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Abstract

Unsupervised multitask pre-training has been
the critical method behind the recent success
of language models (LMs). However, super-
vised multitask learning still holds significant
promise, as scaling it in the post-training stage
trends towards better generalization. In this
paper, we explore supervised multitask pre-
training by proposing Instruction Pre-Training,
a framework that scalably augments massive
raw corpora with instruction-response pairs
to pre-train LMs. The instruction-response
pairs are generated by an efficient instruc-
tion synthesizer built on open-source mod-
els. In our experiments, we synthesize 200M
instruction-response pairs covering 40+ task
categories to verify the effectiveness of In-
struction Pre-Training. In pre-training from
scratch, Instruction Pre-Training not only con-
sistently enhances pre-trained base models
but also benefits more from further instruc-
tion tuning. In continual pre-training, Instruc-
tion Pre-Training enables Llama3-8B to be
comparable to or even outperform Llama3-
70B. Our model, code, and data are available
at https://github.com/microsoft/LMOps.

1 Introduction

On the path towards general artificial intelligence,
multitask learning (Caruana, 1997) emerges as
a promising approach. However, scaling super-
vised multitask learning to the necessary degree
is very challenging. This motivates GPT-2 (Rad-
ford et al., 2019) to explore unsupervised multi-
task learning: pre-training on raw corpora through
causal language modeling, which facilitates scaling
up training data. Over time, unsupervised multitask
learning has evolved into the standard approach for
pre-training language models (LMs) (Brown et al.,
2020; Chowdhery et al., 2023), which is referred
to as Vanilla Pre-Training in this paper.

* Contribution during an internship at the CoAI Group,
Tsinghua University. B Corresponding Author.
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Figure 1: Comparison between Instruction Pre-
Training and Vanilla Pre-Training. Instead of di-
rectly pre-training on raw corpora, Instruction Pre-
Training augments the corpora with instruction-response
pairs generated by an instruction synthesizer, then pre-
trains LMs on the augmented corpora. “Ins” and “Res”
represent instruction and response, respectively.

Despite the success of unsupervised approaches,
supervised multitask learning still holds signifi-
cant promise. Instruction tuning (Wei et al., 2021),
which fine-tunes pre-trained models using diverse
tasks framed through natural language instructions,
significantly enhances task generalization (Sanh
et al., 2021; Chung et al., 2024), re-emphasizing
the value of supervised multitask learning.

In this paper, we introduce Instruction Pre-
Training to explore supervised multitask learning
for pre-training. As shown in Figure 1, instead of
directly pre-training on raw corpora, Instruction
Pre-Training augments each raw text with a set of
instruction-response pairs1 generated by an instruc-
tion synthesizer, and then pre-trains LMs using the
augmented corpora. These pairs are synthesized
based on the content of massive raw corpora, en-
suring high knowledge coverage and correctness.
Therefore, we can scale up task synthesis with great
diversity and quality (Li et al., 2023a).

1We use “task” and “instruction-response pair” inter-
changeably, with the instruction as task input and the response
as task output.
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To develop the instruction synthesizer, we con-
vert a wide range of existing datasets into our re-
quired format: each example consists of a set of
instruction-response pairs and a piece of raw text
that these pairs condition on. Using this data col-
lection, we fine-tune a language model to generate
instruction-response pairs based the correspond-
ing raw text. The high diversity of the tuning
data enables the synthesizer to generalize to un-
seen data, facilitating the synthesis of instruction-
response pairs for raw pre-training corpora. Unlike
existing works (Li et al., 2023b; Yehudai et al.,
2024) using large or closed-source models (Ope-
nAI, 2023; Yehudai et al., 2024) to generate syn-
thetic data, we build our instruction synthesizer
based on open-source models (typically with 7B
parameters), which is much more cost-effective.
This efficiency allows us to further scale up task
synthesis: augmenting the raw corpora with 200M
instruction-response pairs across more than 40 task
categories.

We conduct experiments in both general pre-
training from scratch and domain-adaptive contin-
ual pre-training. In pre-training from scratch, our
500M model pre-trained on 100B tokens reaches
performance of the 1B model pre-trained on 300B
tokens. Moreover, models that have undergone In-
struction Pre-Training gain significantly more from
further instruction tuning. In continual pre-training,
Instruction Pre-Training consistently improves per-
formance of Llama3-8B2 on two domains: finance
and biomedicine, enabling it to be comparable to
or even surpass Llama3-70B.

In summary, our contributions include:
• We propose Instruction Pre-Training to explore

supervised multitask pre-training, and verify its
effectiveness through extensive experiments.

• We develop an instruction synthesizer capable of
scalably generating diverse instruction-response
pairs based on various raw corpora.

• We comprehensively analyze the instruction syn-
thesizer and the synthetic data to reveal the key
factors towards the success of our method.

2 Instruction Pre-Training

Instead of directly pre-training on raw corpora, In-
struction Pre-Training augments each text from the
raw corpora with a set of instruction-response pairs
generated by an instruction synthesizer, where the
instruction serves as the task input and the response

2https://llama.meta.com/llama3/

serves as the task output, then pre-trains LMs on
the augmented corpora.

2.1 Instruction Synthesizer
To facilitate the scaling of supervised task learning,
we develop an instruction synthesizer to generate
instruction-response pairs based on raw corpora.
Studies suggest that raw corpora contain numer-
ous intrinsic tasks (Gu et al., 2022b; Chen et al.,
2024), which enables efficient scaling of task syn-
thesis (Cheng et al., 2023; Li et al., 2023a; Yue
et al., 2024) along with the upscale of raw corpora.

Our instruction synthesizer is developed through
multitask fine-tuning on a language model. As il-
lustrated in Figure 2, during tuning, the instruction
synthesizer is given a piece of raw text and tuned to
create a set of instruction-response pairs. The tun-
ing data are curated to be highly diverse, enabling
the instruction synthesizer to generalize to unseen
data (Wei et al., 2021). Therefore, during inference,
we can directly employ the instruction synthesizer
to create instruction-response pairs based on the
raw pre-training corpora. Furthermore, we incor-
porate specific designs to synthesize both one-shot
and few-shot examples for subsequent pre-training.

Data Collection We sample from and reformat
a diverse range of context-based task completion
datasets, which require models to perform tasks
based on a given context, to meet our fine-tuning
requirements. Each data sample’s context serves
as the raw text, and the downstream tasks serve as
the instruction-response pairs. The contexts span
various domains such as encyclopedias, social me-
dia, and academic tests (Rogers et al., 2023), and
the tasks encompass a wide range such as common-
sense reasoning and sentiment analysis. Further
details are in Appendix A.

Tuning We tune the instruction synthesizer us-
ing few-shot examples. As depicted in Figure 3, a
one-shot example consists of a piece of raw text
followed by its instruction-response pairs. Each
sequence fed into the synthesizer concatenates mul-
tiple such examples, all sampled from the same
dataset. This ensures that the concatenation of mul-
tiple examples within one sequence constitutes a
few-shot example, maintaining consistency in pat-
terns (i.e., task format or category) among different
sets of instruction-response pairs. Fine-tuning on
these examples enables the instruction synthesizer
to generate instruction-response pairs with similar
patterns to those in the given examples (Min et al.,
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Figure 2: Tuning and inference framework of instruction synthesizer. During tuning, the instruction synthesizer
learns to generate instruction-response pairs for a given raw text. The tuning data are curated to be highly diverse,
enabling the synthesizer to generalize to unseen data. During inference, we use this tuned instruction synthesizer to
generate instruction-response pairs for raw texts from pre-training corpora.
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Figure 3: For instruction synthesizer, a one-shot ex-
ample consists of a raw text (TN) and a set of instruction-
response pairs (IN

⊕
RN); data denoted without ′ are for

tuning the instruction synthesizer, and data with ′ are for
synthesizer inference and LM pre-training. During in-
struction synthesizer tuning, each sequence fed into the
synthesizer concatenates multiple one-shot examples
sampled from the same dataset. During inference, multi-
round inference is conducted to synthesize instruction-
response pairs with patterns similar to those of previous
rounds. For LM pre-training, a few-shot example con-
catenates raw texts and synthesized pairs from multiple
rounds.

2022). Additionally, we calculate the tuning loss
only on the instruction-response pairs to guide the

model to focus on these pairs.

Inference We conduct multi-round inference to
create few-shot examples. As depicted in Figure 3,
in each round, we prepend the texts and instruction-
response pairs from previous rounds to the current
text. This allows the instruction synthesizer to gen-
erate new instruction-response pairs based on the
previous ones.

2.2 LM Pre-Training
After collecting the synthesized instruction-
response pairs, we employ templates from Longpre
et al. (2023) to diversify instruction formats, and
templates from Cheng et al. (2023) to concatenate
each raw text with its instruction-response pairs.
As shown in Figure 3, by concatenating the texts
and instruction-pairs from M rounds, we create an
M -shot example for subsequent pre-training.

Except for the pre-training data, Instruction Pre-
Training keeps all other pre-training settings the
same as Vanilla Pre-Training: training with the
next-token prediction objective (Radford et al.,
2018) and computing loss on all tokens. We con-
duct both general pre-training from scratch and
domain-adaptive continued pre-training to verify
the effectiveness in different pre-training scenarios.

General Pre-Training From Scratch Consider-
ing the large amount of data required for general
pre-training from scratch, we only convert part of
the raw corpora into instruction-augmented cor-
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pora, leaving the rest unchanged. Besides, we mix
the corpora with the data for fine-tuning the instruc-
tion synthesizer to enhance task diversity.

Domain-Adaptive Continual Pre-Training For
domain-adaptive continual pre-training, the data re-
quirement is much smaller. Therefore, we convert
all raw corpora into instruction-augmented corpora.
Following Cheng et al. (2023), we mix the cor-
pora with the general instructions to benefit from
improved prompting ability. Since the general in-
structions collection contains the fine-tuning data
for the instruction synthesizer, we do not include
these fine-tuning data.

3 Experiment Settings

3.1 Instruction Synthesizer

Our synthesizer is fine-tuned from Mistral-7B-
v0.1 (Jiang et al., 2023), an open-source model
with 7B parameters. This model is much more
cost-effective than large-scale (Almazrouei et al.,
2023; Jiang et al., 2024a; Bai et al., 2023) or closed-
source (OpenAI, 2023) models typically used for
generating synthetic data (Li et al., 2023b; Yehudai
et al., 2024; Yue et al., 2024). During inference,
about 5 instruction-response pairs are created per
raw text, where each pair contains about 52 to-
kens. Further tuning and inference details are in
Appendix B.

3.2 General Pre-training From Scratch

Pre-Training Corpora We randomly sample a
subset of RefinedWeb (Penedo et al., 2023) dataset
for raw pre-training corpora, consisting of 200M
pieces of text containing about 100B tokens.

To create instruction-augmented corpora, we
conduct two rounds of instruction synthesis, con-
verting 1/5 of the raw corpora (40M raw texts) into
instruction-augmented texts. The first round con-
verts 20M raw texts, and the second round uses the
raw texts and instruction-response pairs from the
first round to convert another 20M raw texts. The
resulted corpora contain 200M synthesized pairs
amounting to about 10B tokens. An example of
a 2-shot instruction-augmented text is shown in
Table 16 in Appendix.

We then mix the fine-tuning data for instruc-
tion synthesizer. Since the fine-tuning data amount
(0.2B tokens) is too small compared to that of the
raw corpora, we increase its sample ratio so that it
repeats 4 times throughout pre-training.

Training and Evaluation We adopt the architec-
ture and tokenizer of Mistral (Jiang et al., 2023)
to implement models of two different parameters:
500M and 1.3B.

Our pre-training settings largely follow Brown
et al. (2020). To enhance training efficiency, we
implement the memory-efficient attention of xform-
ers (Lefaudeux et al., 2022). Detailed hyperpa-
rameters are listed in Table 14 in Appendix. The
lm-evaluation-harness framework (Gao et al., 2023)
is used for model evaluation, detailed evaluation
settings are in Appendix C.

We also conduct instruction tuning on the pre-
trained model with 500M parameters using the data
from Longpre et al. (2023). The instruction-tuned
models are evaluated on MMLU (Hendrycks et al.,
2020) benchmark.

3.3 Domain-Adaptive Continual Pre-Training
Pre-Training Corpora We use raw corpora from
two domains: PubMed Abstracts (Gao et al., 2020)
for biomedicine and financial news (Yang et al.,
2023) for finance.

We conduct 3-round inference to covert all the
domain-specific corpora. Each round processes 1/3
of the raw corpora, inheriting the raw texts and
instruction-response pairs from previous rounds.
Examples of the instruction-augmented texts are in
Table 17 and 18 in Appendix.

We then mix the instruction-augmented corpora
with general instructions (Zhou et al., 2024; Xu
et al., 2023; Lian et al., 2023), using the same mix-
ing ratio as Cheng et al. (2023).

Training and Evaluation We continue to pre-
train Llama3-8B on each domain respectively, de-
tailed settings are in Table 14 in Appendix. We fol-
low the prompting settings in Cheng et al. (2023)
to evaluate models on the domain-specific tasks.
Detailed evaluation settings are in Appendix C.

4 Results

4.1 General Pre-Training From Scratch
Pre-Trained Base Models Table 1 presents the
general performance of the models after pre-
training. To ensure a fair comparison with Vanilla
Pre-Training, which uses only raw corpora, we
include a baseline (Mix PT) that mixes the raw
corpora with the fine-tuning data for our in-
struction synthesizer. Compared to Vanilla Pre-
Training (Vanilla PT), incorporating the fine-tuning
data in Mix PT improves model performance on
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ARC-e ARC-c BoolQ SIQA WinoGrande PIQA OBQA HellaSwag MMLU

500M
Vanilla PT 50.3 26.4 57.5 44.6 53.8 71.1 29.8 47.2 25.4
Mix PT 52.8 26.7 46.8 46.6 52.7 70.1 30.0 47.0 26.7
Instruct PT 54.8 27.4 62.0 47.2 54.8 69.9 30.8 47.3 25.3

1.3B
Vanilla PT 58.5 28.8 60.3 47.9 54.9 73.0 33.6 54.9 25.7
Instruct PT 60.5 30.9 62.2 49.2 55.9 73.6 33.4 54.3 27.3

Table 1: General performance of the pre-trained base models via Vanilla Pre-Training (Vanilla PT), mixing raw
corpora with fine-tuning data for the instruction synthesizer (Mix PT), and Instruction Pre-Training (Instruct PT) in
general pre-training from scratch. All the pre-training methods use the same number of tokens for model training.

# Param. # Token Average

GPT-2 774M - 45.7
Pythia 1B 300B 47.1
BLOOM 1.1B 341B 45.1

Instruct PT 500M 100B 46.6

OPT 1.3B 300B 49.3
GPT-2 1.5B - 48.6
BLOOM 3B 341B 50.1

Instruct PT 1.3B 100B 49.7

Table 2: Comparison between our pre-trained base
models and others on general benchmarks. Detailed
results are in Table 15.

several benchmarks. By further transforming the
raw corpora into instruction-augmented corpora, In-
struction Pre-Training (Instruct PT) achieves even
better performance. Note that none of the evaluated
datasets are included in our fine-tuning data for the
instruction synthesizer. Nevertheless, the model
pre-trained on the data generated by the instruction
synthesizer shows improved performance on these
unseen datasets, demonstrating the effectiveness of
our method in enhancing model generalization.

In Table 2, we compare our pre-trained models
with other open-source models. Using 100B to-
kens, our 500M model reaches the performance
of Pythia-1B (Biderman et al., 2023) trained with
300B tokens and our 1.3 B model reaches the per-
formance of BLOOM-3B (Workshop et al., 2022)
trained with 341B tokens. This shows consistent
data efficiency of Instruction Pre-Training across
different model scales.

Instruction-Tuned Models Figure 4 shows the
zero/few-shot performance on MMLU during
instruction tuning from the pre-trained mod-
els. The model pre-trained via Instruction Pre-
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Figure 4: MMLU performance during instruc-
tion tuning of models pre-trained via Vanilla Pre-
Training (Vanilla PT) and Instruction Pre-Training (In-
struct PT).

Training quickly outperforms the model pre-trained
via Vanilla Pre-Training, and we observe a stable
increasing trend of our model throughout the in-
struction tuning process. We infer that the closer
alignment of training tasks during the instruction
pre-training and instruction tuning stages facili-
tates a smoother transition between pre-training
and fine-tuning. This alignment enables the model
to learn more rapidly on downstream tasks. There-
fore, Instruction Pre-Training offers a promising
solution to significantly reduce the number of fur-
ther fine-tuning steps (Longpre et al., 2023; Jiang
et al., 2024c).

4.2 Domain-Adaptive Continual Pre-Training

Main Results As shown in Table 3, In-
struction Pre-Training consistently outperforms
Vanilla Pre-Training on almost all domain-specific
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BioMed. PubMedQA ChemProt RCT MQP UMSLE AVERAGE

Llama3-70B 54.3 51.8 82.2 84.8 46.7 63.9
Llama3-8B 59.8 27.6 73.6 66.2 40.6 53.6
Vanilla PT-8B 65.1 42.4 72.4 76.4 35.5 58.4
Instruct PT-8B 68.7 47.2 73.4 79.3 38.0 61.3

Finance ConvFinQA Headline FiQA SA FPB NER AVERAGE

Llama3-70B 59.1 86.3 81.0 68.5 64.4 71.9
Llama3-8B 49.9 81.1 83.3 63.5 72.8 70.1
Vanilla PT-8B 62.9 84.7 82.2 65.4 64.9 72.0
Instruct PT-8B 74.6 87.1 82.4 65.7 63.6 74.7

Table 3: Domain-specific task performance of Llama3-8B without continued pre-training, after continued pre-
training via Vanilla Pre-Training (Vanilla PT), and after continued pre-training via Instruction Pre-Training (Instruct
PT). Both Vanilla PT and Instruct PT mix domain-specific corpora with general instructions to boost prompting
ability, and use the same number of tokens for model training. The performance of Llama3-70B is displayed for
reference.

w/o Corpora Rule-based 1-shot Ours

Med. 58.6 58.8 58.5 61.3
Fin. 73.3 73.1 73.1 74.7

Table 4: Ablations on training data. w/o Corpora
removes domain-specific pre-training corpora. Rule-
based replaces instruction-augmented corpora with
those created by the rule-based methods in Cheng et al.
(2023). 1-shot replaces instruction-augmented corpora
with those created through single-turn synthesis. We
report the average task scores within each domain.

tasks. Continual pre-training with Instruction
Pre-Training significantly enhances the domain-
specific performance of Llama3-8B, achieving par-
ity with or even surpassing Llama3-70B. On the
finance NER benchmark, where Instruction Pre-
Training underperforms Vanilla Pre-Training, we
observe considerable variance, where even Llama3-
70B underperforms Llama3-8B, suggesting that
this benchmark may not be reliable.

Ablations Table 4 presents ablation results for
our pre-training data, which consist of a mixture
of domain-specific instruction-augmented corpora
and general instructions.
• w/o Corpora: Removing the domain-specific

instruction-augmented corpora eliminates the
source of domain-specific knowledge, leading
to reduced domain-specific performance.

• Rule-based: Constructing instruction-augmented
corpora using rule-based methods results in lim-
ited diversity, thereby constraining performance.

• 1-shot: Limiting synthesis to 1-turn instead

of multi-turn synthesis results in instruction-
augmented corpora containing only 1-shot ex-
amples, leading to decreased prompting perfor-
mance (Longpre et al., 2023).

5 Analysis

We conduct a detailed analysis of the instruction
synthesizer and the instruction-augmented corpora
to understand their impact on LM pre-training.

5.1 Instruction Synthesizer

Our goal in multitask fine-tuning is to de-
velop a general synthesizer capable of generating
instruction-response pairs for any raw text. There-
fore, we evaluate its performance on both seen
datasets (listed in Appendix A) and unseen datasets.
The unseen datasets include SocialIQA (Sap et al.,
2019), TextbookQA (Kembhavi et al., 2017), Wiki-
Why (Ho et al., 2022), and FEVER (Thorne et al.,
2018), each representing a specific instruction for-
mat. Each example in these datasets comprises a
context (raw text) and a set of context-based tasks
(instruction-response pairs).

Response Accuracy Given a raw text and a task
instruction, the instruction synthesizer generates a
response. We compute the F1 similarity between
the generated response and the gold response to
evaluate response accuracy. Our instruction syn-
thesizer is fine-tuned from the base Mistral-7B
model. For comparison, we also present the re-
sults of the base model. As shown in Table 5, our
fine-tuned synthesizer significantly outperforms
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Accuracy Quality

Seen Unseen Seen Unseen

Zero Few Zero Few

Base 30.6 29.2 16.5 21.8 12.1 19.6
Ours 70.0 55.2 49.4 49.9 25.3 30.8

Table 5: Response accuracy and instruction-response
pair quality of our instruction synthesizer (Ours) and
Mistral-7B (Base). “Zero” indicates the zero-shot set-
ting where no examples are presented before the testing
raw text, and “Few” prepends 3-shot examples to the
testing raw text.

the base model on both seen and unseen datasets,
demonstrating the effectiveness of our fine-tuning.

Instruction-Response Pair Quality Given a raw
text, the instruction synthesizer generates a set of
instruction-response pairs. We compute the F1 sim-
ilarity between the generated pairs and the gold
pairs to evaluate their quality. The evaluation is
conducted in both zero-shot and few-shot settings:
1) Zero-shot: the input to the instruction synthesizer
contains only the raw text. 2) Few-shot: follow-
ing Wang et al. (2023); Yehudai et al. (2024), a
few examples from the same dataset as the gold
instruction-response pairs, each consisting of a raw
text and corresponding instruction-response pairs,
are prepended to the testing raw text.

As shown in Table 5, compared to the base
model, our fine-tuned synthesizer significantly out-
performs the baseline across all four dimensions:
zero-shot, few-shot, seen, and unseen datasets. In
unseen datasets, the few-shot setting substantially
outperforms the zero-shot setting, indicating that
our synthesizer effectively leverages the pattern
of the few-shot examples to create instruction-
response pairs for the testing text.

Helpfulness on LM Generalization We con-
duct experiments using an LM (base Mistral-7B in
our analysis) to assess the impact of synthesized
instruction-response pairs on helping LMs general-
ize to unseen tasks. Given a prompt concatenating
a testing raw text, synthesized pairs, and a test-
ing instruction, the LM generates a response. We
then compare the LM’s performance on the testing
task with and without the synthesized pairs in the
prompt to evaluate their effectiveness.

We evaluate instruction-response pairs gener-
ated using different methods: 1) Random: ran-
domly sampled instruction-response pairs of a dif-
ferent context. 2) Base: pairs synthesized based on
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Figure 5: Helpfulness on LM generalization mea-
sured by LM performance with or without synthesized
instruction-response pairs in the prompt.

the testing raw text by the base Mistral-7B model
prompted with a few examples. 3) Ours: pairs
synthesized based on the testing raw text by our
instruction synthesizer using the same few-shot ex-
amples as Base.

As shown Figure 5, “w/o Pairs” denotes the set-
ting where synthesized pairs are excluded from the
prompt. On both seen and unseen datasets, ours
consistently enhances the LM’s performance on the
testing task, surpassing all baselines. This demon-
strates the effectiveness of our synthesized tasks
in improving the LM’s ability to perform a wide
range of tasks.

5.2 Instruction-Augmented Corpora

We analyze the instruction-augmented pre-training
corpora in terms of context relevance, response
accuracy and task diversity. We sample 500
instruction-augmented texts from the augmented
corpora and use GPT-4 (OpenAI, 2023) to evaluate
the synthesized instruction-response pairs. Specif-
ically, GPT-4 is prompted to assess whether the
synthesized instruction is relevant to the context of
the raw text (context relevance) and whether the
response is accurate based on the instruction and
context (response accuracy). Additionally, to eval-
uate task diversity, we prompt GPT-4 to categorize
each instruction-response pair using a predefined
list of task categories from Wang et al. (2022).

As shown in Table 6, our instruction synthesizer
generates instruction-response pairs spanning 49
different task categories, with over 85% relevance
to the context and 70% response accuracy. We
further group the task categories into 9 general
task scenarios. Figure 6 shows the percentages of
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Accuracy Relevance # Category

General 77.5 92.9 49
BioMed. 86.2 99.4 26
Finance 69.8 85.8 41

Table 6: Response accuracy, context relevance,
and number of task categories of the instruction-
augmented corpora.

Commonsense 
Reasoning 

23%

Coreference 
Resolution

16%Natural 
Language 
Inference

15%

Struct-
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Figure 6: Distribution of task scenarios of synthe-
sized instruction-response pairs in the instruction-
augmented corpora.

each task scenario in the instruction augmented cor-
pora for general pre-training. Our synthesized tasks
cover all general task scenarios, demonstrating the
effectiveness of our instruction synthesizer in gen-
erating a highly diverse tasks. We conduct further
analysis in Appendix E for human evaluation, Ap-
pendix D for data contamination, and Appendix F
for domain distribution and diversity.

6 Related Work

Synthetic Instruction Generation There have
been many works studying synthetic instruc-
tion generation, but they mainly focus on post-
training (Xu et al., 2023; Li et al., 2023a), while
we focus on pre-training. This makes these works
complementary to ours. Moreover, our experiments
demonstrate that instruction pre-trained models
gain more from instruction post-training, highlight-
ing the complementary nature.

Regardless of the training stage, our method dif-
fers from related works in several ways. Firstly, we
focus on learning from the raw corpora rather than
distilling knowledge from strong models (Xu et al.,
2023; Mukherjee et al., 2023; Li et al., 2024). Sec-
ondly, ours can be task-agnostic, in contrast to the

more task-specific approaches (Wang et al., 2023;
Honovich et al., 2023; Yehudai et al., 2024) relying
on a few gold examples. Additionally, we outper-
forms rule-based methods (Cheng et al., 2023; Gu
et al., 2022b) by increasing instruction diversity.
Moreover, the iterative techniques used in Li et al.
(2023a); Lee et al. (2024); Yue et al. (2024) could
potentially complement our method, areas we plan
to explore in future research.

Data Curation for LM Pre-Training Data cura-
tion for LM pre-training typically involves collec-
tion, cleaning, and organization. Most pre-training
data are collected from the Internet to ensure di-
versity (Raffel et al., 2020; Penedo et al., 2023;
Wenzek et al., 2020; Gao et al., 2020). Although di-
verse, web-scraped data often contain low-quality
and duplicate content. Therefore, data cleaning
techniques are applied to these corpora, includ-
ing language identification (Joulin et al., 2016),
perplexity-based (Wenzek et al., 2020), classifier-
based (Brown et al., 2020), and rule-based (Raffel
et al., 2020; Rae et al., 2021) filtering. Data orga-
nization aims at performing more fine-grained pro-
gramming of the data, including data selection (Al-
balak et al., 2024; Xie et al., 2024) and constructing
training instances related to downstream usage (Gu
et al., 2022a, 2023; Shi et al., 2023; Jiang et al.,
2024b; Maini et al., 2024). Our work explores an
orthogonal direction: augmenting raw corpora with
large-scale supervised signals.

7 Conclusion

This paper proposes Instruction Pre-Training to ex-
plore supervised multitask learning for pre-training.
Instead of directly pre-training on raw corpora, In-
struction Pre-Training augments the corpora with
instruction-response pairs generated by an instruc-
tion synthesizer. Our instruction synthesizer, fine-
tuned from a highly diverse data collection, is ca-
pable of generating diverse instruction-response
pairs from various corpora. In pre-training from
scratch, Instruction Pre-Training not only outper-
forms Vanilla Pre-Training on the pre-trained base
models but also benefits more from further in-
struction tuning. In continual pre-training, Instruc-
tion Pre-Training substantially enhances the per-
formance of Llama3-8B in two different domains.
Looking ahead, we hope our work can inspire fur-
ther exploration into this promising area of super-
vised multitask pre-training, effectively enhancing
the general abilities of LMs.
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Limitations

While synthetic data offer numerous benefits, it
is crucial to acknowledge the potential limitations.
Our work, along with other works utilizing syn-
thetic data (Liu et al., 2024), is inevitably lim-
ited by the possibility of introducing hallucina-
tions. As shown in our analysis in Section 5, the
accuracy of our instruction-augmented corpora is
approximately 70%, which may potentially mis-
lead the pre-trained model. Future work could
explore post-verification techniques such as those
proposed by Li et al. (2023a); Lee et al. (2024);
Yue et al. (2024); Yehudai et al. (2024) to filter out
low-quality data or develop methods to enhance
the reliability of the instruction synthesizer.

Furthermore, works like Touvron et al. (2023);
Jiang et al. (2023) have achieved impressive per-
formance by pre-training on trillions of tokens,
whereas our pre-training is currently limited to the
scale of billions of tokens. Future research should
investigate scaling laws for synthetic data and de-
termine the optimal balance between quantity and
quality of synthetic samples (Liu et al., 2024).
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A Data Collection for Fine-Tuning
Instruction Synthesizer

Figure 7 displays our dataset collection for fine-
tuning the instruction synthesizer. For each context
in the datasets, we gather all the downstream tasks
corresponding to the context, and regard the con-
text as the raw text and the downstream tasks as
the instruction-response pairs. For each dataset,
we sample a maximum of 10K examples with the
highest number of instruction-response pairs, to en-
hance task diversity while avoiding dataset predom-
inance. Instruction-response pairs covers all the
formats defined in (Longpre et al., 2023), including
free-form completion, multiple-choice, free-form
completion with chain-of-thought (CoT; Wei et al.,
2022) and multiple-choice with CoT.

B Tuning and Inference Settings for
Instruction Synthesizer

Data Format We fill each data example into a
specifically designed template to explicitly separate
different parts. This facilitates the direct extraction
of instruction-response pairs after inference. We
use the template <CON> {text} </CON> to wrap the
raw text. As shown in Table 7, we design differ-
ent templates for different formats of instructions,
and \n\n is used to connect instruction-response
pairs and link them with the raw text. Additionally,
we use <s> before the beginning of each exam-
ple and </s> after the end of each example. An
N -shot example is made by directly concatenating
N examples in a sequence. A case of a formatted
2-shot data example for fine-tuning is displayed in
Table 13.

Tuning To constitute a few-shot example for fine-
tuning, we concatenate as many formatted exam-
ples as possible from the same dataset to match the
maximum sequence length. The tuning hyperpa-
rameters are in Table 8.

Inference During each round of inference, we
concatenate the formatted examples from previous
rounds with the formatted raw text of the current
round as the input for the instruction synthesizer.
Subsequently, the instruction synthesizer generates
a sequence of instruction-response pairs. The max-
imum sequence length for inference corresponds
to that of the target LM intended for pre-training.
We use the vLLM (Kwon et al., 2023) framework
for acceleration. It takes about 1 day to synthe-
size instruction-response pairs for 1B tokens of raw

Instruction Synthesizer Template

Free-form Completion
<QUE> {instruction} <ANS> {response} </END>

Multiple Choice
<QUE> {instruction}

Options:

- {option1}

- {option2} <ANS> {response} </END>

Free-form Completion with CoT
<QUE> {instruction}

Let’s think step by step. <ANS> {CoT}

Therefore, the answer is {response} </END>

Multiple Choice with CoT
<QUE> {instruction}

Options:

- {option1}

- {option2}

Let’s think step by step. <ANS> {CoT}

Therefore, the answer is {response} </END>

Table 7: Templates for different formats of
instruction-response pairs for tuning and inference
of the instruction synthesizer.

Hyper-Parameter Assignment

Base model Mistral-7B-v0.1
Computing infrastructure 4 A100-80GB GPUs
Run-time 2 days
Epochs 5
Batch size 16384 tokens
Max sequence length 4096
Max learning rate 5e-6
Optimizer Adam
Adam beta weights 0.9, 0.95
Learning rate scheduler cosine
Weight decay 0.1
Warm-up steps 1000
Gradient clipping 1.0
Dropout ratio 0.1

Table 8: Hyper-parameters of fine-tuning the instruc-
tion synthesizer.

corpora on a single A100-80GB GPU.

C LM Evaluation

General Models We evaluate 0-shot perfor-
mance on tasks originally formatted as lan-
guage modeling, including WinoGrande (Sak-
aguchi et al., 2021), PIQA (Bisk et al., 2020)
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Encyclopedia

Fiction

Academic
Tests

TriviaNews

Social 
Media

Expert 
Materials

Multi-Domain

OPT: ✗ COT: ✗
Qasper

OPT: ✓ COT: ✓
PubMedQA

OPT: ✗ COT: ✗
COVID-QA

OPT: ✗ COT: ✗
ConvFinQA

OPT: ✓ COT ✗
SpartQA

OPT: ✗ COT: ✓
bAbI

OPT: ✓ COT: ✓
QASC

OPT: ✓ COT: ✓
ECQA

OPT: ✗ COT: ✗
SQuAD

OPT: ✗ COT: ✗
TopiOCQA

OPT: ✗ COT: ✓
HotpotQA

OPT: ✗ COT: ✗
WikiTableQuestions

OPT: ✗ COT: ✗
QuAC

OPT: ✗ COT: ✓
QED

OPT: ✗ COT: ✗
FairyTableQA

OPT: ✓ COT ✗
MCTest

OPT: ✗ COT: ✗
NarrativeQA

OPT: ✗ COT: ✗
NLQuAD

OPT: ✗ COT: ✗
NewsQA

OPT: ✓ COT ✗
RACE

OPT: ✓ COT ✗
RACE-C

OPT: ✓ COT ✗
ReClor

OPT: ✓ COT ✗
LogiQA

OPT: ✓ COT: ✓
AQUA-RAT

OPT: ✓ COT ✗
DREAM

OPT: ✗ COT: ✗
TriviaQA

OPT: ✗ COT: ✗
TweetQA

OPT: ✓ COT ✗
QuAIL

OPT: ✓ COT ✗
MultiRC

OPT: ✗ COT: ✗
ROPES

OPT: ✓ COT ✗
CosmosQA

OPT: ✓ COT ✗
QuaRTz

OPT: ✗ COT: ✗
CoQA

OPT: ✗ COT: ✗
DoQA

OPT: ✗ COT: ✗ Free-form Completion
OPT: ✓ COT: ✗ Multiple Choice

OPT: ✗ COT: ✓ Free-form Completion with CoT
OPT: ✓ COT: ✓ Multiple Choice with CoT

Figure 7: Datasets for fine-tuning the instruction synthesizer, including Dasigi et al. (2021); Möller et al. (2020);
Chen et al. (2022); Mirzaee et al. (2021); Weston et al. (2015); Khot et al. (2020); Aggarwal et al. (2021); Jin et al.
(2019) in the expert materials domain, Rajpurkar et al. (2016); Adlakha et al. (2022); Choi et al. (2018); Pasupat
and Liang (2015); Lamm et al. (2021); Yang et al. (2018) in the encyclopedia domain, Xu et al. (2022); Kočiskỳ
et al. (2018); Richardson et al. (2013) in the fiction domain, Soleimani et al. (2021); Trischler et al. (2017) in the
news domain, Joshi et al. (2017) in the trivia domain, Lai et al. (2017); Liang et al. (2019); Sun et al. (2019); Liu
et al. (2021); Yu et al. (2019); Ling et al. (2017) in the academic tests domain, Xiong et al. (2019) in the social
media domain, and Reddy et al. (2019); Campos et al. (2020); Lin et al. (2019); Tafjord et al. (2019); Khashabi et al.
(2018); Rogers et al. (2020); Huang et al. (2019) in the multi-domains sources domain.

and HellaSwag (Zellers et al., 2019), and 5-shot
performance on tasks that are rather challenging
and formatted as question-answering, including
ARC (Clark et al., 2018), BoolQ (Clark et al.,
2019), SIQA (Sap et al., 2019), OBQA (Mihaylov
et al., 2018), and MMLU (Hendrycks et al., 2020).
Using the lm-evaluation-harness framework, we
report the acc-norm score to follow Brown et al.
(2020).

Domain-Specific Models We follow the prompt-
ing settings of AdaptLLM (Cheng et al., 2023): for
biomedicine domain, we evaluate zero-shot per-
formance on PubMedQA (Jin et al., 2019) and
USMLE (Jin et al., 2021), few-shot performance
on ChemProt (Kringelum et al., 2016), MQP (Mc-
Creery et al., 2020) and RCT (Dernoncourt and
Lee, 2017); for finance domain, we evaluate zero-
shot performance on ConvFinQA (Chen et al.,
2022) and few-shot performance on FPB (Malo
et al., 2014), FiQA SA (Maia et al., 2018), Head-
line (Sinha and Khandait, 2021), and NER (Al-
varado et al., 2015).

D Data Contamination Analysis

We measure cross-contamination between the eval-
uation datasets and the training data using the sub-
string match method described in OpenAI (2023):
an evaluated example is considered contaminated
if a sub-string of it appears in the training data.
Table 9 shows:
• Total Eval Examples: The number of all evalu-

ated examples in each dataset.
• Contam in Raw Corpora: The number of con-

taminated examples in the raw corpora.
• Contam in Ins-Aug Corpora: The number of con-

taminated examples in the instruction-augmented
corpora, which includes the raw corpora and the
synthesized instruction-response pairs.

• Contam in Synthesized Pairs: The number of con-
taminated examples introduced by synthesized
pairs, calculated by subtracting the number of
contaminated examples in the raw corpora from
those in the instruction-augmented corpora.
The results indicate the synthesized pairs intro-

duce minimal contamination to the training data.
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ARC-e/c BoolQ SIQA WG PIQA OBQA HS MMLU

Total Eval Examples 2376/1172 3270 1954 1267 1838 500 10042 14042
Contam in Raw Corpora 5/3 144 0 0 3 0 4 20
Contam in Ins-Aug Corpora 5/4 144 0 0 3 0 4 22
Contam in Synthesized Pairs 0/1 0 0 0 0 0 0 2

Table 9: Data contamination analysis of raw corpora, instruction-augmented corpora and the synthesized
instruction-response pairs. “WG” and “HS” represent WinoGrande and HellaSwag, respectively.

Accuracy Relevance # Category

General 75.5 87.5 51
BioMed. 81.0 97.0 21
Finance 73.5 88.0 39

Table 10: Human evaluation of response accuracy,
context relevance, and number of task categories on
the instruction-augmented corpora.

Coverage Coverage (multi-domain) Overlap

86.8 77.8 84.9

Table 11: Domain coverage and overlap between the
raw text and the synthesized instruction-response pairs.

E Human Evaluation on
Instruction-Augmented Corpora

We conduct human evaluation to analyze the
instruction-augmented corpora from the following
aspects:

• Response Accuracy: A binary score indicating
whether the response is accurate based on the
instruction and context, where 1 means accurate
and 0 means inaccurate. We report the average
score of all responses.

• Context Relevance: A binary score indicating
whether the instruction-response pair is relevant
to the context of the raw text, where 1 means
relevant and 0 means irrelevant. We report the
average score of all instruction-response pairs.

• # Task Category: The evaluator categorizes each
instruction-response pair using a predefined list
of task categories from Wang et al. (2022). We
report the number of different categories of all
the instruction-response pairs to show diversity.

From the results in Table 10, the synthesized
instruction-response pairs span 51 different task
categories, with over 85% relevance to the context
and 70% response accuracy.

F Domain Distribution Analysis

We analyze domain distribution to evaluate the ef-
fectiveness of our instruction synthesizer in gen-
erating instruction-response pairs closely aligned
with the domain of the given raw context.

Domain Coverage and Overlap For each
instruction-augmented text, we calculate the fol-
lowing scores and report the average on all the
instruction-augmented texts:
• Domain Coverage: The ratio of text domains

included in the instruction domains to all text
domains.

• Domain Coverage (multi-domain only): We
specifically compute domain coverage for the
cases where a raw text contains multiple do-
mains.

• Domain Overlap: The overlap of raw text do-
mains and instruction domains divided by the
union of raw text and instruction domains.
As shown in Table 11, the synthesized

instruction-response pairs cover most of the do-
mains in the raw text, with a high domain overlap
with the raw text. For the texts containing more
than one domain, our instruction synthesizer gen-
erates, on average, 5 instruction-response pairs per
raw text, with each pair potentially covering a dif-
ferent domain. According to the domain cover-
age (multi-domain only), when a single raw text
includes multiple domains, our instruction synthe-
sizer can effectively generate instruction-response
pairs that cover most of the text domains.

Domain Distribution We analyze domain distri-
butions of the following sources:
• Fine-tuning data for the instruction synthesizer.
• Raw pre-training corpora (Penedo et al., 2023).
• Synthesized instruction-response pairs based on

the raw pre-training corpora.
As shown in Table 12, despite the domain distri-

butions of fine-tuning data and raw corpora being
very different, the synthesized pairs closely follow
the domain distribution of the raw corpora.
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Encyclo Fiction Academic Trivia News Expert Social Code

Fine-tune Data 22.2 11.1 22.2 3.7 7.4 29.6 3.7 0.0
Raw Corprora 5.8 9.6 3.5 0.0 20.3 42.8 14.7 3.3
Synthesized Pairs 5.8 11.8 3.3 0.1 18.8 46.0 11.1 3.1

Table 12: Domain distribution of fine-tuning data for the instruction synthesizer, raw corpora and synthesized
instruction-response pairs. “Encyclo", “Academic", “Expert" and “Social" represent Encyclopedia, Academic Tests,
Expert Materials and social media domains, respectively.

<s> <CON> Our school life is very interesting! My friends and I study hard at school. And we are good at
our lessons. We are very happy. We have lots of time for our hobbies. My classmates all want to go to
different clubs. Helen wants to join the Reading Club. She loves reading books. The Reading Club meets
every Wednesday at three thirty. Lily enjoys dancing. She wants to join the Dancing Club. It meets on
Mondays at four thirty. There’s also an Art Club. It meets on Fridays at four o’clock. Nick doesn’t want
to join the Art Club. He doesn’t like drawing. He thinks it is too difficult for him . Nick likes playing
computer games. He wants to join the Computer Club. It meets every Thursday at three forty-five. Mike
loves sports. He wants to join the football team. They play football every Monday at three thirty. I want
to join the Music Club. I like listening to music with my friends. The Music Club meets on Tuesday at
three fifteen. </CON>

<QUE> What club does Helen like? <ANS> Helen likes the reading club. </END>

<QUE> How many friends does the story teller describe? <ANS> I have four friends. </END>

<QUE> Are you and your friends smart? <ANS> unknown </END> </s><s> <CON> Billy and Sara are
brother and sister. They went to the beach with their family last July for a week, and had the best time
ever! On Monday, Billy and Sara wanted to build a giant sandcastle. They invited their new friends
Jack and Jane to help build the sandcastle. Jack and Jane had a house on the beach, so they were really
good when it came to building sandcastles. They hoped that they could make the sandcastle taller than
themselves, but they soon found they needed more help. They asked their cousin Joey to help them build
the biggest sandcastle in the world! Joey wasn’t the friendliest cousin in the world, but to Billy and Sara’s
surprise, Joey was happy to help build the sandcastle. Billy, Sara, Jake, Jane and Joey had spent the whole
day building the sandcastle, and finally, right before dinner time, they completed it. The sandcastle was
huge! It had a river around the castle, and even a bridge to cross the river. It even had a flag at the top, and
a wall that went around the castle too! They were so happy!

The rest of the week at the beach was a lot of fun for Billy and Sara. On Tuesday, they went for ice cream.
Sara’s ice cream fell and dripped all the way down to her tummy, but Billy gave her some of his. On
Wednesday, they watched the fireworks at night. On Thursday, they went swimming all day long, moving
like worms in the water. On Friday, they had to go back home. They were sad, so they started counting
down the days until next year at the beach! </CON>

<QUE> how do billy and Sara know each other? <ANS> Billy and Sara are brother and sister. </END>

<QUE> Did they do something yesterday? <ANS> no. </END>

<QUE> When did they do something? <ANS> last July </END>

<QUE> What did they do? <ANS> They went to the beach </END> </s>

Table 13: An example of a sequence for fine-tuning the instruction synthesizer. This sequence contains two
examples, both from the CoQA dataset (Reddy et al., 2019), constituting a 2-shot example.
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Hyper-Parameter Pre-Train from Scratch Continual Pre-Train

Parameters 500M 1.3B 8B
Hidden size 1536 2048 4096
Intermediate size 4320 8192 14336
Max Position Embeddings 2048 2048 8192
Num attention heads 24 32 32
Num hidden layers 16 20 32
Num key value heads 24 8 8
Rope theta 10000 10000 500000
Vocab Size 32000 32000 128256
Tokenizer Mistral Mistral Llama3
Computing infrastructure 8 A100-80GB GPUs 8 A100-80GB GPUs 4 A100-80GB GPUs
Run-time 5 days 10 days 1 day
Train steps 200K 100K 4K
Batch size 0.5M tokens 1M tokens 0.25M tokens
Max Sequence Length 2048 2048 4096
Max Learning Rate 3e-4 2e-4 1e-5
Optimizer Adam Adam Adam
Adam beta weights 0.9, 0.95 0.9, 0.95 0.9, 0.95
Learning rate scheduler cosine cosine cosine
Weight decay 0.1 0.1 0.1
Warm-up steps 2000 2000 1000
Gradient clipping 1 1 1
Dropout ratio 0.1 0.1 0.1

Table 14: Hyper-parameters of pre-training from scratch and continual pre-training.

# Param. # Token ARC-e/c BoolQ SIQA WG PIQA OBQA HS MMLU

Instruct PT 500M 100B 54.8/27.4 62.0 47.2 54.8 69.9 30.8 47.3 25.3
GPT-2 774M - 53.8/24.9 62.1 45.5 54.5 69.3 30.6 45.3 25.5
Pythia 1B 300B 59.0/28.8 61.6 46.3 52.6 69.3 32.6 47.2 26.1
BLOOM 1.1B 341B 52.3/28.3 61.5 45.9 52.7 67.2 28.6 43.0 26.6

Instruct PT 1.3B 100B 60.5/30.9 62.2 49.2 55.9 73.6 33.4 54.3 27.3
OPT 1.3B 300B 60.1/31.1 62.4 48.4 58.2 71.0 34.0 53.8 25.1
GPT-2 1.5B - 60.2/29.6 63.5 47.3 56.2 70.5 33.2 50.8 26.3
BLOOM 3B 341B 63.1/35.3 62.2 48.8 57.4 70.5 33.0 54.6 25.9

Table 15: Comparison between our pre-trained models and other open-source models (Radford et al., 2019;
Biderman et al., 2023; Workshop et al., 2022; Zhang et al., 2022) on general benchmarks. “WG” and “HS” represent
WinoGrande and HellaSwag, respectively.
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Not a writer, a writer wannabe, editor, lit maj, or pretend literary critic. Just an avid reader/listener. My
ratings are opinion only.
I love all genres of books. However, when I listen to audio books as I clean, garden, drive they are better
with a lot of heat!
"Laborious"
This might have been a bit more tolerable if narrator was better. I am happy to say that I did finish the
book but it just seemed to go and on. Like other listeners the book itself reminded me of a bad TV show.
Not horrible but of all the books I have listened to this is just bearly average.

Problem: Pick your answer from:
a). They didn’t like the genre.;
b). They did n’t have enough time to read it.;
c). They did n’t like the author.;
d). They did n’t like the narrator.;
Q: What may be the reason for them not finishing the book?

Answer: d).

Customer Web Interaction: Fundamentals and Decision Tree From Virtual Communities
Authors
Enrico Senger, Sandra Gronover, and Gerold Riempp, University of St. Gallen
Abstract
In order to utilise the new possibilities of Internet technology efficiently, many companies invest consider-
able sums in the development of communication channels to customers. In this context, the often-quoted
objective of cost saving per interaction appears to be questionable, since new communication media have
not been able to fully substitute the existing systems. Costs are therefore more likely to rise than drop.
The following article discusses potentials, criteria, conditions and consequences related to the use of
computer-mediated environments for customer interaction. The objective is to derive recommendations
for action in respect of a context-dependent support, especially by means of web collaboration and
self-service-options.
Download Customer Web Interaction: Fundamentals and Decision Tree

Problem: Pick your answer from:
a). It can be edited.;
b). It can be read offline.;
c). It can be read online.;
d). It can be used offline.;
Q: What may happen after the download?

Answer: c).

Table 16: A case of a 2-shot example in the general instruction-augmented corpora.
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Read this article and answer questions
# Correlation between increased airway responsiveness and severity of pulmonary edema.
To determine whether the severity of the pulmonary edema in sheep models of cardiogenic and non-
cardiogenic pulmonary edema correlate with concomitant alterations in airway responsiveness using
three separate measures of pulmonary edema: post-mortem wet-to-dry lung weight ratio (W/D), chest
radiograph (CXR) scores, and small airway wall area. Cardiogenic pulmonary edema was induced by
increasing left atrial pressure (increase PLA) and non-cardiogenic pulmonary edema was induced by
intravenous administration of Perilla ketone (PK). (...)

Does increased airway responsiveness correlate with pulmonary edema severity in sheep?
–
Let’s think first: Increased airway responsiveness correlates with severity of pulmonary edema in sheep...
So the answer is [Yes]

Read this article and answer questions
# Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyap-
atite and their scaffolds for bone tissue engineering.
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of
various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to
obtain oxygen and nutrients during tissue repair. (...)

Do immobilization of fibroblast growth factors 1 and 2 on silicon-doped hydroxyapatite scaffolds for bone
repair?
–
Let’s think first: This study demonstrated the efficient immobilization of FGF-1 and FGF-2 on Si-HA
and Si-HA scaffolds, retaining their biological activity on osteoblasts. Thus, these FGF/scaffolds may be
useful in bone tissue engineering applications... So the answer is [Yes]

Read this article and answer questions
# Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery
wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata
and Allium cepa.
The leather industry is a major source of environmental pollution in India. The wastewater generated by
leather industries contains very high pollution parameters due to the presence of a complex mixture of
organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP)
and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated
wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of
CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to
measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS
analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using
Vigna radiata L. and Allium cepa L. (...)

Is common effluent treatment plant wastewater safe for the environment?
–
Let’s think first: The present study revealed the presence of high levels of various pollutants in CETP
treated tannery wastewater. Moreover, the toxicity assessment showed the phytotoxic and genotoxic nature
of the wastewater which suggests that this wastewater cannot be directly discharged into the environment
without any further treatment... So the answer is [No]

Table 17: A case of a 3-shot example in the instruction-augmented corpora for biomedicine domain. Certain
portions are omitted for brevity and are represented as (...)
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Answer questions based on this article:
Once the MOASS is truly over would anyone like an AMA with DFV AND RC? I would love to learn
what went on through their minds and the events all the way from 2019 to post-MOASS.
They must be dying to talk about all the things that went on (but couldn’t because of all the potential
controversy and lawsuits that can be had) and apes would love to get the official explanation on the cryptic,
and some not so cryptic tweets from DFV and RC. Edit: it may be obvious but it’s just an opinion of mine
on to see what they may have to say. If it does somehow gain enough traction, we would respectfully ask
them if they’re interested. If not, no AMA. Simple as that. I’ve been thinking what we should do is once
the squeeze is over let it die down a bit and then we should start a gmecon or something similar. I wanted
to right a post about it but my karma is too low so if someone else wants to put it out there and see what
people think that would be great. Personally I’m in this stock for life and would love an annual event
where we could all meet up and have in person Q and A’s with RC, DFV and others, even someone like
Jordan Belfort to hype up the apes after we take our tendies. also would be good to see all gamestops
ideas for the future. Just a thought hope there’s some way we could make this happen.

question below:
What might happen after the MOASS?
answer below:
People will want an AMA with DFV and RC

question below:
What might happen if they did an AMA with DFV and RC?
answer below:
They would ask questions about the cryptic tweets

Answer questions based on this article:
Pixar’s ‘Lightyear’ snares $51 million in domestic opening
Pixar’s “Lightyear” rocketed to a $51 million domestic opening, the best performance of an animated
feature since the pandemic began. Internationally, the Disney film tallied $34.6 million in ticket sales,
bringing its global haul to $85.6 million. The animated film’s performance, while strong for a pandemic
release, fell short of expectations. Box office analysts had foreseen “Lightyear” bringing in between $70
million and $85 million domestically. Expectations were high because the last two films in the Toy Story
franchise both opened to more than $100 million in ticket sales, according to data from Comscore. “Toy
Story 4” in 2019 topped $120 million in its domestic debut and “Toy Story 3” generated more than $110
million during its opening 2010. “‘Lightyear’ had a great deal of potential on paper, but a number of
factors resulted in this very rare box office misfire for a Pixar release,” said Shawn Robbins, chief media
analyst at BoxOffice.com. It’s unclear if tough box office competition with Universal’s “Jurassic World:
Dominion,” which generated $58.6 million over the weekend, and Paramount and Skydance’s “Top Gun:
Maverick,” which secured another $44 million, was the reason for “Lightyear’s” smaller-than-expected
opening or if consumers were confused about the film release. After all, there has not been a theatrical
release of a Pixar film since 2020’s “Onward.” (...)

question below:
What is the main point of the article?
answer below:
Lightyear fell short of expectations

question below: What is the author’s opinion of why the movie had a smaller than expected opening?
answer below:
It had tough box office competition

Table 18: A case of a 2-shot example in the instruction-augmented corpora for finance domain. Certain portions
are omitted for brevity and are represented as (...)
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