
stable overall. Moreover, while the feed-forward
layer sometimes achieves higher style accuracy, it
tends to reduce content preservation.

D.3 Comparison between Pruning and SVD
In preliminary experiments, we attempted to use
pruning techniques to sparsify LoRA and reduce pa-
rameter interference. However, this did not achieve
the desired results and even resulted in some per-
formance loss. The results are shown in Table 9.

Dataset Shakespeare Genshin

Methods CP ACC G CP ACC G

Interpolation 23.1 83.1 43.8 55.2 67.1 60.9
Interpolation + Pruning 19.2 80.1 39.2 51.2 65.7 58.0
Interpolation + SVD 22.1 88.5 44.2 57.9 74.0 65.4

Table 9: Comparison between Pruning and SVD.

D.4 Different Combinations of r and q

Referring to the work of (Dettmers et al., 2023),
higher r values lead to a greater number of learn-
able parameters and potentially improved perfor-
mance. Through extensive experiments, we found
that the performances are not sensitive to r (unless
very low), whereas q tends to be more sensitive.

Overall, we obtained some empirical guidelines
in the above Table 10. Larger or lower values of

#params #prop Shakespeare Genshin

r q M % CP ACC G CP ACC G

32

4 1.12 0.15 16.1 62.7 31.8 51.5 49.2 50.3
8 2.24 0.29 16.2 74.7 34.8 54.9 59.3 57.1
16 4.48 0.58 17.7 78.5 37.3 55.0 60.1 57.5
32 8.96 1.16 17.2 78.1 36.7 55.2 57.9 56.5

64

4 2.24 0.29 16.1 63.2 31.9 50.5 48.1 49.3
8 4.48 0.58 16.5 75.4 35.3 54.8 58.4 56.6
16 8.96 1.16 17.8 80.7 37.9 55.3 60.2 57.7
32 17.92 2.32 17.5 78.3 37.0 55.1 58.2 56.6
64 35.84 4.65 17.9 78.5 37.5 56.1 56.9 56.5

128

4 4.48 0.58 16.0 63.1 31.8 50.5 48.7 49.6
8 8.96 1.16 16.5 77.6 35.8 55.1 60.2 57.6
16 17.92 2.32 17.9 81.0 38.1 55.0 60.9 57.9
32 35.84 4.65 18.1 81.2 38.3 55.2 61.1 58.1
64 71.68 9.30 17.8 78.7 37.4 56.1 58.9 57.5

128 143.36 18.60 17.9 78.5 37.5 55.9 59.7 57.8

Table 10: LoRA Parameter Settings and Results for
Shakespeare and Genshin.

q result in degraded performance. Moreover, a
larger q leads to increased computational complex-
ity. Larger r values slightly enhance performance
and broaden the suitable range for q. In this pa-
per, we have chosen r = 64 and q = 16 as they
strike a balance where both cost and performance
are acceptable.

E Consumption of Additional Calculation

The additional overhead mainly consists of two
parts: first, the generation and retrieval key process
requires extra time; Second, the weight pool neces-
sitates additional storage for these weights, which
consumes memory resources.

Time Analysis. First, we measure the time taken
to generate each key in Figure 5, using the same
settings as in §4.2. The detailed results are shown
in Table 16. Additionally, we measure the time
required to retrieve the weight increments for the
corresponding tasks, as shown in Table 11.

Task Shakespeare avg.Genshin
Times 8.2 ms 6.5 ms

Table 11: Retrieval weight increments time of Tasks.

Memory Usage. We measured the additional
memory space occupied by the source weight pools
of T5 and LLaMA2. The results are presented in
Table 12. In fact, although our method introduces
additional weights, these weights are modular and
can be easily added or removed. Each weight incre-
ment accounts for about 0.8% of the total, which is
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negligible compared to the vast parameter space of
large pre-trained models.

Method Memory Space
T5-Large 0.23 GB

LLaMA2-7B 1.52 GB

Table 12: Additional memory space.

F Agreement Measure of Annotators

We conducted preliminary experiments before se-
lecting participants to assess the agreement mea-
sure between annotators, and we will make these
data publicly available. To evaluate the reliabil-
ity and robustness of our score-comparison anno-
tation scheme, we calculated the Inter-Annotator
Agreement (IAA) using Krippendorff’s α (Art-
stein, 2017). We tested the annotators on different
datasets according to three metrics: style accuracy,
content consistency, and sentence fluency, to mea-
sure the IAA. The comparison method employed
was head-to-head (win-tie-lose), with each annota-
tor completing comparisons for 100 instances. The
results are as follows in Table 13.

Dataset Style Content Fluency

Shakespeare 0.52 0.60 0.44
Hutao 0.47 0.57 0.43
Venti 0.53 0.49 0.55
Diluc 0.42 0.62 0.42
Noelle 0.51 0.41 0.57
Mona 0.45 0.52 0.64
Xiangling 0.45 0.60 0.52

Table 13: Performance Metrics for Different Datasets

G Case Study

We provide several cases in Figure 8 comparing
the outputs of ChatGPT-4 with TWIST based on
LLaMA2-7B. Our method tends to add common
words and punctuation to create a specific role style,
whereas ChatGPT-4 prefers incorporating the par-
ticular role background.

H Detailed Tables

Following are some tables referenced in the text.
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Wow, this cake is so delicious, I want to have another slice! 

This cake is so delicious, I want to have more!

Oh my, this cake is simply to die for! emmm... It’s so delicious, I can’t 

resist having another slice!

Target Style:  Hutao     

:  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

Verily, this verse doth resonate with my very soul!

This poem is truly to my taste.

Hehe, this poem sings to my soul! Truly to my taste!

Target Style:  Venti     

:  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

The cost of this glass of wine is exorbitant, far outweighing its value.

The price of this glass of wine is too high and it's not worth it.

 As the owner of the Dawn Winery, I can assure this wine is overpriced 

and not worth its cost.

Target Style:  Diluc     

:  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

The night sky tonight is a tapestry of enchantment and mystery, a 

breathtaking spectacle that captivates the soul.

The night sky is so beautiful tonight.

The night sky is so beautiful tonight, brimming with the secrets of the 

stars and the whispers of destiny.

Target Style:  Mona    

:  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

Making barbecue is super easy for me, like cooking up a storm with 

Guoba!

Making barbecue is too easy for me.

Making barbecue is too easy! Like tossing ingredients into a wok—just 

add a little flair and a lot of passion!

Target Style:  Xiangling     

:  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

As a knight, it is the solemn duty of all medical personnel to care for the 

injured.

Treating the injured is the duty of medical personnel.

Taking care of the injured is an important duty for all medical personnel. 

I'll do my best to help! :  

:  

:  
ChatGPT-4ChatGPT-4

TWISTTWIST

InputInput

Target Style:  Neolle

Figure 8: Case study for comparing ChatGPT-4 and TWIST.
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Dataset Attributes Train Dev Test
YELP Positive → Negative 440K 10K 3,000
GYAFC E&M Formal → Informal 52,595 2,877 1,416
GYAFC F&R Informal → Formal 51,967 2,788 1,332
Shakespeare None → Auther 2322 291 291
Genshin None → Role(6) 1653 223 223

Table 14: Statistics of our datasets after pre-processing.

Dataset Hutao Venti Diluc Noelle Mona Xiangling

Layer CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G

Embedding 56.3 74.2 64.6 57.9 73.2 65.1 59.2 76.8 67.4 56.7 74.1 64.8 54.5 69.8 61.7 56.4 64.7 60.4
Feed Forward 56.8 75.0 65.3 57.6 74.9 65.7 58.7 79.3 68.2 57.2 73.8 65.0 53.2 70.9 61.4 56.2 69.9 62.7
Attention 57.2 75.1 65.5 58.6 74.8 66.2 60.3 78.5 68.8 58.5 74.5 66.0 55.7 70.6 62.7 56.8 70.4 63.2

Table 15: Ablation experiments results of various parameter parts.

Keys Yelp EM1 EM2 Shak. R1 R2 R3 R4 R5 R6 avg
Times(min) 6.1 3.7 4.1 2.6 2.1 1.5 1.3 1.3 1.4 1.2 2.5

Table 16: Generation time of keys.

Dataset Hutao Venti Diluc Noelle Mona Xiangling

Methods CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G

FT T5-Large 52.4 57.6 54.9 53.8 55.1 54.4 52.6 52.9 52.7 52.3 58.3 55.2 53.5 55.7 54.6 54.0 54.0 54.0
FT BART-Large 49.1 56.9 52.9 50.5 54.7 52.6 49.2 53.3 51.2 49.2 58.0 53.4 50.0 55.3 52.6 50.4 53.7 52.0
CrossAligned 15.7 54.2 29.2 17.1 53.6 30.3 12.5 66.2 28.8 18.4 61.8 33.7 13.6 55.7 27.5 10.7 53.2 23.9
Delete&Retrieve 57.6 47.2 52.1 58.2 48.2 53.0 51.2 51.8 51.5 53.7 58.2 55.9 50.2 48.9 49.5 53.5 61.8 57.5
B-GST 29.8 59.4 42.1 29.9 61.6 42.9 31.2 59.2 43.0 31.1 59.8 43.1 30.0 60.8 42.7 32.2 59.8 43.9
TextSETTR 34.7 51.4 42.2 31.7 53.0 41.0 32.0 52.5 41.0 31.0 49.9 39.3 34.3 55.1 43.5 31.3 53.7 41.0
BTTS 32.5 49.6 40.1 29.9 51.2 39.2 30.3 50.5 39.1 29.5 48.4 37.8 32.2 52.9 41.2 29.8 51.6 39.2
Ours T5-Large 53.7 60.1 56.8 57.1 54.7 55.9 53.7 60.2 56.9 54.3 60.7 57.4 55.9 61.8 58.8 56.8 63.4 60.0

Table 17: Comparison of Full Dataset in TST between small-scale PLM methods.

Dataset Hutao Venti Diluc Noelle Mona Xiangling

Methods CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G CP ACC G

QLFT LLaMA2 53.5 68.7 60.6 56.9 68.2 62.3 53.2 61.2 57.1 54.8 60.2 57.4 54.5 61.8 58.0 56.2 63.8 59.9
QLFT ChatGLM 44.3 67.7 54.7 46.9 66.8 56.0 44.7 61.8 52.6 46.5 61.8 53.6 45.5 64.3 54.1 47.7 63.9 55.2
FS Alpaca 39.2 71.5 52.9 41.3 70.5 54.0 40.2 65.9 51.5 43.2 67.8 54.1 41.2 71.4 54.2 43.7 68.7 54.8
FS ChatGPT-4 42.3 79.3 57.9 44.7 75.4 58.1 45.2 80.2 60.2 39.6 73.2 53.8 40.9 75.9 55.7 45.0 73.5 57.5
FS Claude-3 42.0 78.5 57.4 44.4 74.9 57.6 44.7 78.8 59.3 40.0 72.7 53.9 40.9 75.5 55.6 44.9 73.0 57.2
Ours LLaMA2 57.2 75.1 65.5 58.6 74.8 66.2 60.3 78.5 68.8 58.5 74.5 66.0 55.7 70.6 62.7 56.8 70.4 63.2

Table 18: Comparison of Full Dataset in TST between large-scale PLM methods.
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Baseline Prompt

Prompt 1 System:[Role][Background][Personality]
User:This is a dialogue attributed to the character [role]:
[Golden Text 1]
[Golden Text 2]
[......]
[Golden Text n]
In light of the [role]’s background, distinctive personality traits, and other relevant information, coupled
with the given dialogue, you are tasked with precisely emulating the stylistic and tonal aspects of [role]’s
speech. The text you are required to mimic is as follows: [Original Text]
Please follow the requirements:[Requirements]
Assistant:[Generated Text]

Prompt 2 User:There are two paragraphs from different characters. Rewrite the target paragraph according to the
speaking style, personality, mood, word usage and punctuation of the origin paragraph. Pay attention to
imitating the speaking style of the first paragraph as much as possible and use different words. Here is
an example.
Original Paragraph:[Original Text 1]
Target Paragraph:[Golden Text]
The text you are required to rewrite is as follows: [Original Text 2]
Please follow the requirements:[Requirements]
Assistant:[Generated Text]

Prompt 3 Supervised History:
System:[Role][Background][Personality]
User:In light of the [role]’s background, distinctive personality traits, and other relevant information,
coupled with the given dialogue, you are tasked with precisely emulating the stylistic and tonal aspects
of [role]’s speech. The text you are required to mimic is as follows: [Original Text]
Please follow the requirements:[Requirements]
User:[Original Text 1]
Assistant:[Golden Text 1]
User:[Original Text 2]
Assistant:[Golden Text 2]
......
User:[Original Text n]
Assistant:[Golden Text n]
Generating:
User:[Original Text]
Assistant:[Generated Text]

Table 19: Prompts for Few-shot LLMs methods.
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Algorithm 1: The Training Pipeline of TWIST
Input: Source task set {s1, . . . , sS}, target task t, correspond training sets {(xi,yi)

N
i=1}tk ∼ Dk

Output: Cluster key kC
c , weight key kΘ

s , source weight increments ∆θs, source weight pool {kC
c ;k

Θ
s ;∆θs}Cc=1;

Target weight increments ∆θt

// Following are the construction of source weight pool (§ 3.1)
for s = 1, . . . , S do

Initialize the s-th source weight key kΘ
s and correspond weight increments ∆θs

for (xi,yi)
N
i=1 ∈ Ds do

Use LoRA-based parameter efficient method to obtain source weight increments ∆θs = AsB
⊤
s via Eq. 3

Use singular value decomposition to approximate AsB
⊤
s as UsΣsV

⊤
s

Initialize weight key kΘ
s and calculate query via q = fBERT(xi)

Use K-nearest neighbors algorithm to obtain the top-W most similar keys KΘ = {kΘ
1 , . . . ,k

Θ
W }

Update source weight key kΘ ∈ KΘ via kΘ = kΘ + γ∇kΘ cos(q,kΘ)
Obtain key-value pair [kΘ

s ;∆θs]
end

end
Use spectral clustering algorithm to obtain cluster C = {C1, . . . , CC} and ∆θn

s ∈ Cn

for c = 1, . . . , C do
Calculate cluster key via kC

c =
(∏n

i=1 k
Θ
i

) 1
n and n is the key number in Cc

Align multi-keys and values to update source weight pool {kC
c ;k

Θ
s ;∆θs}

end
// Following are reusing LoRA-based weight increments for target style generation (§ 3.2)
for s = 1, . . . , S do

Embed task-level query qtask and calculate instance-level query via qins = 1
N

∑
x∈X fBERT(x)

Calculate Retrieval Score Rs = softmax(λ · qtask · kC
s + (1− λ) · qins · kΘ

s ) as Eq. 5
end
Use interpolation to obtain initial target weight increments ∆θt =

∑S
s=1 Rs ·∆θs as Eq. 6

Update θt for target style transfer task t via L∆θk
t
(Dk) = −∑N

i=1 log Pr(yi | xi;θ0,∆θk
t ) as Eq. 7
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