
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 2551–2575
November 12-16, 2024 ©2024 Association for Computational Linguistics

LEMoE: Advanced Mixture of Experts Adaptor for Lifelong Model Editing
of Large Language Models

Renzhi Wang, Piji Li∗
College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics, China
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China

{rzhwang,pjli}@nuaa.edu.cn

Abstract

Large language models (LLMs) require contin-
ual knowledge updates to stay abreast of the
ever-changing world facts, prompting the for-
mulation of lifelong model editing task. While
recent years have witnessed the development
of various techniques for single and batch edit-
ing, these methods either fail to apply or per-
form sub-optimally when faced with lifelong
editing. In this paper, we introduce LEMoE,
an advanced Mixture of Experts (MoE) adap-
tor for lifelong model editing. We first ana-
lyze the factors influencing the effectiveness
of conventional MoE adaptor in lifelong edit-
ing, including catastrophic forgetting, incon-
sistent routing and order sensitivity. Based on
these insights, we propose a tailored module
insertion method to achieve lifelong editing,
incorporating a novel KV anchor routing to
enhance routing consistency between training
and inference stage, along with a concise yet
effective clustering-based editing order plan-
ning. Experimental results demonstrate the ef-
fectiveness of our method in lifelong editing,
surpassing previous model editing techniques
while maintaining outstanding performance in
batch editing task. Our code can be found at:
https://github.com/rzhwang/LEMoE.

1 Introduction

Large language models (OpenAI, 2023; Touvron
et al., 2023a,b; Jiang et al., 2023; Bai et al., 2023)
encode a vast amount of world knowledge dur-
ing pre-training, which can be accessed and uti-
lized through natural language prompts (Petroni
et al., 2019). However, the dynamic nature of the
real world necessitates regular and continual up-
dates to these models to correct outdated infor-
mation or integrate new knowledge (Yao et al.,
2024; Wang et al., 2024). Also, retraining or fine-
tuning of LLMs is often resource-intensive and

*Corresponding author

FFN1 FFN2 FFNi FFNn

KV Anchor

Routing

Data1 Data2 Datai Datan

Lifelong

Editing:

Module:

…

…

…

…

Timeline:

Figure 1: The conceptual framework for LEMoE. We
align the expert networks in MoE architecture with data
batches and freeze the expert networks corresponding
to previous data when conducting current edits. Datai
and FFNi represent the current data and module, with
dashed line parts indicating future edits.

time-consuming (Li et al., 2024a), making it im-
practical for lifelong growing knowledge. There-
fore, lifelong model editing (Hartvigsen et al.,
2023) has been proposed to remedy the continual
knowledge updates and injections for LLMs in a
cheap and timely manner (Wang et al., 2024).

In recent years, there has been a proliferation
of effective model editing techniques proposed for
single or batch editing, such as MEND (Mitchell
et al., 2022a), ROME (Meng et al., 2022),
MEMIT (Meng et al., 2023), and MEMoE (Wang
and Li, 2024). However, these methods often prove
inapplicable or exhibit suboptimal performance
when faced with lifelong editing task (Wang et al.,
2024). In this paper, we introduce LEMoE, an
advanced Mixture of Experts (MoE) adaptor, to
address the challenges inherent in lifelong editing.

Initially, we analyze the factors that influence
the effectiveness of conventional MoE adaptor in
lifelong editing, including catastrophic forgetting,
inconsistent routing, and order sensitivity. In the
Catastrophic Forgetting Analysis (§3.1), we evalu-
ate the performance of conventional MoE adaptor
at different positions within the editing sequence to
quantify the impact of subsequent edits on preced-

2551

https://github.com/rzhwang/LEMoE

ing ones. We observe that the conventional MoE
adaptor exhibits significant catastrophic forgetting,
where earlier edits are more prone to errors. In
the Routing Consistency Analysis (§3.2), we com-
pare the expert networks selected by routing strat-
egy during the training and inference stages when
faced with the same input. This comparison reveals
a routing inconsistency in the conventional routing
strategy, where identical inputs are routed to differ-
ent experts at different stages. Finally, in the Order
Sensitivity Analysis, we highlight that editing or-
der profoundly impacts model performance (§3.3).
Through varying the sequence order of the same
dataset during lifelong editing, we observe perfor-
mance variations of up to 20 points, surpassing the
improvement of some optimization algorithms.

Based on these insights, we propose a tailored
module insertion method to achieve lifelong editing
(§4.1). As illustrated in Figure 1, we align the ex-
pert networks in the MoE architecture with the data
batches in the sequential editing process. When
conducting current editing, we freeze the expert net-
work corresponding to the previous data, thereby
mitigating the adverse effects of current data edit-
ing on previous edits and alleviating catastrophic
forgetting from a model mechanism perspective.
Secondly, we introduce a novel Key-Value (KV) an-
chor routing (§4.2), wherein each expert is assigned
a key vector and the input instance-level embed-
ding serves as the corresponding value. Based on
these key-value pairs, we align the routing compu-
tation processes during both training and inference
stage. This ensures that identical inputs undergo
same routing computation to reach the same expert
across all stages, thereby enhancing routing consis-
tency and further mitigating catastrophic forgetting.
Finally, leveraging the consistency between the
MoE preferences of editing order and the objec-
tives of clustering algorithm, we employ a concise
yet effective clustering-based order planning to en-
hance the overall performance of LEMoE (§4.3).

We conduct experiments on the LLaMA-7B and
Mistral-7B models using the ZsRE (Levy et al.,
2017) and SelfCheckGPT (Manakul et al., 2023)
datasets to evaluate the performance of LEMoE.
Experimental results show that our approach sur-
passes previous model editing methods, while
maintaining excellent performance in batch editing.

The main contributions of our work can be sum-
marized as follows:

• We analyze the influential factors of conven-

tional MoE adaptor in lifelong editing task,
including catastrophic forgetting, inconsistent
routing, and order sensitivity.

• We introduce LEMoE, an advanced MoE adap-
tor for lifelong model editing. To address the
aforementioned challenges, we propose a mod-
ule insertion method, KV anchor routing, and
clustering-based order planning.

• Experimental results show the efficacy of our
proposed method in lifelong editing, while si-
multaneously preserving outstanding perfor-
mance in batch editing.

2 Preliminaries of Model Editing

Based on previous research (Yao et al., 2023;
Zhang et al., 2024; Li et al., 2024a), model editing
involves the process of transforming an initial base
model fθ (where θ denotes the model’s parameters)
into an edited model fθ′ . The goal is to modify
the model’s outputs for a specific set of editing in-
stances, while maintaining consistent behavior for
all other instances (Li et al., 2024a). The target
editing instance can be described as (xei , y

e
i), with

the condition that fθ(xei) ̸= yei . The set of this
instances is termed the editing scope Iedit, whereas
the out-of-scope set Oedit comprises inputs not as-
sociated with the editing examples. Formally, the
criteria for a successful edit can be described as:

fθ′ (xi) =

{
yei if xi ∈ Iedit

fθ(xi) if xi ∈ Oedit

(1)

We divide model editing tasks into two cate-
gories: Batch Editing and Lifelong Editing:
1) Batch Editing refers to the simultaneous modi-
fication of model fθ using multiple input instances
in one editing operation:

θ′ ← argmin
θ

∑n

i=1
(∥ fθ(xei)− yei ∥) (2)

where n represents the batch size. Batch editing
with batch size of 1 is also known as Single Editing.
2) Lifelong Editing refers to the continuous it-
erative modification of model fθ, also known as
Sequential Batch Editing. Lifelong editing use
dataset Dedit = {B1,B2, . . . ,Bs} with s sequen-
tial batches and each batch Bi contains n edits:

θ′ ← argmin
θ

s∑

j=1

j×n∑

i=(j−1)×n+1

(∥ fθ(xei)− yei ∥)

(3)

2552

0 20 40 60 80 100
Batch Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
lia

bi
lit

y Avg

Catastrophic Forgetting Analysis

Immediate evaluation
Final evaluation

1 2 3 4

Expert Number

1

2

3

4

Ex
pe

rt
Nu

m
be

r

0.46 0.23 0.26 0.05

0.19 0.39 0.20 0.22

0.19 0.21 0.27 0.33

0.16 0.17 0.27 0.40

Routing Consistency Analysis
1 2 3 4

Expert Number

1

2

3

4

Ex
pe

rt
Nu

m
be

r

(a) Lifelong Editing Results (b) Batch Editing Results

0.82 0.07 0.10 0.01

0.07 0.69 0.03 0.21

0.05 0.15 0.73 0.07

0.06 0.09 0.14 0.71
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Left: Reliability of conventional MoE under different stage evaluation. “Immediate evaluation” occurs
immediately after each edit, “Final evaluation” occurs after all edits in lifelong editing. Right: Visualization of
routing consistency. The value Cij in each block denotes the proportion of the input data processed by expert i
during the training phase that is routed to expert j during the testing phase. Model: LLaMA2-7B. Dataset: ZsRE.

Note that the model is not rolled back to the initial
state after each batch editing. Similarly, lifelong
editing with batch size of 1 in the sequence is also
referred to as Sequential Editing.

Based on the above settings, an effective model
editor must satisfy the criteria of three fundamental
properties: Reliability, Generalization, and Local-
ity (Yao et al., 2023). These properties are formally
defined as follows (Zhang et al., 2024):
1) Reliability denotes the average precision of the
post-edit model fθ′ concerning the intended edits:

E(xe
i ,y

e
i)∼Iedit1

{
argmaxy fθ′ (y | xei) = yei

}
(4)

2) Generalization quantifies the average precision
of the model fθ′ on instances uniformly sampled
from the equivalence neighborhood Nedit, encom-
passing input/output pairs pertinent to Iedit:

E(xi,yei)∼Nedit
1
{
argmaxy fθ′ (y | xi) = yei

}

(5)
3) Locality is measured by the proportion at which
predictions of the post-edit model fθ′ remain unal-
tered compared to the pre-edit model fθ:

E(xi,yi)∼Oedit
1
{
fθ′ (y | xi) = fθ (y | xi)

}
(6)

3 Analysis of Influencing Factors

In this section, we analyze the factors that influ-
ence the effectiveness of conventional MoE adaptor
in lifelong editing, including Catastrophic Forget-
ting Analysis (§3.1), Routing Consistency Analysis
(§3.2), and Order Sensitivity Analysis (§3.3).

3.1 Catastrophic Forgetting Analysis
In the field of continual learning, the general phe-
nomenon of catastrophic forgetting where training

on new tasks degrade performance on old tasks
has been extensively reported and studied (Kotha
et al., 2023). We aim to investigate whether the
MoE adaptor in lifelong model editing also suffers
from catastrophic forgetting: whether editing with
new data leads to forgetting previously edited data.
To assess this, we employ the classic evaluation
method for catastrophic forgetting, which involves
measuring the performance decrease on previously
edited data during the course of lifelong editing.

Experiments To evaluate the impact of current
data editing on previous ones during the lifelong
editing process, we employ two different stage eval-
uation methods: (1) a normal evaluation conducted
on all editing data only after all edits are completed,
and (2) an evaluation conducted immediately after
editing the current data to assess the effectiveness
of these edits at the current stage. We do not set up
another control group where the base model edits
only the current data without considering previous
data because the accuracy of MoE adaptor under
the second evaluation method is nearly 100%. We
utilize the LLaMA2-7B as base model and ZsRE
dataset (detailed in §5.1). In lifelong editing setting,
we perform 100 sequential editing steps, with each
step editing a batch of 10 instances, resulting in a to-
tal of 1000 edited instances. The evaluation metric
is Reliability (detailed in §2). The implementation
of conventional MoE adaptor follows (Wang and
Li, 2024), employing 4 experts and topk = 1.

Results In the left plot of Figure 2, the reliability
of the immediate evaluation during the entire life-
long editing process shows that only once do the
score fall below 100. This indicates that the model

2553

consistently achieves desired editing goals at every
individual step. However, the model’s overall per-
formance is only around 60 in the final evaluation,
with earlier edits exhibiting a more significant de-
cline in effectiveness and some initial edits scoring
close to 0. This suggests a pronounced catastrophic
forgetting phenomenon, where the model’s forget-
fulness of previous editing data markedly dimin-
ishes its overall performance in lifelong editing.

3.2 Routing Consistency Analysis

In MoE structure, the specificity of experts directly
impacts model performance (Fedus et al., 2022).
The design philosophy of MoE adaptor encourages
"professional people do professional things", en-
suring that the same inputs are routed to the same
expert for processing during both training and test-
ing phases (Wang and Li, 2024). We aim to assess
the consistency of the routing within the MoE adap-
tor under lifelong editing setting and explore the
degree of specificity among these experts.

Experiments To assess the routing consistency,
we log the processing expert for each input during
the training phase and compare it against the ex-
pert processing the same input during testing. We
train models under batch editing setting and life-
long editing setting on identical dataset to compare
routing consistency across different tasks. In the
lifelong editing setup, sequential editing steps is
set to 100 steps, each step editing a batch of 10
instances. Maintaining the same edited data, batch
editing utilize a batch size of 1000. We employ
LLaMA2-7B and ZsRE, with all other experimen-
tal settings consistent with §3.1.

Results On the right side of Figure 2, each sub-
graph depicts the proportion Cij where the input
processed by expert i during the training phase is
routed to expert j during the testing phase. The
diagonal element Cii represents the probability that
the same input is routed to the same expert during
both training and testing phases. Experimental re-
sults comparing two editing setups reveal that rout-
ing consistency is notably poorer in lifelong editing
task, with minimal specificity observed among dif-
ferent experts. In contrast, batch editing exhibits
significant routing consistency. Hence, there is a
critical need to devise more accurate and effective
routing algorithm to guide expert specialization.

100 1000
Total Number of Edits

50

60

70

80

90

Re
lia

bi
lit

y

0.3072 0.3074 0.3076 0.3078 0.3080 0.3082 0.3084 0.3086
Within-batch Semantic Similarity

56

58

60

62

64

66

Re
lia

bi
lit

y

0.974 0.975 0.976 0.977 0.978 0.979
Between-batch Semantic Similarity

Within-batch Similarity
Between-batch Similarity

Figure 3: Left: Performance variability under different
editing order. Right: Within-Batch/Between-Batch Se-
mantic Similarity v.s. Reliability.

3.3 Order Sensitivity Analysis

In continual learning, the performance of a model
significantly varies based on the order of the task
arrival sequence (Bell and Lawrence, 2022; Yoon
et al., 2020). Previous researches on lifelong edit-
ing ignored the impact of editing order on perfor-
mance. Therefore, we aim to investigate how dif-
ferent editing order affect the overall performance
in lifelong editing. Additionally, model tend to
learn similar tasks more effectively in continual
learning (Bell and Lawrence, 2022), and sentences
with high semantic similarity often contain related
knowledge. Therefore, we also aim to explore the
relationship between the semantic similarity of edit-
ing inputs and the editing results.

Experiments To evaluate the model’s editing or-
der sensitivity, we employ the same set of edit-
ing data and randomly shuffle the order before
performing lifelong editing. In this lifelong edit-
ing setup, the sequential editing steps is set to
10, with each step editing a batch of 10 (or 100)
instances, resulting in a total of 100 (or 1000)
edited instances. Each of these two data vol-
umes experiment is conducted 100 times. To as-
sess the relationship between the semantic simi-
larity of the editing inputs and the editing results,
we calculate both within-batch semantic similar-
ity (WBS) and between-batch semantic similar-
ity (BBS) of the editing data. Specially, given
dataset Dedit = {B1,B2, . . . ,Bs} with s sequen-
tial batches and each batch Bi contains n edits
Bi = {(xei , yei)}i∈[1,n], the WBSi of Bi and BBS
can be calculated as:

WBSi =
2

n(n− 1)

∑
1≤i<j≤n

sim(ei, ej) (7)

BBS =
2

s(s− 1)

∑
1≤i<j≤s

sim(Bi,Bj) (8)

2554

FFN1

Lifelong Editing:

Timeline:

Data1 Data2 Datai Datan
……

FFN1 FFN2 FFNi FFNn

KV Anchor Routing

……

Conventional MoE Adaptor

FFN1

FFN1 FFN2 FFNi FFNn

KV Anchor Routing

……

LEMoE

Add & Norm
Output

…

Embedding

Input

Transformer

…

Transformer

…

Transformer

Layers

after

editing

Layers

before

editing

Editing

layer

Input

Training phase

KV Anchor

Routing
vi

FFN1

FFN2

FFNi

… …

FFNi

Output

ki

k2

k1

vi

vi

vi FFN1

FFN2

FFNi

…

FFNi

Output

ki

k2

k1

…

LLM

… 𝑔𝑖 𝑔1 𝑔2

vi

vi

vi

Feature

Projection

Inference phase

LLM

Figure 4: The overall architecture of LEMoE compared with conventional MoE adaptor. We assume that LEMoE is
currently at time i to edit datai using module FFNi. Left: When editing data datai, the prior experts corresponding
to previous data are all frozen, leaving only the new model FFNi and router trainable. Right: In the training stage,
depicted by the solid lines, the routing weight g(i | x) (abbreviated as gi) is computed using the instance-level
embedding and expert key vectors {k1,k2, . . . ,ki} for expert selection. During inference, as indicated by the
dashed lines, the same routing computation is employed to direct the input to the corresponding expert.

where sim(·) denotes cosine similarity based on
embedding, ei = concat(embed(xei , y

e
i)) and

embed represents the embedding vector output
from the model’s embedding layer. For input con-
sisting of multiple tokens, the embedding is the
mean for each token. In Equation 8, Bi = Ei(ei)
denotes the average semantic vector for the i-th
group. We employ LLaMA2-7B and ZsRE, with
all other experimental settings consistent with §3.1.

Results On the left of Figure 3, the MoE adaptor
demonstrates significant order sensitivity. Varying
the order of the same editing data leads to perfor-
mance fluctuations exceeding 20 points. In 100
data editing, these fluctuations even range from 30
to 90 point. This substantial impact of editing order
on model performance suggests that adopting order
align with model preferences can greatly enhance
editing efficiency. The results on the right reveal
that higher within-batch semantic similarity and
lower between-batch semantic similarity correlate
with better editing results. These provide insights
for designing more effective editing order.

4 Methods

Based on the above insights, in this section, we pro-
vide a detailed introduction to LEMoE an advanced
MoE adaptor with new module inserting, KV an-
chor routing and clustering-based order planning.

4.1 New Module Inserting

Inspired by (Wang and Li, 2024), LEMoE intro-
duces multiple parallel experts within the trans-
former feed-forward network (FFN) via a bypass
mechanism, while freezing all the model’s original
parameters. This module is applied in only one
transformer block of the entire model. The choice
to use the FFN module is motivated not only by its
traditional role in MoE but also by recent experi-
mental findings from knowledge probing technolo-
gies that suggest the MLP layers within the FFN
store knowledge (Geva et al., 2021; Meng et al.,
2022, 2023). The bypass mechanism preserves all
the original parameters of the model, enhancing the
locality of model editing.

However, in conventional MoE adaptor, all ex-
perts are sequentially trained without any mech-
anism to protect prior editing knowledge, which
allows current edits to easily affect previous ones
and leads to severe catastrophic forgetting. Mean-
while, experimental results indicate that a single
FFN expert is sufficient to learn a batch of editing
data (Wang and Li, 2024). Therefore, in LEMoE,
we adopt a straightforward method to maintain ed-
its from previous learning phases. As shown on the
left of Figure 4, when facing a new batch of editing
data in the sequence, we add a new FFN module as
an expert to learn this batch of data and freeze the
expert network corresponding to the previous data.
By aligning the expert networks in MoE architec-
ture with the data batches in lifelong editing, we

2555

mitigate the adverse effects of current data editing
on previous edits, thereby alleviating catastrophic
forgetting from a model mechanism perspective.

Specially, when the t + 1th batch in lifelong
editing dataset arrives, the LEMoE adaptor inte-
grates previous t experts denoted as f1, f2, . . . , ft,
a router g(i | x) which outputs the corresponding
coefficients for each fi based on the input x along
with a newly added expert ft+1. The output h of
this module can be expressed as:

h(x) = W0 · x+ λ
t+1∑

i=1

g(i | x)fi(x)

g(i | x) = Topk(
er(x)i∑
er(x)j

)

(9)

where W0 is the frozen original FFN parameters,
r(x) is the routing strategy and is modeled by one
MLP in conventional MoE. λ is a non-negative
weighting coefficient used to balance the old and
new knowledge and usually set to 1.

4.2 KV Anchor Routing
We propose the KV anchor routing to align the
training and inference processes for expert selec-
tion, thereby enhancing routing consistency and
addressing catastrophic forgetting at routing level.

During the training phase, when the t-th batch
in the lifelong editing dataset arrives, we freeze the
parameters of all previous experts f1, f2, . . . , ft−1

and introduce a new expert ft to accomplish the
current batch editing. We allocate a key vector ki

for each expert fi (at time t, only ft is allocated a
new key, while the keys corresponding to previous
experts remain frozen) and compute instance-level
embedding features of the input as values.

The KV anchor process begins with the j-th in-
put sentence Xjt = {xjti }Li=1 of the current t-th
batch data passing through the embedding layer
of the LLM backbone to obtain Et

j (we omit the
superscripts t for simplicity). Since Ej ∈ Rm×d

and each key vector ki ∈ Rd have different se-
quence lengths, we apply mean-pool operation on
the length dimension of Ej , and obtain ej ∈ Rd.
Then ej is fed to a sub-network to project it into the
spaces of the key vectors for better feature align-
ment. This consists of down and up projection:

vj = W up(SiLU(W down · ej)) (10)

where W down ∈ Rdp×d and W up ∈ Rd×dp are
learnable projection parameters. Then, the router

g(i | ej) in Equation 9 can be defined as:

g(i | ej) = Topk(
ekjvj

∑t
i=1 e

kivi
) (11)

The output for the input token xjti of aggregated
experts can be obtained:

h(xjti) = W0 · x+ λ

t∑

i=1

g(i | ej)fi(xjti) (12)

During the inference phase, when testing data
from different batches arrive, they undergo the
same routing computation of Equations 10 and 11
to reach the appropriate expert. Although there
is a possibility that the earlier testing data may be
routed to the experts corresponding to the later data,
we mitigate this issue by employing the clustering-
based editing order selection described in §4.3
which reduces semantic similarity between batches.
In summary, aligning the routing computations dur-
ing training and testing phases through KV anchors
enhances routing consistency and further mitigates
catastrophic forgetting.

4.3 Clustering-based Order Planning
In §3.3, we observed a correlation between im-
proved editing performance and editing order char-
acterized by high between-batch semantic similar-
ity and low within-batch semantic similarity. This
suggests that editing performance can be improved
by selecting editing order that align with model
biases. Additionally, this objective aligns with the
goals of clustering algorithms which aim for high
intra-cluster similarity and low inter-cluster simi-
larity. Therefore, we employed the K-means algo-
rithm to group the editing data based on semantic
similarity and preferentially selected data from the
same cluster for each batch during editing. Exper-
imental results indicate that this straightforward
approach is highly effective.

5 Experiments

5.1 Experimental Setups
Datasets and Metrics We used two lifelong
model editing datasets: ZsRE (Levy et al., 2017)
and SelfCheckGPT (Manakul et al., 2023). ZsRE
is a context-free Question Answering (QA) dataset
built upon zero-shot relation extraction, and we
adopt the split provided by (Zhang et al., 2024).
SelfCheckGPT is a dataset for evaluating the per-
formance of model editing methods on mitigat-
ing model hallucination, and we We followed the

2556

Table 1: Lifelong editing results. Bold is the best result. T : Num Edits.

Method
ZsRE SelfCheckGPT

T = 100 T = 1000 T = 100 T = 600

Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ PPL↓ Loc.↑ PPL↓ Loc.↑
LLaMA2-7B

FT-L 0.30 0.27 0.23 0.27 0.19 0.16 0.03 0.13 33.06 0.41 69.22 0.26
FT-EWC 0.83 0.74 0.08 0.55 0.76 0.69 0.08 0.51 2.10 0.16 4.56 0.24
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.04 0.88 1847.90 0.00
ROME 0.23 0.22 0.04 0.16 0.01 0.01 0.00 0.01 94.15 0.05 104.93 0.02
MEMIT 0.76 0.68 0.85 0.76 0.69 0.65 0.62 0.65 7.18 0.96 13.47 0.94
DEFER 0.20 0.12 0.27 0.20 0.03 0.03 0.74 0.27 8.91 0.19 19.16 0.12
GRACE 0.96 0.00 1.00 0.65 0.97 0.08 1.00 0.68 9.44 1.00 9.34 1.00
MEMoE 0.72 0.46 1.00 0.73 0.70 0.43 1.00 0.71 3.00 1.00 6.59 1.00

LEMoE 0.83 0.62 1.00 0.82 0.80 0.60 1.00 0.80 2.01 1.00 3.36 1.00

Mistral-7B

FT-L 0.11 0.10 0.02 0.08 0.16 0.13 0.01 0.10 1594.93 0.00 - -
FT-EWC 0.82 0.72 0.09 0.54 0.76 0.69 0.09 0.51 4.73 0.17 5.46 0.25
MEND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 23114.94 0.01 - -
ROME 0.05 0.05 0.02 0.04 0.04 0.04 0.02 0.03 103.75 0.03 241.17 0.01
MEMIT 0.73 0.71 0.88 0.77 0.73 0.70 0.62 0.68 3.22 0.97 7.28 0.95
DEFER 0.28 0.17 0.26 0.24 0.02 0.02 0.67 0.24 9.54 0.43 24.16 0.13
GRACE 1.00 0.00 1.00 0.67 1.00 0.02 1.00 0.67 9.53 1.00 9.57 1.00
MEMoE 0.70 0.43 1.00 0.71 0.70 0.41 1.00 0.70 4.96 1.00 8.91 1.00

LEMoE 0.78 0.52 1.00 0.77 0.75 0.48 1.00 0.74 3.03 1.00 4.39 1.00

GRACE (Hartvigsen et al., 2023) data processing
approach. Further details about the datasets are
provided in Appendix B.1. In terms of evaluation
metrics, we use the three metrics mentioned in §2:
Reliability (Rel.), Generalization (Gen.), and Lo-
cality (Loc.), along with the average scores (Avg.)
over these metrics. Notably, for the SelfCheckGPT
dataset,following (Wang et al., 2024), we use the
perplexity (PPL) to verify Reliability, and there is
no proper metric for generalization.

Baselines We compare LEMoE with the follow-
ing four types baselines:

• Fine-tuning based methods: FT-L (Meng
et al., 2022), FT-EWC (Kirkpatrick et al., 2016).
FT-L directly fine-tunes a single layer’s FFN
and FT-EWC is a continual learning fine-tuning
methods based on Elastic Weight Consolidation.

• Locate and edit methods: ROME (Meng et al.,
2022), MEMIT (Meng et al., 2023). These
methods treat FFN of transformer as a linear
associative memory apply causal tracing to lo-
cate the editing area within model.

• Meta-learning methods: MEND (Mitchell
et al., 2022a). MEND learns a hyper-network

using additional training data to transform gra-
dient obtained by standard fine-tuning.

• Memory based methods: DEFER (Mitchell
et al., 2022b), GRACE (Hartvigsen et al., 2023).
DEFER is inspired by SERAC (Mitchell et al.,
2022b) using an external cache to store explicit
editing cases, while GRACE adopts a codebook
to store relevant edits.

Implementation Details We selected LLaMA2-
7B and Mistral-7B as base models. The modifica-
tion was applied to layer 18 with topk = 1. Due to
limited computational resources, we were able to
add a maximum of 5 FFN experts. Consequently,
the sequential editing steps were set to 5 and each
step contains a batch of 25 (or 200) instances, re-
sulting in a total of 100 (or 1000) editing instances.
We use AdamW (Loshchilov and Hutter, 2019) as
the optimizer with a learning rate of 2e-4. Further
details are provided in the Appendix B.

5.2 Main Results
Experimental results are presented in Table 1. On
ZsRE dataset, LEMoE outperforms all the compar-
ison methods in average scores, achieving up to
a 12.68% improvement over the nearest competi-

2557

Table 2: Batch editing results. Bold is the best result,
and underline is the second-best. ZsRE. LLaMA2-7B.

Method Rel.↑ Gen.↑ Loc.↑ Avg.↑
FT-L 0.14 0.13 0.70 0.32
MEND 0.01 0.28 0.97 0.34
MEMIT 0.24 0.40 0.17 0.27
SERAC 0.89 0.16 0.81 0.62
GRACE 0.95 0.38 1.00 0.78
MEMoE 1.00 0.90 1.00 0.97
LEMoE 1.00 0.88 1.00 0.96

Table 3: Scaling to 3K edits. ZsRE. LLaMA2-7B.

Method
T = 2000 T = 3000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GRACE 0.96 0.03 1.00 0.66 0.96 0.03 1.00 0.66
MEMIT 0.64 0.58 0.55 0.59 0.58 0.53 0.47 0.53
LEMoE 0.74 0.50 1.00 0.75 0.70 0.48 1.00 0.73

tor. While MEMIT shows comparable performance
at T=100, our method demonstrates a substantial
performance gap in longer sequence editing task.
In Locality, our method consistently scores 1.00,
indicating minimal impact on irrelevant inputs. Al-
though GRACE and FT-EWC achieve higher score
in Rel. and Gen. respectively, these methods make
great sacrifices in Gen. or Loc. Only our method
achieves a better balance.

The performance advantage of LEMoE is more
pronounced on SelfCheckGPT dataset, maintain-
ing the lowest perplexity score of 3.36 and 4.39 at
T = 600, with a maximum improvement of 26.31%
over the nearest competitor and a constant locality
score of 1.00. In summary, across the two datasets
and eight baselines, our method shows a clear per-
formance advantage.

6 Detailed Analysis and Discussion

6.1 Batch Editing
Considering the significant performance advan-
tages of conventional MoE adaptor in batch edit-
ing (Wang and Li, 2024), we aim to evaluate the
changes in batch editing performance of its im-
proved version, LEMoE, after applying the pro-
posed optimizations. The batch size is set to 30
here. As shown in Table 2, LEMoE continues to
excel in batch editing, achieving perfect reliabil-
ity and locality scores of 1.00, with only a slight
decline in generalization. Overall, LEMoE’s per-
formance is nearly on par with the original MoE,
demonstrating the dual advantages in both batch
editing and lifelong editing.

Table 4: Results of ablation study using 1k edits. Bold
is the best result. ZsRE. LLaMA2-7B.

Rel.↑ Gen.↑ Loc.↑ Avg.↑
LEMoE 0.82 0.59 1.00 0.80
+ Conventional Routing 0.70 0.43 1.00 0.71
+ Knowledge Routing 0.72 0.48 1.00 0.73
+ Token-level Embed. 0.75 0.46 1.00 0.74
+ Entity-level Embed. 0.80 0.57 1.00 0.79
- Order Planning 0.78 0.55 1.00 0.78
+ Hierarchical Cluster 0.82 0.58 1.00 0.80

6.2 Longer Sequence Editing
We scale the number of lifelong editing to 3K in
Table 3. We observe that LEMoE outperforms the
strongest baselines MEMIT and GRACE. GRACE
excels in reliability but almost entirely loses gen-
eralization. While MEMIT demonstrates better
generalization, its lower locality scores indicate
a significant impact on unrelated data inputs, po-
tentially affecting the model’s general ability (Gu
et al., 2024). Only our method achieves a balanced
editing performance. Moreover, the performance
advantage of our approach increases with the num-
ber of edits, highlighting the potential of LEMoE
to handle extremely long sequential editing.

6.3 Ablation Study
We present a series of ablation studies to evaluate
the influence of various model components, includ-
ing routing strategies, embedding levels and order
planning. The experimental results are shown in
Table 4. Conventional routing means the router is
modeled by an MLP, knowledge (anchor) routing is
the routing strategy in MEMoE and entity-level em-
bedding means substitute the embeddings of named
entities from the input for ej in Equation 10. More
details in Appendix B.4.

We observe that: (1) Different model settings
exhibit minimal impact on locality but significantly
affect generalization. (2) Alteration in routing
strategy notably affect reliability and generaliza-
tion, and conventional routing yields the lowest
scores across all metrics. Meanwhile, employ-
ing knowledge routing marginally enhances perfor-
mance yet still lags behind LEMoE, highlighting
the pronounced efficacy of KV-anchor routing. (3)
Using token-level embeddings for routing inputs
notably diminishes model generalization. A pos-
sible reason is that token representation may not
be suitable for measuring semantic similarity in
autoregressive LLMs (Wang et al., 2024), thereby
hindering router’s ability to router the same input to

2558

the same expert. (4) Substituting hierarchical clus-
tering for K-means in editing order planning min-
imally impacts model performance, yet K-means
demonstrates higher computational efficiency. This
may stem from our utilization of a small number
of clusters and a large batch size during dataset
construction, which provides clustering algorithms
with greater fault tolerance, thereby partially mask-
ing the performance differences between the two
clustering algorithms.

7 Conclusion

In this paper, We propose LEMoE, an advanced
MoE adaptor for lifelong model editing. We an-
alyze three factors influencing the effectiveness
of MoE adaptor in lifelong model editing. Then,
we propose three optimization modules. These
modules align the routing computation processes
between training and testing phases, ensuring the
same inputs are routed to the same experts. Experi-
mental results validate the effectiveness of LEMoE
across multiple models and datasets.

Ethics Statement

Our research on model editing and the proposed
LEMoE module adheres to the ethical guidelines
outlined by the ACL Ethics Policy. The primary
objective of our work is to enhance lifelong edit-
ing performance in LLMs. We recognize the crit-
ical importance of addressing privacy concerns
when model editing publicly accessible, central-
ized LLMs with private data. And, we acknowl-
edge the potential risks associated with direct pa-
rameter edits within models, especially when using
harmful data, which require careful mitigation. It’s
essential to bear in mind that ill-intentioned model
editing could lead the model to generate harmful
or inappropriate outputs. Therefore, ensuring safe
and responsible practices in model editing is of
paramount importance. The application of these
techniques should be guided by ethical considera-
tions, with safeguards in place to prevent misuse
and the production of harmful results. Our com-
mitment to accountability, responsible governance,
and continuous ethical assessment underscores our
dedication to upholding the highest standards of
integrity in the development and deployment of
model editing methods.

Limitations

There are several limitations to consider for future
directions of model editing of large language mod-
els. Firstly, when the learning sequence scales to
more data, such as hundreds of batches or tens of
thousands of editing instances, continually allocat-
ing an expert block for each batch would lead to
significant computational and storage costs. There-
fore, exploring methods to prune and merge similar
experts in the continual learning process presents
an interesting research direction. Secondly, our
work primarily focuses on the acquisition of factual
knowledge, neglecting other types of knowledge.
We prioritize the accuracy of knowledge learn-
ing while paying less attention to other aspects,
such as knowledge reasoning abilities. Thirdly,
due to hardware constraints, our investigation was
limited to models with up to 7 billion parame-
ters with 5 experts. Additionally, we concentrated
on decoder-only autoregressive models, excluding
encoder-decoder architectures. Further research
that replicates our study using larger-scale models
with much more experts and different architecture
would be beneficial in confirming our findings.

Acknowledgments

This research is supported by the National Natu-
ral Science Foundation of China (No.62476127,
No.62106105), the Natural Science Foundation
of Jiangsu Province (No.BK20242039), the CCF-
Baidu Open Fund (No.CCF-Baidu202307), the
CCF-Zhipu AI Large Model Fund (No.CCF-
Zhipu202315), the Fundamental Research Funds
for the Central Universities (No.NJ2023032), the
Scientific Research Starting Foundation of Nan-
jing University of Aeronautics and Astronautics
(No.YQR21022), and the High Performance Com-
puting Platform of Nanjing University of Aeronau-
tics and Astronautics.

References
Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars,

Laurent Charlin, Massimo Caccia, Min Lin, and Lu-
cas Page-Caccia. 2019. Online continual learning
with maximal interfered retrieval. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 11849–11860.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei

2559

https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html

Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Samuel J. Bell and Neil D. Lawrence. 2022. The ef-
fect of task ordering in continual learning. CoRR,
abs/2205.13323.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Alexandra Chronopoulou, Matthew E. Peters, Alexan-
der Fraser, and Jesse Dodge. 2023. Adaptersoup:
Weight averaging to improve generalization of pre-
trained language models. In Findings of the Associ-
ation for Computational Linguistics: EACL 2023,
Dubrovnik, Croatia, May 2-6, 2023, pages 2009–
2018. Association for Computational Linguistics.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 8493–
8502. Association for Computational Linguistics.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 5937–5947. Association
for Computational Linguistics.

Zhibin Duan, Hao Zhang, Chaojie Wang, Zhengjue
Wang, Bo Chen, and Mingyuan Zhou. 2021. En-
slm: Ensemble language model for data diversity by
semantic clustering. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP

2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 2954–2967. Association for
Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach.
Learn. Res., 23:120:1–120:39.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan
Anil, and Chelsea Finn. 2021. Efficiently identifying
task groupings for multi-task learning. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 27503–27516.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5484–5495. Association for Computational Linguis-
tics.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang
Xu, Aoxue Li, Dit-Yan Yeung, James T. Kwok, and
Yu Zhang. 2023. Mixture of cluster-conditional lora
experts for vision-language instruction tuning. CoRR,
abs/2312.12379.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models. CoRR, abs/2401.04700.

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub-
udhi, Eduardo Gonzalez, Damien Jose, Ahmed Has-
san Awadallah, and Jianfeng Gao. 2022. Sparsely ac-
tivated mixture-of-experts are robust multi-task learn-
ers. CoRR, abs/2204.07689.

Suchin Gururangan, Margaret Li, Mike Lewis, Wei-
jia Shi, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. 2023. Scaling expert language mod-
els with unsupervised domain discovery. CoRR,
abs/2303.14177.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.
Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Thomas Henn, Yasukazu Sakamoto, Clément Jacquet,
Shunsuke Yoshizawa, Masamichi Andou, Stephen
Tchen, Ryosuke Saga, Hiroyuki Ishihara, Katsuhiko
Shimizu, Yingzhen Li, and Ryutaro Tanno. 2021. A
principled approach to failure analysis and model
repairment: Demonstration in medical imaging. In
Medical Image Computing and Computer Assisted

2560

https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.48550/ARXIV.2205.13323
https://doi.org/10.48550/ARXIV.2205.13323
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.153
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.153
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.153
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.ACL-LONG.581
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.438
https://doi.org/10.18653/V1/2021.ACL-LONG.230
https://doi.org/10.18653/V1/2021.ACL-LONG.230
https://doi.org/10.18653/V1/2021.ACL-LONG.230
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://proceedings.neurips.cc/paper/2021/hash/e77910ebb93b511588557806310f78f1-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e77910ebb93b511588557806310f78f1-Abstract.html
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.48550/ARXIV.2312.12379
https://doi.org/10.48550/ARXIV.2312.12379
https://doi.org/10.48550/ARXIV.2401.04700
https://doi.org/10.48550/ARXIV.2401.04700
https://doi.org/10.48550/ARXIV.2204.07689
https://doi.org/10.48550/ARXIV.2204.07689
https://doi.org/10.48550/ARXIV.2204.07689
https://doi.org/10.48550/ARXIV.2303.14177
https://doi.org/10.48550/ARXIV.2303.14177
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
https://doi.org/10.1007/978-3-030-87199-4_48
https://doi.org/10.1007/978-3-030-87199-4_48
https://doi.org/10.1007/978-3-030-87199-4_48

Intervention - MICCAI 2021 - 24th International Con-
ference, Strasbourg, France, September 27 - Octo-
ber 1, 2021, Proceedings, Part III, volume 12903 of
Lecture Notes in Computer Science, pages 509–518.
Springer.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2016. Overcoming catastrophic forgetting in neural
networks. CoRR, abs/1612.00796.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu-
nathan. 2023. Understanding catastrophic forgetting
in language models via implicit inference. CoRR,
abs/2309.10105.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory G. Slabaugh,
and Tinne Tuytelaars. 2022. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
Trans. Pattern Anal. Mach. Intell., 44(7):3366–3385.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), Vancouver, Canada, August 3-4,

2017, pages 333–342. Association for Computational
Linguistics.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin
Wang, Michal Lukasik, Andreas Veit, Felix X. Yu,
and Sanjiv Kumar. 2023a. Large language models
with controllable working memory. In Findings of
the Association for Computational Linguistics: ACL
2023, Toronto, Canada, July 9-14, 2023, pages 1774–
1793. Association for Computational Linguistics.

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang
Chen, and Wai Lam. 2024a. Consecutive model
editing with batch alongside hook layers. CoRR,
abs/2403.05330.

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang
Chen, and Wai Lam. 2024b. Consecutive model
editing with batch alongside hook layers. CoRR,
abs/2403.05330.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun
Ma, and Jie Yu. 2023b. PMET: precise model editing
in a transformer. CoRR, abs/2308.08742.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia,
Lin Xiao, Xiang Ren, and Scott Yih. 2022. On con-
tinual model refinement in out-of-distribution data
streams. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3128–3139. Association for
Computational Linguistics.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei
Ma, and Wen Gao. 2021. Post-training quantiza-
tion for vision transformer. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
28092–28103.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,
Zheng Yuan, Chang Zhou, and Jingren Zhou.
2023. Routing to the expert: Efficient reward-
guided ensemble of large language models. CoRR,
abs/2311.08692.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing to
improve GPT-3 after deployment. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
2833–2861. Association for Computational Linguis-
tics.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language

2561

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/pdf?id=4oYUGeGBPm
https://openreview.net/pdf?id=4oYUGeGBPm
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1612.00796
https://doi.org/10.48550/ARXIV.2309.10105
https://doi.org/10.48550/ARXIV.2309.10105
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.112
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.112
https://doi.org/10.48550/ARXIV.2403.05330
https://doi.org/10.48550/ARXIV.2403.05330
https://doi.org/10.48550/ARXIV.2403.05330
https://doi.org/10.48550/ARXIV.2403.05330
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.48550/ARXIV.2308.08742
https://doi.org/10.18653/V1/2022.ACL-LONG.223
https://doi.org/10.18653/V1/2022.ACL-LONG.223
https://doi.org/10.18653/V1/2022.ACL-LONG.223
https://proceedings.neurips.cc/paper/2021/hash/ec8956637a99787bd197eacd77acce5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ec8956637a99787bd197eacd77acce5e-Abstract.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2311.08692
https://doi.org/10.48550/ARXIV.2311.08692
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557

models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9004–9017. Association for Computational
Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
15817–15831. PMLR.

Shikhar Murty, Christopher D. Manning, Scott M. Lund-
berg, and Marco Túlio Ribeiro. 2022. Fixing model
bugs with natural language patches. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 11600–11613. Association for Computational
Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463–2473. Association for
Computational Linguistics.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-
othy P. Lillicrap, and Gregory Wayne. 2019. Expe-
rience replay for continual learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 348–358.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin,
Wenyuan Wang, Yibin Wang, and Hao Wang. 2024.
Continual learning of large language models: A com-
prehensive survey. CoRR, abs/2404.16789.

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule,
Yuekai Sun, Justin Solomon, Neil Thompson,
and Mikhail Yurochkin. 2023. Large language
model routing with benchmark datasets. CoRR,
abs/2309.15789.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive
editing for large language models via meta learning.
CoRR, abs/2311.04661.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Frederik Träuble, Anirudh Goyal, Nasim Rahaman,
Michael Curtis Mozer, Kenji Kawaguchi, Yoshua
Bengio, and Bernhard Schölkopf. 2023. Discrete
key-value bottleneck. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 34431–34455.
PMLR.

Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 6306–6315.

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-

2562

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/pdf?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.797
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.797
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://doi.org/10.48550/ARXIV.2404.16789
https://doi.org/10.48550/ARXIV.2404.16789
https://doi.org/10.48550/ARXIV.2309.15789
https://doi.org/10.48550/ARXIV.2309.15789
https://doi.org/10.48550/ARXIV.2311.04661
https://doi.org/10.48550/ARXIV.2311.04661
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.mlr.press/v202/trauble23a.html
https://proceedings.mlr.press/v202/trauble23a.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html

Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
7882–7926. Association for Computational Linguis-
tics.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024. Wise: Rethinking the knowledge
memory for lifelong model editing of large language
models. arXiv preprint arXiv:2405.14768.

Renzhi Wang and Piji Li. 2024. Memoe: Enhanc-
ing model editing with mixture of experts adaptors.
arXiv preprint arXiv:2405.19086.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. Adamix: Mixture-of-
adaptations for parameter-efficient model tuning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 5744–5760. Association for Com-
putational Linguistics.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan,
Thuy-Trang Vu, and Gholamreza Haffari. 2024a.
Continual learning for large language models: A sur-
vey. CoRR, abs/2402.01364.

Xun Wu, Shaohan Huang, and Furu Wei. 2024b. Mix-
ture of lora experts. CoRR, abs/2404.13628.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 10222–10240.
Association for Computational Linguistics.

Zihan Yao, Yu He, Tianyu Qi, and Ming Li. 2024. Scal-
able model editing via customized expert networks.
CoRR, abs/2404.02699.

Qinyuan Ye, Juan Zha, and Xiang Ren. 2022. Eliciting
and understanding cross-task skills with task-level
mixture-of-experts. In Findings of the Association
for Computational Linguistics: EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 2567–2592. Association for Computational
Linguistics.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju
Hwang. 2020. Scalable and order-robust continual
learning with additive parameter decomposition. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza
Ermis, Acyr Locatelli, and Sara Hooker. 2023. Push-
ing mixture of experts to the limit: Extremely pa-
rameter efficient moe for instruction tuning. CoRR,
abs/2309.05444.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng
Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A
comprehensive study of knowledge editing for large
language models. CoRR, abs/2401.01286.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 4862–
4876. Association for Computational Linguistics.

Wangchunshu Zhou, Canwen Xu, and Julian J.
McAuley. 2022. Efficiently tuned parameters are
task embeddings. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 5007–5014.
Association for Computational Linguistics.

A Related Work

A.1 Model Editing
Model editing is a new and active research area
where the goal is to make targeted changes to a
pre-trained model’s behavior (Zhang et al., 2024).
Given the fast-growing parameter sizes of LLMs,
frequently updating LLMs with new knowledge
through retraining is more and more expensive.
Hence, it is vital to effectively edit the LLMs’
knowledge without retraining. Previous studies
have explored multiple methods for editing the
knowledge of LLMs, which can be broadly catego-
rized into two streams based on whether it alters
the parameters of the original model (Yao et al.,
2023; Zhang et al., 2024):

Preserve model parameters: (1) Retrieve aug-
mentation. These techniques leverage an exter-
nal knowledge base to enrich or correct informa-
tion accessible to language models. These aug-
mented knowledge bases seamlessly integrate with
the base model, enabling effective retrieval of rel-
evant information when prompted (Murty et al.,
2022; Madaan et al., 2022; Li et al., 2023a). For
example, IKE (Zheng et al., 2023) employs an in-
context learning approach that adjusts language
model outputs using corpus-based demonstrations

2563

https://doi.org/10.18653/V1/2020.EMNLP-MAIN.635
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.635
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.635
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2405.19086
https://arxiv.org/abs/2405.19086
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.388
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.388
https://doi.org/10.48550/ARXIV.2402.01364
https://doi.org/10.48550/ARXIV.2402.01364
https://doi.org/10.48550/ARXIV.2404.13628
https://doi.org/10.48550/ARXIV.2404.13628
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.48550/ARXIV.2404.02699
https://doi.org/10.48550/ARXIV.2404.02699
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.189
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.189
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.189
https://openreview.net/forum?id=r1gdj2EKPB
https://openreview.net/forum?id=r1gdj2EKPB
https://doi.org/10.48550/ARXIV.2309.05444
https://doi.org/10.48550/ARXIV.2309.05444
https://doi.org/10.48550/ARXIV.2309.05444
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2401.01286
https://aclanthology.org/2023.emnlp-main.296
https://aclanthology.org/2023.emnlp-main.296
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.334
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.334

guided by similarity metrics, thereby obviating the
need for gradient-based adjustments. (2) Adding
additional parameters: This paradigm involves
introducing additional trainable parameters to aug-
ment a language model’s existing knowledge, while
preserving its original parameters in a frozen state.
T-Patcher (Huang et al., 2023) and CaliNET (Dong
et al., 2022) exemplify this paradigm by integrating
specific neurons or patches into the final layer of
their Feed-Forward Networks. T-Patcher assigns
individual neurons to each distinct error, while Ca-
liNET incorporates multiple neurons to handle var-
ious knowledge scenarios. In contrast, GRACE
(Hartvigsen et al., 2023) employs a discrete code-
book mechanism to dynamically add and update
elements, enhancing the model’s predictive capa-
bilities over time. (3) Meta learning Recent meta-
learning methods use hypernetworks for aiding
editing. MEND (Mitchell et al., 2022a) introduces
a hypernetwork designed to decouple fine-tuning
gradients into updates that generalize edits with-
out compromising performance on unrelated in-
puts. To mitigate the cancellation issue inherent
in MEND, MALMEN (Tan et al., 2023) employs
a hyper-network to generate weight shifts for edit-
ing, formulating the aggregation of these shifts as
a least squares problem.

Modify model parameters: This methodology
begins by identifying parameters associated with
specific knowledge and directly adjusting them.
The Knowledge Neuron (KN) approach (Dai et al.,
2022) introduces a technique to attribute knowl-
edge to individual "knowledge neurons" and subse-
quently updates these neurons accordingly. ROME
(Meng et al., 2022) utilizes causal mediation analy-
sis to pinpoint areas requiring modification. Both
KN and ROME operate under the constraint of edit-
ing one factual association at a time. To overcome
this limitation, MEMIT (Meng et al., 2023) extends
ROME’s framework, enabling simultaneous edit-
ing across multiple instances. Building on MEMIT,
PMET (Li et al., 2023b) integrates attention val-
ues to achieve superior performance enhancements.
COMEBA-HK (Li et al., 2024b) identifies the Lo-
cal Editing Scope and extends MEMIT for sequen-
tial editing.

A.2 Mixture of Experts

The concept of MoE, particularly when combined
with sparse routing, is recognized for significantly
enhancing model capacity with minimal computa-

tional overhead (Fedus et al., 2022). Key distinc-
tions in this approach include: i) adapter experts
are not trained during the pre-training of the base
model, ii) they are parameter-efficient, and iii) they
are tailored to specific tasks, unlike token-level
opaque computation units whose specialization is
not easily interpretable (Jiang et al., 2024). Regard-
ing the second point, (Wang et al., 2022; Zadouri
et al., 2023) utilize routing each example to a set
of experts, demonstrating improved performance
on unseen tasks. (Gupta et al., 2022) implements
a separate router for each task and selects a router
from a similar task based on domain knowledge.
(Ye et al., 2022) proposes task-level MoEs, where
a collection of transformer layers acts as experts,
and a router dynamically selects from these ex-
perts. Additionally, several recent studies have
proposed methods for routing queries to special-
ized pretrained open-source LLMs (Lu et al., 2023;
Shnitzer et al., 2023).

A.3 Continual Learning

Continual Learning (CL) (Shi et al., 2024; Wu
et al., 2024a) is an essential aspect of machine
learning as it enables models to adapt to new tasks
while retaining performance on previous ones. It
mainly focus on the issue of catastrophic forget-
ting in deep learning models when exposed to
new knowledge (Lange et al., 2022). Recent re-
search has explored diverse approaches in this do-
main. Among these approaches, continual fine-
tuning stands out, involving the iterative refinement
of LLMs with incoming instances. For instance,
(Lin et al., 2022) conducts an extensive investiga-
tion into this method. However, it has been noted
that integrating regularized fine-tuning techniques
such as Elastic Weight Consolidation (Kirkpatrick
et al., 2016), Experience Replay (Rolnick et al.,
2019), and Maximally Interfered Replay (Aljundi
et al., 2019) can lead to a decline in performance
on earlier tasks while preserving some memory
of past inputs. This observation underscores the
challenges unique to editing in contrast to conven-
tional continual fine-tuning (Henn et al., 2021),
particularly given the uneven distribution of ed-
its. One promising avenue in continual learning
involves the adoption of key-value methodologies,
inspired by advancements in computer vision (Liu
et al., 2021; van den Oord et al., 2017). Notably,
discrete key-value methods have proven effective
in managing shifting distributions (Träuble et al.,
2023). These methods cache values to ensure in-

2564

puts remain within distribution bounds for down-
stream encoders, thereby enabling the integration
of longer-term memory, contingent on available
computational resources.

A.4 Data Clustering for LLMs
Data clustering methods for LLMs have been pro-
posed to enhance performance and reduce task in-
terference (Fifty et al., 2021; Gururangan et al.,
2023; Gou et al., 2023). These methods include
clustering based on similarities computed using tf-
idf and neural embeddings, K-means clustering
with balanced linear assignment, and soft clus-
tering with Gaussian Mixture Models (GMMs)
(Chronopoulou et al., 2023; Gururangan et al.,
2023; Duan et al., 2021). Recent work by (Zhou
et al., 2022) highlights the potential of adapter pa-
rameters as effective task embeddings for cluster-
ing. Additionally, a similar observation regarding
task gradients has been made by (Vu et al., 2020).

B Implementation Details

B.1 Datasets Details
ZsRE The ZsRE dataset is a context-free Ques-
tion Answering (QA) dataset that has been ex-
tensively studied in the model editing literature
(Meng et al., 2022, 2023; Mitchell et al., 2022b;
Hartvigsen et al., 2023; Wang and Li, 2024). Each
record in this dataset includes an editing statement
xe
i with target answer ye

i , a paraphrase prompt
xgeni and and a locality prompt xloc. We adopt
the same train/test split as (Mitchell et al., 2022a),
consisting of 163,196 training examples and 19,086
test examples. Notably, MEND is the only method
that requires fitting a hyper network on the training
set; other methods discard the training set and di-
rectly perform edits and evaluations on the test set.
For our experiments, we randomly sampled 1k and
3k records from the test set to form the edit sets.

SelfCheckGPT We employ SelfCheckGPT
(Manakul et al., 2023),the same dataset as GRACE,
to evaluate the effectiveness of Model Editors in
reducing hallucinations in autoregressive language
models. This dataset consists of highly inaccurate
sentences generated from GPT-3 (Brown et al.,
2020), which are then replaced with corresponding
accurate sentences from Wikipedia. This setup
mirrors real-world deployment scenarios where
models exhibit "unexpected behaviors". The edits
in this dataset are significantly longer compared
to ZsRE, presenting a more challenging editing

environment. Unlike GRACE, which utilized
GPT2-XL (1.5B), our primary experiments use
larger LLMs, specifically LLaMA and Mistral,
each with 7B parameters. We measure the
retention of xloc from the base model, RedPajama
(Computer, 2023), a publicly available version of
LLaMA’s pre-training data.

B.2 Implementation of Baselines

FT-L We followed the procedures outlined in
(Wang et al., 2024): all other layers of the LLMs
remain frozen, and only a single MLP layer un-
dergoes fine-tuning using an autoregressive loss
function. Furthermore, we impose a L∞ norm con-
straint to ensure that the parameters do not devi-
ate significantly from the pretrained distribution.
Employ the Adam optimizer with consideration
of learning rates at 1e-5, 1e-4, and 5e-4, and con-
duct gradient descents for 50 iterations, ultimately
reporting the best results at a learning rate of 5e-4.

FT-EWC Elastic Weight Consolidation (EWC)
effectively mitigates catastrophic forgetting by up-
dating model weights using the Fisher information
matrix, which is computed based on past parame-
ter updates and scaled by a factor λ (Kirkpatrick
et al., 2016). In line with (Hartvigsen et al., 2023),
our implementation does not incorporate L∞ norm
constraints, setting the learning rate at 1e-2, the
λewc penalty factor at 0.1, and the number of re-
play instances at 10.

MEND MEND (Mitchell et al., 2022a) performs
model editing by employing a hyper-network to
transform the gradients derived from standard fine-
tuning. This process involves decomposing the
model gradients into a low-rank format (rank=1)
before converting them into new gradients, which
are subsequently applied to the target layer for pa-
rameter updates. During training, a small auxiliary
hyper-network processes editing examples (xe

i ,y
e
i)

and (xgeni ,y
e
i). The training loss for MEND con-

sists of the standard autoregressive loss combined
with the KL divergence loss, measuring the model’s
output on (xgeni ,y

e
i) before and after editing. This

hyper-network is pivotal in the editing procedure.
Due to the substantial computational resources re-
quired to train the meta-network for, the results are
from (Wang et al., 2024).

ROME ROME (Meng et al., 2022) employs
causal analysis to identify knowledge residing in
specific MLP layers and refines the entire matrix

2565

Table 5: An editing dataset example from ZsRE and SelfCheckGPT.

Dataset Type Text

ZsRE
xe
i ,y

e
i Which continent is Berkner Island in? South America

xloci ,yloc who gets the golden boot if its a tie? shared
xgeni ,y

e
i On which continent is Berkner Island located? South America

SelfCheckGPT

xe
i ,y

e
i This is a Wikipedia passage about heinz christian pander. Heinz Christian Pander

(1794 - 1865) was a German anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later at the University of Berlin.
In 1820, he took part in a scientific expedition to Bokhara as a naturalist.

xloc,yloc Tired and restlessly, drifting in and out of sleep. Hearing crashing and banging,
thinking the roof will cave in. Not alert enough to quite know what. it was, I yelled
loudly for whoever was making those noises at such an hour to stop. They heard
and listened, I’m guessing

Table 6: Dataset statistics for main results. Locality
Data is the irrelevant data of the editing process. T is
the number of samples. Pre-edit is the unedited model’s
performance on each dataset.

SETTING EDITING DATA T Pre-edit (LLaMA/Mistral)

QA ZsRE 1,000 0.36/0.39 ACC
Hallucination SelfCheckGPT 600 27.4/19.4 PPL

via least squares approximation. This approach as-
sumes MLP as the central repository of knowledge
(Geva et al., 2021), incrementally injecting individ-
ual pieces of information into the MLP through a
Lagrangian residual term at each iteration. Follow-
ing (Wang et al., 2024), in LLaMA and Mistral,
ROME edits the fifth layer, while MEMIT edits
layers [4,5,6,7,8].

MEMIT The MEMIT utilized in this study, de-
noted as MEMIT-MASS as introduced in (Wang
et al., 2024), differs notably from its original coun-
terpart. In contrast to sequential editing, MEMIT-
MASS facilitates batch processing for modifying
multiple knowledge fragments concurrently. Sup-
pose we collect streaming errors as (X ,Y) =
{(x0,y0), (x1,y1), ..., (xT ,yT)} and inject them
collectively into the MLP, it only involves a sin-
gle editing operation on the original model as
fΘT

= MEMIT(fΘ0 ,X ,Y). Despite its drawback
of lacking real-time correction capabilities, we in-
clude this approach as a baseline in our experi-
mental evaluations, given the extremely bad perfor-
mance of the original MEMIT framework.

DEFER In GRACE, a reimplementation of
SERAC (Mitchell et al., 2022b) is utilized, denoted
as DEFER. DEFER integrates a network denoted as
g (akin to the scope classifier in SERAC). This net-

work g predicts whether to rely on: 1) predictions
from the LLMs, or 2) predictions from a newly
introduced model. This new model, configured as
a single-layer linear network o with a sigmoid acti-
vation function, parallels the counterfactual model
in SERAC. Throughout the editing phase, g and
o undergo joint fine-tuning processes. The exper-
iment with learning rates of 7e-5, 7e-4, and 1e-3,
and ultimately report using 7e-5 (optimal).

GRACE GRACE (Hartvigsen et al., 2023) uti-
lizes a discrete key-value codebook and main-
tains the codebook throughout the editing flow by
adding, expanding, and splitting KEYs. During the
inference phase, it retrieves the nearest KEY and
determines whether to replace the activation of the
hidden layer output. We adhere to the meticulously
crafted parameters outlined in the original study,
configuring the optimization of the learning rate to
a value of 1 and using “replace last” to only replace
the activation of the last token in autoregressive sce-
narios.. The iterative process for optimizing these
values spans 100 cycles, with an initial ϵ = 1.

MEMoE MEMoE (Wang and Li, 2024) updates
knowledge using a bypass MoE structure, keeping
the original parameters unchanged to preserve
the general ability of LLMs. And, the knowledge
anchor routing ensures that inputs requiring similar
knowledge are routed to the same expert, thereby
enhancing the generalization of the updated
knowledge. Following the parameters identified
in the original paper, we consulted 4 experts,
setting the top − k value to 1 and a learning
rate of 2e-4. The modification is applied to
model.layers[16].mlp.up_proj.weight and
model.layers[16].mlp.down_proj.weight.

2566

We also adopt auxiliary loss for balancing the top-k
selection of routing following (Fedus et al., 2022).

B.3 Training Details of LEMoE
The training loss for the attentive learning of the
t-th batch data Bt is:

Ltask = −
∑

(xt,yt)∈Tt
logP

(
yt | xt; θm, θf , θproj, θk

)

(13)
where θm, θf , θproj and θk are parameters of the
LLM backbone, the experts, the query projection
layer and the set of all key vectors, respectively.
And only those parameters belongs to the current
t-th task are trainable, including θft , θproj and θkt .

The hyperparameters for the ZsRE and Self-
CheckGPT are identical. Specially, We use
the AdamW (Loshchilov and Hutter, 2019)
as the optimizer with a learning rate of 2e-4.
The modification of the model is applied to
model.layers[18].mlp.up_proj.weight and
model.layers[18].mlp.down_proj.weight.
All the experiments are deployed on NVIDIA RTX
3090 Tensor Core GPUs, and we use 4 GPUs
for training and single GPU for evaluation. For
lifelong editing, due to computational constraints,
we can accommodate a maximum of 5 experts.
Consequently, the batch size in the sequence is
determined by the total number of edits and the
number of experts. For instance, when there are
100 edits and 5 experts, the batch size is set to 20;
whereas with 1000 edits, the batch size scales up to
200. For bath editing in §6.1, the batch size is 30
and all the other parameters are the same as above.

B.4 Implementation for Ablation Study
In §6.3, we conducted an ablation study on several
modules of LEMoE. Here, we detail the implemen-
tation of these ablations. In Table 4, Conventional
routing means the router is modeled by a single-
layer MLP, with the preservation of the insertion
method. Knowledge routing is the knowledge an-
chor routing in MEMoE for short, also maintains
the insertion method. Token-level embedding in-
volves substituting ej in Equation 12, which means
g(i | ej) = g(i | xjti . For entity-level embedding,
we initially utilize the NLTK tool 1 for extracting
named entities from the input instance. In cases
where there are multiple named entities present
in the input, we utilize the average pooling of the
embeddings of these entities. Subsequently, we

1https://www.nltk.org

replace ej in Equation 10 with this embedding vec-
tor as the input to the sub-network to obtain the
corresponding “value” of the input instances. All
the other training hyperparameters are the same
detailed in Appendix B.3.

C More Results and Analyses

C.1 More results for Influencing Factors

In §3.1, we employed two different evaluation
methods: (1) a standard evaluation conducted on
all edited data only after all edits were completed,
and (2) an evaluation conducted immediately after
each edit to assess the effectiveness of these edits
at the current stage. Figure 2 shows the variations
in the reliability metrics, and we further provide
the changes in all three metrics here. To better
illustrate these trends, we averaged the metrics
over every four steps in a sequence of 100 edit-
ing steps. As shown in Figure 5, both reliability
and generalization exhibit catastrophic forgetting
phenomenon, where subsequent edits significantly
affect the performance on prior data. This effect
is most pronounced in the reliability metric. Addi-
tionally, around step 80, minimal fluctuations in the
current editing reliability result in substantial os-
cillations in generalization. This can be attributed
to the fact that, like human, a model must first ac-
curately learn knowledge before it can generalize
that knowledge. Thus, the generalization metric
is, to some extent, contingent upon reliability. Re-
garding locality, the overall level remains consis-
tently high, above 0.97, and thus the graph shows
no discernible pattern of fluctuations. This further
corroborates that knowledge editing through by-
pass mechanisms minimally impacts the model’s
generalization capability (Wang and Li, 2024).

C.2 Case Study

In Table 7, we present bad cases of using LEMoE
to edit the LLaMA-2-7B on the ZsRE dataset and
mitigating these failures is critical for future work
in model editing. We observe that:
i) errors occur only in part of the tokens, and

these errors constitute a large proportion of the
bad cases, indicating that the edits have not been
sufficiently fitted. We wonder whether employing
different learning rates and epochs for each batch
in lifelong editing could alleviate this issue through
more refined training.
ii) displays cases where the entire output is in-

correct. These types of errors are the most common

2567

https://www.nltk.org/

0 20 40 60 80 100
Batch Number

0.4

0.6

0.8

1.0
Re

lia
bi

lit
y

Avg

Reliability Analysis

Immediate evaluation
Final evaluation

0 20 40 60 80 100
Batch Number

0.2

0.4

0.6

0.8

Ge
ne

ra
lit

y

Avg

Generality Analysis

Immediate evaluation
Final evaluation

0 20 40 60 80 100
Batch Number

0.975

0.980

0.985

0.990

0.995

1.000

Lo
ca

lit
y

Avg

Locality Analysis

Immediate evaluation
Final evaluation

Figure 5: Reliability, Generality and Locality of conventional MoE under different stage evaluation. “Immediate
evaluation” occurs immediately after each edit, “Final evaluation” occurs after all edits in lifelong editing. Model:
LLaMA2-7B. Dataset: ZsRE.

Table 7: Failure cases of LEMoE. ✔✗ represents errors in part of the tokens, ✗represents complete output errors
(i.e.,factual failures), and ✓indicates the expected exact match. Italics correspond to generalization prompt.
LLaMA2-7B.

Prompt Edit Target Post-Edit Output

i

What level is Javan surili’s iucn conservation status? critically threatened near threatened ✔✗

What is Javan surilis ucn conservation status? critically threatened threatened ✔✗

The point in time of Air France Flight 447 was when? 12 July 1944 12 July 1967 ✔✗

When did Air France Flight 447 occur? 12 July 1944 12 July 1967 ✔✗

ii

Which war was William Babcock Hazen in? World War II US Civil War ✗
What war did William Babcock Hazen go to? World War II Spanish Civil War ✗
When was the inception of Parcelforce? 1961 1963 ✗
When was Parcelforce formed? 1961 1960 ✗

iii
What team is Nicolas Raffault associated with? Arizona Coyotes Aqua ✗
Which team is Nicolas Raffault associated with? Arizona Coyotes Arizona Coyotes ✓
What sports team was Petteri Nummelin a member of? Columbus Blue

Bombers
Cleveland Monsters ✗

In which sports team was Petteri Nummelin a member? Columbus Blue
Bombers

Columbus Blue Bombers ✓

iv

What level is Javan surili’s iucn conservation status? critically threatened nearlly threatened ✓
What state is Qaleh Lan in? critically threatened unknown ✗
When did Battle of the Java Sea occur? 27 February 1942 27 February 1942 ✓
When did the battle on the Java Sea begin? 27 February 1942 1942 ✔✗

occurrences.

iv) presents cases of generalization failure. For
example in prompt of last line, where the model
answered “1942” which is partially correct, but
did not fully follow the ground truth, indicating
significant room for improvement in the accuracy
of generalized edits.

Meanwhile, in iii) we surprisingly find that even
when LEMoE errs on the Edit Prompt, it can cor-
rectly answer its paraphrase prompt. Upon closely
examining these anomalous cases, we found that
they predominantly pertain to question-answering
scenarios within sports contexts, such as inquiries
about a person’s team affiliation. We hypothesize
that this phenomenon may stem from the relatively

limited number of teams in sports contexts, com-
bined with the higher number of athletes and the
occurrence of name duplication. Consequently, the
model may accidentally provide correct answers to
some of these questions.

In summary, LEMoE can handle contextual in-
formation correctly in some cases but falls short in
specific editing instructions, suggesting that opti-
mizing editing instructions (modifying the editing
context) may be a direction for improvement.

C.3 More Ablation Results

As an extension §6.3, we evaluate the effectiveness
of LEMoE applied to different layers. For experi-
mental setup, we utilize the LLama2-7b model and

2568

Table 8: Performance of LEMoE on different layer of
LLaMA2-7B using ZsRE.

Layer Rel.↑ Gen.↑ Loc.↑ Avg.↑
0 0.28 0.14 1.00 0.47
2 0.55 0.41 1.00 0.65
4 0.52 0.34 1.00 0.62
6 0.44 0.25 1.00 0.56
8 0.48 0.26 1.00 0.58
10 0.47 0.25 1.00 0.57
12 0.54 0.26 1.00 0.60
14 0.58 0.33 1.00 0.64
16 0.77 0.55 1.00 0.77
18 0.80 0.60 1.00 0.80
20 0.76 0.59 1.00 0.79
22 0.70 0.54 1.00 0.75
24 0.74 0.51 1.00 0.75
26 0.77 0.56 1.00 0.78
28 0.73 0.48 1.00 0.74
30 0.43 0.24 1.00 0.56

the ZsRE dataset. Lifelong editing involves 1000
instances, with all the other training hyperparam-
eters consistent as detailed in Appendix B.3. Ex-
perimental results are depicted in Table 8. Notably,
the 18-th layer exhibits the most significant editing
improvements, achieving peak performance across
all metrics. Conversely, the first layer demonstrates
the least improvement, and the editing hardly takes
effect in the low-level transformer block. In con-
trast, high-level transformer blocks display pro-
nounced editing effects, maintaining high reliabil-
ity consistently from the 16-th layer onwards. How-
ever, significant degradation in editing efficacy is
noted towards the 30-th layer, possibly due to the in-
creased proximity to the output. On the other hand,
locality remains unaffected, consistently scoring
1.00. Thus, our findings further validate that the
high-level transformer blocks of LM based on the
transformer architecture contain factual informa-
tion, and editing of these layers will have a signifi-
cant effect (Yao et al., 2024).

C.4 LEMoE with LoRA structure

In the era of LLMs, parameter-efficient fine-tuning
(PEFT) methods such as LoRA have proven highly
effective and convenient for achieving impressive
results across various downstream tasks. LoRA
(Hu et al., 2022), proposes a technique that decom-
poses the update gradient matrix into two small
rank-n matrices, significantly reducing the memory

requirements for training LLMs. Meanwhile, in
fields of MoE, some studies have explored replac-
ing traditional MoE structures with LoRA (Zadouri
et al., 2023; Wu et al., 2024b). Consequently, we
replace the MLP-based expert networks in LEMoE
with LoRA modules. Given the challenging nature
of lifelong learning tasks, we evaluate the perfor-
mance of this low-parameter model structure on
batch editing tasks with batch size set to 30.

We investigated the effects of varying the num-
ber of experts (Exp.), different LoRA ranks, and
different topk values. Detailed experimental re-
sults are provided in the Table 9 to facilitate
further research. We conducted experiments
on all even-numbered layers, expert number in
[1,10,20], topk in [1,10,20] and LoRA Rank in
[2,4,8,16,32,64,128,256,512,1024,2048]. We filter
out results with Reliability below 0.1, Generaliza-
tion below 0.1, and Locality below 0.5. It is evident
that this method performs poorly in editing the low-
level transformer blocks (with results falling below
the selection criteria and many being zero, hence
not presented in the table). Meanwhile, the higher
the layer being edited, the better the performance
observed. This LEMoE-LoRA achieved optimal
performance with 30 layers, 10 experts, a LoRA
rank of 2048, and a topk value of 10.

2569

Table 9: Experimental Results of LEMoE with LoRA module.

Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑
4 10 10 1024 0.13 0.10 0.53 0.26
4 10 10 2048 0.30 0.23 0.68 0.41
4 20 5 512 0.23 0.17 0.58 0.33
4 20 10 1024 0.30 0.27 0.50 0.36
6 20 5 1024 0.17 0.17 0.67 0.33
8 1 1 1024 0.13 0.10 0.62 0.28
8 1 1 2048 0.30 0.20 0.90 0.47
8 10 1 512 0.17 0.17 0.65 0.33
8 10 5 2048 0.40 0.13 0.67 0.40
8 10 10 1024 0.13 0.10 0.62 0.28
8 10 10 2048 0.23 0.10 0.78 0.37
8 20 5 1024 0.10 0.10 0.77 0.32
8 20 10 512 0.17 0.13 0.90 0.40
10 10 5 2048 0.13 0.20 0.93 0.42
10 20 5 512 0.13 0.13 0.93 0.40
10 20 5 1024 0.23 0.17 0.93 0.44
10 20 10 1024 0.10 0.10 0.95 0.38
12 1 1 2048 0.30 0.13 0.98 0.47
12 10 1 1024 0.17 0.10 0.68 0.32
12 10 5 1024 0.27 0.17 0.95 0.46
12 10 5 2048 0.23 0.13 0.98 0.45
12 10 10 1024 0.23 0.10 0.93 0.42
12 10 10 2048 0.23 0.17 0.98 0.46
12 20 5 512 0.20 0.10 0.98 0.43
12 20 5 1024 0.37 0.23 0.97 0.52
12 20 10 512 0.23 0.13 0.98 0.45
12 20 10 1024 0.20 0.10 0.98 0.43
14 1 1 16 0.13 0.10 0.97 0.40
14 1 1 512 0.17 0.10 0.98 0.42
14 1 1 1024 0.30 0.10 0.98 0.46
14 1 1 2048 0.33 0.17 1.00 0.50
14 10 1 128 0.13 0.10 0.68 0.31
14 10 1 512 0.40 0.30 0.98 0.56
14 10 1 1024 0.40 0.23 1.00 0.54
14 10 1 2048 0.57 0.43 1.00 0.67
14 10 5 512 0.27 0.17 0.98 0.47
14 10 5 1024 0.23 0.20 0.98 0.47
14 10 5 2048 0.50 0.43 1.00 0.64
14 10 10 16 0.13 0.10 0.95 0.39
14 10 10 128 0.20 0.20 1.00 0.47
14 10 10 512 0.23 0.20 1.00 0.48
14 10 10 1024 0.27 0.13 1.00 0.47
14 10 10 2048 0.40 0.17 1.00 0.52
14 20 1 1024 0.37 0.37 0.88 0.54
14 20 5 128 0.17 0.13 0.98 0.43
14 20 5 512 0.37 0.20 1.00 0.52
14 20 5 1024 0.40 0.23 0.97 0.53

Continued on next page

2570

Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

14 20 10 128 0.10 0.10 0.98 0.39
14 20 10 512 0.20 0.13 1.00 0.44
14 20 10 1024 0.30 0.20 1.00 0.50
16 1 1 128 0.20 0.10 1.00 0.43
16 1 1 512 0.37 0.30 0.98 0.55
16 1 1 1024 0.60 0.43 1.00 0.68
16 1 1 2048 0.60 0.43 0.98 0.67
16 10 1 512 0.43 0.37 0.95 0.58
16 10 1 1024 0.47 0.33 0.93 0.58
16 10 1 2048 0.73 0.50 0.93 0.72
16 10 5 16 0.17 0.10 0.97 0.41
16 10 5 128 0.17 0.13 1.00 0.43
16 10 5 512 0.50 0.27 1.00 0.59
16 10 5 1024 0.37 0.17 1.00 0.51
16 10 5 2048 0.53 0.20 1.00 0.58
16 10 10 16 0.20 0.10 1.00 0.43
16 10 10 128 0.33 0.27 1.00 0.53
16 10 10 512 0.40 0.33 1.00 0.58
16 10 10 1024 0.57 0.43 0.97 0.66
16 10 10 2048 0.63 0.33 0.98 0.65
16 20 1 128 0.33 0.13 0.80 0.42
16 20 1 512 0.37 0.17 0.97 0.50
16 20 1 1024 0.40 0.33 1.00 0.58
16 20 5 128 0.33 0.27 1.00 0.53
16 20 5 512 0.47 0.27 1.00 0.58
16 20 5 1024 0.70 0.43 1.00 0.71
16 20 10 128 0.17 0.13 1.00 0.43
16 20 10 512 0.23 0.10 1.00 0.44
16 20 10 1024 0.43 0.23 1.00 0.56
18 1 1 128 0.43 0.33 1.00 0.59
18 1 1 512 0.50 0.33 1.00 0.61
18 1 1 1024 0.57 0.37 1.00 0.64
18 1 1 2048 0.77 0.53 1.00 0.77
18 10 1 128 0.23 0.13 0.93 0.43
18 10 1 512 0.53 0.33 0.98 0.62
18 10 1 1024 0.20 0.20 0.77 0.39
18 10 1 2048 0.33 0.30 0.95 0.53
18 10 5 16 0.30 0.13 0.98 0.47
18 10 5 128 0.30 0.23 1.00 0.51
18 10 5 512 0.43 0.23 1.00 0.56
18 10 5 1024 0.53 0.40 1.00 0.64
18 10 5 2048 0.73 0.53 1.00 0.76
18 10 10 16 0.17 0.13 1.00 0.43
18 10 10 128 0.47 0.30 1.00 0.59
18 10 10 512 0.63 0.37 1.00 0.67
18 10 10 1024 0.67 0.40 1.00 0.69
18 10 10 2048 0.70 0.53 1.00 0.74
18 20 1 128 0.30 0.20 0.92 0.47

Continued on next page

2571

Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

18 20 1 512 0.40 0.27 0.90 0.52
18 20 1 1024 0.47 0.43 0.98 0.63
18 20 5 16 0.27 0.17 0.75 0.39
18 20 5 128 0.47 0.27 0.98 0.57
18 20 5 512 0.53 0.33 0.98 0.62
18 20 5 1024 0.67 0.50 1.00 0.72
18 20 10 16 0.27 0.17 0.97 0.47
18 20 10 128 0.30 0.27 1.00 0.52
18 20 10 512 0.50 0.33 1.00 0.61
18 20 10 1024 0.57 0.30 1.00 0.62
20 1 1 128 0.50 0.27 0.98 0.58
20 1 1 512 0.60 0.33 1.00 0.64
20 1 1 1024 0.63 0.33 1.00 0.66
20 1 1 2048 0.70 0.40 1.00 0.70
20 10 1 128 0.47 0.37 0.93 0.59
20 10 1 512 0.40 0.43 0.97 0.60
20 10 1 1024 0.33 0.20 0.88 0.47
20 10 1 2048 0.37 0.37 0.85 0.53
20 10 5 16 0.37 0.20 1.00 0.52
20 10 5 128 0.50 0.20 1.00 0.57
20 10 5 512 0.40 0.23 1.00 0.54
20 10 5 1024 0.57 0.23 1.00 0.60
20 10 5 2048 0.67 0.30 1.00 0.66
20 10 10 16 0.30 0.20 1.00 0.50
20 10 10 128 0.47 0.20 1.00 0.56
20 10 10 512 0.37 0.23 1.00 0.53
20 10 10 1024 0.60 0.30 1.00 0.63
20 10 10 2048 0.60 0.40 1.00 0.67
20 20 1 128 0.20 0.20 0.68 0.36
20 20 1 512 0.33 0.30 1.00 0.54
20 20 1 1024 0.57 0.33 0.92 0.61
20 20 5 16 0.43 0.30 0.90 0.54
20 20 5 128 0.47 0.20 1.00 0.56
20 20 5 512 0.47 0.30 1.00 0.59
20 20 5 1024 0.60 0.43 0.97 0.67
20 20 10 16 0.33 0.23 0.97 0.51
20 20 10 128 0.47 0.27 1.00 0.58
20 20 10 512 0.53 0.23 1.00 0.59
20 20 10 1024 0.50 0.30 1.00 0.60
22 1 1 128 0.40 0.17 0.98 0.52
22 1 1 512 0.40 0.23 1.00 0.54
22 1 1 1024 0.43 0.30 1.00 0.58
22 1 1 2048 0.50 0.30 1.00 0.60
22 10 1 128 0.23 0.17 0.97 0.46
22 10 1 512 0.23 0.33 0.95 0.51
22 10 1 2048 0.40 0.17 0.90 0.49
22 10 5 16 0.23 0.20 1.00 0.48
22 10 5 128 0.33 0.23 1.00 0.52

Continued on next page

2572

Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

22 10 5 512 0.47 0.33 1.00 0.60
22 10 5 1024 0.47 0.20 1.00 0.56
22 10 5 2048 0.50 0.27 1.00 0.59
22 10 10 16 0.20 0.13 1.00 0.44
22 10 10 128 0.40 0.17 1.00 0.52
22 10 10 512 0.40 0.20 1.00 0.53
22 10 10 1024 0.40 0.23 1.00 0.54
22 10 10 2048 0.43 0.30 1.00 0.58
22 20 1 128 0.23 0.17 0.95 0.45
22 20 1 512 0.17 0.17 1.00 0.44
22 20 1 1024 0.40 0.30 0.87 0.52
22 20 5 16 0.30 0.13 1.00 0.48
22 20 5 128 0.37 0.20 1.00 0.52
22 20 5 512 0.47 0.20 0.97 0.54
22 20 5 1024 0.47 0.23 1.00 0.57
22 20 10 16 0.33 0.13 1.00 0.49
22 20 10 128 0.43 0.23 1.00 0.56
22 20 10 512 0.43 0.30 1.00 0.58
22 20 10 1024 0.47 0.23 1.00 0.57
24 1 1 16 0.20 0.17 1.00 0.46
24 1 1 128 0.40 0.30 1.00 0.57
24 1 1 512 0.43 0.30 1.00 0.58
24 1 1 1024 0.50 0.33 1.00 0.61
24 1 1 2048 0.57 0.47 0.98 0.67
24 10 1 512 0.37 0.20 0.97 0.51
24 10 1 1024 0.20 0.10 0.93 0.41
24 10 1 2048 0.27 0.27 0.93 0.49
24 10 5 16 0.33 0.17 1.00 0.50
24 10 5 128 0.50 0.40 1.00 0.63
24 10 5 512 0.60 0.47 1.00 0.69
24 10 5 1024 0.57 0.47 1.00 0.68
24 10 5 2048 0.53 0.37 1.00 0.63
24 10 10 16 0.43 0.23 1.00 0.56
24 10 10 128 0.50 0.43 1.00 0.64
24 10 10 512 0.37 0.40 1.00 0.59
24 10 10 1024 0.57 0.50 1.00 0.69
24 10 10 2048 0.60 0.47 1.00 0.69
24 20 1 128 0.20 0.20 0.93 0.44
24 20 1 512 0.33 0.33 1.00 0.56
24 20 5 16 0.30 0.23 1.00 0.51
24 20 5 128 0.53 0.43 1.00 0.66
24 20 5 512 0.53 0.33 0.98 0.62
24 20 5 1024 0.63 0.50 1.00 0.71
24 20 10 16 0.37 0.20 0.98 0.52
24 20 10 128 0.57 0.40 1.00 0.66
24 20 10 512 0.53 0.47 1.00 0.67
24 20 10 1024 0.47 0.40 1.00 0.62
26 1 1 16 0.13 0.13 1.00 0.42

Continued on next page

2573

Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

26 1 1 128 0.57 0.37 1.00 0.64
26 1 1 512 0.53 0.50 1.00 0.68
26 1 1 1024 0.53 0.47 1.00 0.67
26 1 1 2048 0.63 0.50 1.00 0.71
26 10 1 512 0.27 0.23 0.95 0.48
26 10 1 1024 0.13 0.10 0.93 0.39
26 10 1 2048 0.37 0.33 0.95 0.55
26 10 5 2 0.10 0.10 0.90 0.37
26 10 5 16 0.50 0.30 1.00 0.60
26 10 5 128 0.57 0.37 1.00 0.64
26 10 5 512 0.57 0.43 1.00 0.67
26 10 5 1024 0.63 0.53 1.00 0.72
26 10 5 2048 0.50 0.57 1.00 0.69
26 10 10 16 0.47 0.30 1.00 0.59
26 10 10 128 0.53 0.37 1.00 0.63
26 10 10 512 0.53 0.43 1.00 0.66
26 10 10 1024 0.53 0.43 1.00 0.66
26 10 10 2048 0.63 0.57 0.98 0.73
26 20 1 16 0.10 0.13 0.72 0.32
26 20 1 512 0.23 0.20 0.90 0.44
26 20 1 1024 0.40 0.33 0.95 0.56
26 20 5 16 0.53 0.33 1.00 0.62
26 20 5 128 0.70 0.47 1.00 0.72
26 20 5 512 0.60 0.47 1.00 0.69
26 20 5 1024 0.53 0.30 1.00 0.61
26 20 10 2 0.17 0.10 0.80 0.36
26 20 10 16 0.53 0.43 1.00 0.66
26 20 10 128 0.57 0.30 1.00 0.62
26 20 10 512 0.60 0.53 1.00 0.71
26 20 10 1024 0.57 0.40 1.00 0.66
28 1 1 16 0.10 0.13 0.83 0.36
28 1 1 128 0.47 0.33 0.93 0.58
28 1 1 512 0.50 0.43 0.97 0.63
28 1 1 1024 0.60 0.37 0.98 0.65
28 1 1 2048 0.60 0.50 1.00 0.70
28 10 1 128 0.30 0.23 0.70 0.41
28 10 1 1024 0.30 0.10 0.87 0.42
28 10 1 2048 0.30 0.27 0.88 0.48
28 10 5 16 0.37 0.40 1.00 0.59
28 10 5 128 0.47 0.37 0.83 0.56
28 10 5 512 0.47 0.47 1.00 0.64
28 10 5 1024 0.70 0.60 1.00 0.77
28 10 5 2048 0.70 0.47 1.00 0.72
28 10 10 16 0.30 0.30 0.98 0.53
28 10 10 128 0.50 0.33 0.95 0.59
28 10 10 512 0.63 0.40 0.97 0.67
28 10 10 1024 0.70 0.40 1.00 0.70
28 10 10 2048 0.60 0.40 1.00 0.67

Continued on next page

2574

Table 9 Continued from previous page
Layer Expert Number Topk LoRA Rank Rel. ↑ Gen. ↑ Loc. ↑ Avg. ↑

28 20 1 512 0.27 0.23 0.95 0.48
28 20 1 1024 0.27 0.10 0.93 0.43
28 20 5 16 0.47 0.33 0.98 0.59
28 20 5 128 0.50 0.40 0.97 0.62
28 20 5 512 0.50 0.37 0.92 0.59
28 20 5 1024 0.50 0.37 1.00 0.62
28 20 10 16 0.43 0.27 0.98 0.56
28 20 10 128 0.43 0.33 0.98 0.58
28 20 10 512 0.60 0.40 1.00 0.67
28 20 10 1024 0.50 0.30 1.00 0.60
30 1 1 16 0.23 0.17 1.00 0.47
30 1 1 128 0.67 0.47 1.00 0.71
30 1 1 512 0.73 0.57 1.00 0.77
30 1 1 1024 0.70 0.63 1.00 0.78
30 1 1 2048 0.73 0.73 1.00 0.82
30 10 1 128 0.23 0.10 0.95 0.43
30 10 1 512 0.20 0.20 0.95 0.45
30 10 5 16 0.53 0.40 1.00 0.64
30 10 5 128 0.57 0.63 1.00 0.73
30 10 5 512 0.53 0.63 1.00 0.72
30 10 5 1024 0.70 0.63 1.00 0.78
30 10 5 2048 0.67 0.50 1.00 0.72
30 10 10 16 0.43 0.27 1.00 0.57
30 10 10 128 0.57 0.57 1.00 0.71
30 10 10 512 0.60 0.50 1.00 0.70
30 10 10 1024 0.73 0.63 1.00 0.79
30 10 10 2048 0.77 0.73 1.00 0.83
30 20 1 16 0.10 0.10 0.63 0.28
30 20 1 128 0.17 0.13 1.00 0.43
30 20 1 512 0.27 0.27 1.00 0.51
30 20 1 1024 0.20 0.13 0.93 0.42
30 20 5 16 0.47 0.37 1.00 0.61
30 20 5 128 0.53 0.57 1.00 0.70
30 20 5 512 0.60 0.40 1.00 0.67
30 20 5 1024 0.43 0.37 1.00 0.60
30 20 10 16 0.53 0.43 1.00 0.66
30 20 10 128 0.53 0.43 1.00 0.66
30 20 10 512 0.63 0.50 1.00 0.71
30 20 10 1024 0.47 0.37 1.00 0.61

2575

