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Abstract

Large language models (LLMs) encapsulate
a vast amount of factual information within
their pre-trained weights, as evidenced by their
ability to answer diverse questions across dif-
ferent domains. However, this knowledge is
inherently limited, relying heavily on the char-
acteristics of the training data. Consequently,
using external datasets to incorporate new in-
formation or refine the capabilities of LLMs
on previously seen information poses a sig-
nificant challenge. In this study, we com-
pare two common approaches: unsupervised
fine-tuning and retrieval-augmented generation
(RAG). We evaluate both approaches on a vari-
ety of knowledge-intensive tasks across differ-
ent topics. Our findings reveal that while unsu-
pervised fine-tuning offers some improvement,
RAG consistently outperforms it, both for ex-
isting knowledge encountered during training
and entirely new knowledge. Moreover, we
find that LLMs struggle to learn new factual
information through unsupervised fine-tuning,
and that exposing them to numerous variations
of the same fact during training could alleviate
this problem.

1 Introduction

Large language models (LLMs) are able to cap-
ture vast amounts of factual information (Petroni
et al., 2019; Cohen et al., 2023; Hu et al., 2023).
LLMs exhibit a remarkable level of knowledge in
various domains due to their massive pre-training
datasets. However, there are two significant limita-
tions to this knowledge. First, it is static and does
not update with time. Second, it is non-specific
and thus may lack nuanced expertise in particular
domains. While these are two different problems,
they are deeply related since their solution is the
same: enhancing the model’s knowledge.

Recently, the idea of adapting LLMs to partic-
ular domains and updating their knowledge has

*Equal contribution.

become increasingly common (Yu et al., 2022).
Various models have been suggested to improve
factual knowledge and capabilities in diverse fields
such as healthcare (Singhal et al., 2023a,b; Wu
et al., 2023a), finance (Wu et al., 2023b; Yang et al.,
2023), and law (Huang et al., 2023; Nguyen, 2023).

In this work, we focus on the evaluation of a
model’s knowledge and its ability to memorize,
understand, and retrieve factual data. We aim to un-
derstand the concept of knowledge injection (Wang
et al., 2020; Chen et al., 2022; Liu et al., 2020;
Lauscher et al., 2020). Given some knowledge
base in the form of a text corpus, what is the best
way to teach a pre-trained model this knowledge?

One way to add knowledge to a pre-trained
model is through fine-tuning. With fine-tuning,
we continue the model’s training process and adapt
it using task-specific data. By exposing the model
to a specific knowledge base, we expect the model
weights to adapt accordingly. This process is meant
to optimize the model for targeted applications, en-
hancing its performance and contextual relevance
in specialized domains.

Another method to enhance a model’s knowl-
edge base is through the use of in-context learning
(ICL) (Chen et al., 2021; Radford et al., 2019; Min
et al., 2021; Lampinen et al., 2022). The main idea
behind ICL is to improve the performance of pre-
trained LLMs on new tasks by modifying the input
query to the model without directly changing the
weights of the model. One form of ICL is retrieval
augmented generation (RAG) (Lewis et al., 2020;
Neelakantan et al., 2022). RAG uses information
retrieval techniques to enable LLMs to obtain rel-
evant information from a knowledge source and
incorporate it into generated text.

This study aims to evaluate the knowledge injec-
tion capabilities of LLMs through a comparison of
fine-tuning and RAG. To illustrate the rationale, let
us use an analogy. Consider three college students
taking a test on a specific topic. All had access
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to class materials but didn’t know the topic before-
hand. The first student had the textbook only during
the test, the second had pre-test access and studied,
and the third lost access upon the test announce-
ment. Who would probably perform better?

2 Background

To assess knowledge injection, we must first under-
stand what knowledge means for LLMs.

Knowledge and Language Models Defining
knowledge is a complex philosophical task far be-
yond the scope of this research. However, we can
examine what factual knowledge means in the con-
text of language models. If a model knows a fact,
it can accurately and consistently answer questions
about it. Furthermore, it can reliably distinguish
between true and false statements related to this
fact. We can then extend this definition to a whole
knowledge base, not just a single fact.

Mathematically, let Q = {qn}Nn=1 be a set of
N multiple choice factual questions, where each
question has L possible answers and exactly one
correct answer. Let A = {(a1n, . . . , aLn)}Nn=1 be
the corresponding set of possible answers, and C =
{cn}Nn=1 be the correct answers.

Let M be a language model. We denote by
M(qn) ∈ {a1n, . . . , aLn} the predicted answer of
the model to the n-th question. We define the
knowledge score L of M in relation to Q to be
the standard accuracy score:

LM,Q :=
#{qn| M(qn) = cn}

N
. (1)

We say that the model M possesses any knowl-
edge regarding the set of questions Q if the follow-
ing holds:

LM,Q >
1

L
. (2)

In simpler terms, the model can consistently give
correct answers, outperforming a simple random
guessing baseline. Naturally, if the knowledge
score LM,Q is higher for one model compared to
another, then we assert that the former is more
knowledgeable with regards to Q compared to the
latter.

Previously Seen Knowledge One important
distinction to make is between knowledge that
the model has been exposed to before during pre-
training as opposed to entirely new facts. Con-
sidering the size of modern LLM training sets,
they cover a vast amount of information available

through web-sourced text. As a result, even in
niche domains, the goal of knowledge injection
is not necessarily to teach the model entirely new
facts but rather to "refresh" its memory by inducing
a bias toward a particular domain.

Knowledge and Reasoning We emphasize
that this knowledge evaluation framework for
LLMs is imperfect. Importantly, it doesn’t ad-
dress other quality metrics influencing a model’s
response. Creating a purely knowledge-intensive
dataset without involving some level of reasoning
is challenging. Consequently, a model with ro-
bust reasoning abilities might excel on unfamiliar
knowledge-intensive tasks by making "educated
guesses" in a multiple-choice exam. Therefore, any
evaluation of knowledge in LLMs should consider
this, with results seen as part of a broader range of
benchmarks for reasoning (Sakaguchi et al., 2021),
reading comprehension (Dua et al., 2019), and
general language abilities (Srivastava et al., 2022).
However, this evaluation framework still strongly
emphasizes factual information above all else.

Causes for Factual Errors There are many
possible reasons for the failure of models to answer
factual questions accurately. In (Wang et al., 2023),
Wang et al. introduce a taxonomy of five main
model-level causes:

• Domain knowledge deficit: A language model
may lack comprehensive expertise in a specific
domain to which it has not been exposed. For
example, a model trained exclusively on texts
written by William Shakespeare would perform
poorly when asked about the works of Mark
Twain.

• Outdated Information: LLMs invariably have
a cutoff date determined by their training
dataset. Consequently, any events, discoveries,
or changes occurring after the last training up-
date will not be within the model’s knowledge
without access to external sources.

• Immemorization: Sometimes, a model is ex-
posed to knowledge during its training process
but does not retain it. This is especially true for
rare facts that appear in the training dataset only
scarcely (Kandpal et al., 2023).

• Forgetting: Language models often undergo
additional training after the pre-training phase
(fine-tuning). In some cases, this might lead
to a phenomenon called catastrophic forgetting
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Figure 1: A visualization of the knowledge injection framework.

(Kirkpatrick et al., 2017; Goodfellow et al., 2013;
Chen et al., 2020; Luo et al., 2023), where mod-
els lose some of the knowledge they had prior to
the fine-tuning process.

• Reasoning Failure: In certain instances, a lan-
guage model might possess relevant knowledge
about a fact but fail to utilize it properly. This is
particularly evident in complex multi-step reason-
ing tasks (Tan et al., 2023) or when posed with
different questions about the same fact, resulting
in disparate outcomes (Berglund et al., 2023).

We observe that most of these issues arise during
the pre-training phase, with catastrophic forgetting
being the notable exception. Hence, many LLMs
will suffer from factual errors of this kind regard-
less of any post-training process.

3 Injecting Knowledge to Language
Models

Following the background given in Section 2, it
is clear that general pre-training is insufficient for
many knowledge-intensive tasks. To solve this,
an additional post-processing step is essential to
augment the knowledge of a pre-trained model.
This step is often reffered to as knowledge injection
(Wang et al., 2020; Chen et al., 2022; Liu et al.,
2020; Lauscher et al., 2020).

In this section, we examine two widely used
frameworks for knowledge injection: fine-tuning

(FT) and retrieval augmented generation (RAG).
We begin by formulating the knowledge injection
problem, aiming to explain both methods using
consistent terminology.

3.1 Problem formulation
In Equations (1) and (2), we presented a formu-
lation for knowledge in language models through
the lens of question-answering (Q&A). We now ex-
tend this formulation to the problem of knowledge
injection using the same terminology.

Given a set of factual questions, there exists
some text corpus containing information that is
relevant to these questions. The central assumption
of knowledge injection is that given full access to
this corpus, it could serve as an auxiliary knowl-
edge base and improve the model’s performance
on this set of questions.

Mathematically, let M be a pre-trained model,
and let Q be a set of factual questions, as before.
Now, assume we have a relevant auxiliary knowl-
edge base BQ. Our objective is to discover a trans-
formation, denoted as F , that, when applied, would
enhance the knowledge about Q:

M′ := F(M,BQ) s.t. LM′,Q > LM,Q. (3)

In this work, we aim to compare two choices
for F : fine-tuning and RAG to see which option
performs better in this problem.
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3.2 Fine-Tuning

Fine-tuning is the process of adjusting a pre-trained
model on a specific, often narrower, dataset or task
to enhance its performance in that particular do-
main. Here, it is vital to distinguish between dif-
ferent types of fine-tuning. FT techniques are com-
monly classified into supervised, unsupervised, and
reinforcement learning (RL) based methods. We
proceed by briefly reviewing these methods and
their relation to the problem of knowledge injec-
tion.

Supervised Fine-Tuning Supervised fine-
tuning (SFT) requires sets of labeled input-output
pairs. One of the most common SFT methods
is instruction tuning (Wang et al., 2022; Mishra
et al., 2021; Ouyang et al., 2022; Taori et al., 2023),
which has emerged as one of the most powerful
methods to improve model performance. With in-
struction tuning, the input is a natural language
task description, and the output is an example of
the desired behavior. Many current state-of-the-art
LLMs have gone through instruction tuning after
their pre-training phase.

Instruction tuning has been shown to be very
effective at improving the overall quality of the
model, with a particular emphasis on its zero-shot
and reasoning capabilities. However, despite these
advantages, instruction tuning does not necessarily
teach the model new knowledge (Ouyang et al.,
2022; Chung et al., 2022; Mitra et al., 2023; Chia
et al., 2023; Zhou et al., 2023). As such, instruc-
tion tuning alone is not a viable solution to the
knowledge injection problem.

Reinforcement Learning Another form of
FT relies on RL or RL-inspired optimization strate-
gies to better align the model after its pre-training
phase. A few prominent examples are reinforce-
ment learning from human feedback (RLHF) (Ope-
nAI, 2023; Touvron et al., 2023), direct preference
optimization (DPO) (Rafailov et al., 2023), and
proximal policy optimization (PPO) (Schulman
et al., 2017; Tunstall et al., 2023).

These techniques have been shown to be very
useful, especially when used in conjunction with in-
struction tuning. However, similarly to instruction
tuning, these methods focus on the overall quality
of the response and its expected behavior and not
necessarily on its breadth of knowledge.

Unsupervised Fine-Tuning The final FT
strategy we discuss is unsupervised, meaning there
are no available labels for the model to learn from.

One common unsupervised FT technique is often
referred to as continual pre-training or unstruc-
tured FT.

In this method, the FT process is viewed as a
direct continuation of the pre-training phase. We
start with a saved checkpoint of the original LLM
and train it in a causal auto-regressive manner, i.e.,
predicting the next token. One major difference in
comparison to actual pre-training is the learning
rate. Usually, one would need a much lower learn-
ing rate when continuing the pre-training of the
model to avoid catastrophic forgetting (Kirkpatrick
et al., 2017).

It is well known that LLMs store vast amounts
of knowledge during their pre-training phase (Zhou
et al., 2023). So, it makes sense to continue
this process in order to inject knowledge into the
model. Hence, we use the unsupervised FT ap-
proach throughout this work and evaluate its effi-
cacy in enhancing the model’s capacity for learning
new information.

3.3 Retrieval Augmented Generation

Retrieval augmented generation (RAG) (Lewis
et al., 2020) is a technique that expands LLMs’ ca-
pabilities, especially in knowledge-intensive tasks,
by using external knowledge sources. While the
original formulation involved additional training
per task, it has since been demonstrated (Neelakan-
tan et al., 2022) that a pre-trained embedding model
can achieve improved performance with no addi-
tional training involved.

The idea is that given an auxiliary knowledge
base and an input query, we use the RAG architec-
ture to find documents within the knowledge base
that resemble the input query. These documents are
then added to the input query, thus giving the model
further context about the subject of the query.

In practice, implementing the suggested archi-
tecture is quite straightforward: Given an auxiliary
knowledge base BQ and a pre-trained embedding
model Me, we create a dense vector representation
(embedding) per document b ∈ BQ and store these
in a vector store. Upon receiving a new query q, we
use its embedding, Me(q), to retrieve q’s top-K
closest neighbors, bq = {bk}K1 , according to dot-
product ranking. We then update q to be q̃ = bq∥q,
where ∥ denotes string concatenation. Finally, we
return M(q̃) as the model’s output.
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Table 1: Results for the MMLU datasets described in Section 4.1 in terms of log-likelihood accuracy (Equation (4)).

Task Model Base model Base model + RAG Fine-tuned Fine-tuned + RAG

Anatomy (0-shot)
Mistral 7B 0.556 0.681 0.570 0.659
Llama2 7B 0.393 0.489 0.430 0.489
Orca2 7B 0.607 0.637 0.600 0.637

Anatomy (5-shot)
Mistral 7B 0.600 0.681 0.622 0.674
Llama2 7B 0.467 0.563 0.496 0.548
Orca2 7B 0.570 0.659 0.593 0.674

Astronomy (0-shot)
Mistral 7B 0.625 0.678 0.651 0.697
Llama2 7B 0.401 0.467 0.487 0.520
Orca2 7B 0.645 0.750 0.651 0.750

Astronomy (5-shot)
Mistral 7B 0.658 0.724 0.651 0.697
Llama2 7B 0.401 0.474 0.447 0.520
Orca2 7B 0.664 0.763 0.664 0.743

College biology (0-shot)
Mistral 7B 0.681 0.757 0.701 0.764
Llama2 7B 0.438 0.493 0.458 0.465
Orca2 7B 0.583 0.639 0.604 0.632

College biology (5-shot)
Mistral 7B 0.722 0.778 0.736 0.771
Llama2 7B 0.451 0.521 0.424 0.479
Orca2 7B 0.604 0.660 0.625 0.653

College chemistry (0-shot)
Mistral 7B 0.470 0.500 0.490 0.500
Llama2 7B 0.310 0.380 0.390 0.390
Orca2 7B 0.370 0.440 0.370 0.390

College chemistry (5-shot)
Mistral 7B 0.470 0.540 0.500 0.500
Llama2 7B 0.370 0.380 0.360 0.390
Orca2 7B 0.430 0.470 0.370 0.380

Prehistory (0-shot)
Mistral 7B 0.713 0.750 0.719 0.731
Llama2 7B 0.448 0.481 0.457 0.478
Orca2 7B 0.642 0.679 0.673 0.673

Prehistory (5-shot)
Mistral 7B 0.722 0.762 0.725 0.762
Llama2 7B 0.515 0.531 0.503 0.537
Orca2 7B 0.664 0.698 0.667 0.694

Table 2: Current events results. Models that were fine-tuned on the original dataset are labeled as FT-reg, while
those trained on the dataset with multiple paraphrases are labeled as FT-par.

Base model Base model + RAG FT-reg FT-par FT-reg + RAG FT-par + RAG

Mistral 7B 0.481 0.875 0.504 0.588 0.810 0.830
Llama2 7B 0.353 0.585 0.219 0.392 0.326 0.520
Orca2 7B 0.456 0.876 0.511 0.566 0.820 0.826

4 Knowledge Base Creation

4.1 Task Selection and Rationale

MMLU Benchmark To properly evaluate the
capabilities of LLMs on knowledge-intensive tasks,
we selected four distinct tasks from the Massively
Multilingual Language Understanding Evaluation
(MMLU) benchmark (Hendrycks et al., 2021) in
the topics of anatomy, astronomy, college biology,
college chemistry and prehistory. The chosen tasks

were selected based on their emphasis on factual
knowledge and the minimal reliance on reasoning.
As a heuristic, we opted for tasks where the ques-
tions are short and involve no context. In practice
we selected four STEM subjects as well as one hu-
manities subject, to ensure the evaluation is not lim-
ited to certain fields. Note that prehistory involves
questions spanning all non-modern history. This
approach aims to enable us to test LLM proficiency
in comprehending and manipulating information in
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isolation from its reasoning processes.
Current Events Task To further isolate

LLMs’ abilities to learn new knowledge, we cre-
ated a task comprising multiple-choice questions
about current events. This task includes multiple-
choice questions about events that occurred after
the cutoff of the various models’ training data.
Specifically, we focused on "current events" from
the USA, in the time span of August-November
2023, that are included in the relevant Wikipedia
indexes1. This method enables us to mostly guaran-
tee that the models have not been exposed to these
facts, thus allowing us to directly test knowledge
injection capabilities.

4.2 Data Collection and Preprocessing
To effectively evaluate the LLMs’ performance on
these knowledge-intensive tasks, a comprehensive
auxiliary dataset was collected by scraping relevant
articles per topic from Wikipedia. The rationale be-
hind selecting Wikipedia as the primary source of
knowledge is its broad coverage of relevant topics
and its reliability as a repository of crowd-verified
knowledge. All articles pertinent to the tasks were
retrieved via the official Wikipedia API2 by identi-
fying the relevant central page per topic.

Subsequently, a rigorous cleaning process was
utilized to transform the data from raw subsec-
tions to clean chunks. This step was done with
the "wikiextractor" tool (Attardi, 2015). The divi-
sion into small, clean (e.g., remove HTML, URLs,
etc.) chunks was aimed at enhancing the evalu-
ation of the LLMs’ understanding across various
knowledge domains and aiding the LLMs in the
fine-tuning process.

4.3 Current Events Task Creation
After collecting the relevant chunks from
Wikipedia, we created a new multiple-choice
dataset with the help of GPT-4 (OpenAI, 2023).
First, we removed any small chunks. For each
remaining chunk in the corpus, GPT-4 was in-
structed to create four highly specific, high-quality
multiple-choice questions with only one correct
answer. By specific, we mean that the question
can be answered without knowledge of which
context the question refers to and with minimal
ambiguity. Next, GPT-4 was asked to select the
two most specific of the four. This was followed

1https://en.wikipedia.org/wiki/Category:
2023_events_in_the_United_States_by_month

2https://www.mediawiki.org/wiki/API:Main_page

by a manual evaluation and verification step. In
total, this resulted in 910 new questions.

4.4 Paraphrases Generation
After creating the dataset, we utilized GPT-4 to gen-
erate augmentations of the dataset. We instructed
GPT-4 to provide paraphrased versions of the input
data that fully retain the information while being
reworded. Each paraphrasing iteration was done
with a different seed to ensure variety.

We selected 240 chunks at random for each task
and created two paraphrases per chunk. These were
set aside to be used as validation sets for hyperpa-
rameter tuning. For the current events dataset, we
created ten paraphrases for each chunk used in the
fine-tuning process described in Section 6.

5 Experiments and Results

Experimental Framework We used the popular
LM-Evaluation-Harness (Gao et al., 2021) reposi-
tory to evaluate the performance of LLMs on the se-
lected knowledge-intensive tasks. LM-Evaluation-
Harness is a robust benchmarking tool that cur-
rently serves as the industry standard for model
evaluation and is the basis of the HuggingFace
leaderboard3. Leveraging this platform ensured
a standardized evaluation framework and allowed
consistent comparison across models, methods, and
datasets. More importantly, by using the industry
standard for evaluation, we could avoid any dif-
ferences stemming from prompt engineering and
formatting issues and replicate the reported base-
line results for each model.

Model Selection We chose three models for
inference evaluation: Llama2-7B (Touvron et al.,
2023), Mistral-7B (Jiang et al., 2023), and Orca2-
7B (Mitra et al., 2023). The choice of these mod-
els was meant to represent the most popular open-
source base models and an instruction-tuned model
across various baseline capabilities. Additionally,
we selected bge-large-en (Xiao et al., 2023) as the
embedding model for the RAG component and
used FAISS (Johnson et al., 2019) as its vector-
store. This embedding model is currently the SOTA
of open-source embedding models, according to
the HuggingFace MTEB leaderboard4.

Configuration Variations Our evaluation in-
cluded multiple configurations, with a grid-search

3https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard

4https://huggingface.co/spaces/mteb/
leaderboard
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Figure 2: The relative accuracy gain (as explained
in Equation (5)) for each knowledge-injection method,
averaged (columnwise) across all experiments in Ta-
ble 1.

over them, to allow for more comprehensive bench-
marking.
Firstly, we compared the baseline and fine-tuned
models and their performance with the RAG com-
ponent. Secondly, we explored the optimal number
of text chunks to add to the context in RAG. Specif-
ically, different values of K ∈ {0, . . . , 5} were
employed to analyze the impact on model perfor-
mance. Finally, we explored 5-shot performance
vs. 0-shot.

Training Setup We trained all of the mod-
els using the unsupervised training procedure de-
scribed in Section 3.2. For each dataset, we divided
the auxiliary knowledge base into equal chunks of
size 256 by concatenating or splitting the original
chunks based on their length. We also added two
special tokens, <BOS> and <EOS>, to demar-
cate the original chunks’ beginnings and ends to
preserve the documents’ structure.

The models were trained using learning rates
between 1×10−6 and 5×10−5, which were found
through a hyperparameter search. All models were
trained on 4 NVIDIA A-100 GPUs for a maximum
of 5 epochs and a batch size of 64.

Evaluation method All evaluations were
done by appending each of the multiple-choice
options to the question, followed by passing the
concatenation through the model to get a log prob-
ability score per option. The highest score was
interpreted as the model’s choice and used for ac-
curacy calculation. More formally, this means that
in Equation (1) we say that M(qn) = cn if:

cn = argmax
l

{M(qn∥a1n), . . . ,M(qn∥aLn)},
(4)

where M(qn∥aln) = logPM(qn∥aln).
MMLU Results For each task and model, we

compared four approaches: using just the base
model, RAG, FT, and finally combining FT and
RAG by using the fine-tuned model as the gen-
erator. Furthermore, we tested the MMLU tasks
using both 0-shot and 5-shot scenarios. The full
results are shown in Table 1. An aggregation of
the relative accuracy gain, i.e.,

(LM′,Q − LM,Q)/LM,Q, (5)

where M is the base model and M′ is the
knowledge-injected model, is shown in Figure 2.

In all cases, RAG performed significantly better
compared to the base models. Furthermore, using
RAG with the base model as the generator was
consistently better than only fine-tuning. In some
cases, using the fine-tuned model instead of the
base model as the generator in the RAG pipeline
improved results even further. However, this is
not consistent and thus demonstrates the inherent
instability of fine-tuning. Additionally, we found
that the 5-shot approach boosts the results by a
small margin in most cases, with a similar trend
being observed in all of the different approaches.

Current Events Results The evaluation on
the current events task is shown in Table 2. RAG
proves particularly effective due to the one-to-one
correspondence between the questions and the aux-
iliary dataset (see Section 4.3). Fine-tuning is not
competitive with RAG. However, fine-tuning with
multiple paraphrases still provides a significant im-
provement over the baseline. We note that com-
bining RAG with fine-tuning shows inferior perfor-
mance compared to RAG alone.

It is worth noting that although the questions are
based on information the models were not exposed
to during training, the results of the base models
surpass 1

L = 0.25. This can partially be explained
by the models using reasoning and/or pre-existing
knowledge when answering questions that are not
independent of the past information. Some exam-
ples of this can be found in Appendix D.

Fine-Tuning vs. RAG: In the results of both the
MMLU and current events tasks, a significant ad-
vantage for RAG over fine-tuning is evident. While
fine-tuning improved results compared to the base
model in most cases, it was not competitive with
the RAG approach.

Several factors might contribute to this behav-
ior. Firstly, RAG not only adds knowledge to a
model but also incorporates context relevant to the
question, a feature lacking in fine-tuning. Addi-
tionally, fine-tuning may impact other capabilities
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of the model due to a degree of catastrophic for-
getting. Finally, it’s plausible that unsupervised
fine-tuned models might benefit from further align-
ment through supervised or RL-based fine-tuning,
as evidenced by the vastly improved performance
of Orca2 over the base Llama2.

6 The Importance of Repetition

Unlike the other tasks, where the model has been
exposed to aspects related to the topic during pre-
training, current events includes new information.
In this case, standard regular fine-tuning not only
did not improve the performance of Llama2 but
also significantly degraded it. To improve the fine-
tuning results, we explored augmentation of the
data using paraphrases.

Data Augmentation Data augmentation is a
well-established method for enhancing the perfor-
mance of language models and has been surveyed
extensively (Shorten et al., 2021). Using generative
models for augmentations has also been used suc-
cessfully to improve classification models in the
past (Sharma et al., 2022). An example of data
augmentation using paraphrasing can be found in
Appendix C.

Monotonic Improvement This approach re-
sulted in notable improvements in our results, show-
casing a direct correlation between the number of
paraphrases utilized and the models’ accuracy. Our
experimentation revealed a compelling trend. For
all models tested, the accuracy was a monotonically
increasing function of the number of paraphrases
used (visualized in Appendix A, Figure 4). This
observation strongly suggests the positive impact
of paraphrase augmentation, yielding information
repetition, on the model’s ability to comprehend
and generalize new knowledge from limited data.

Learning New Information In Appendix A,
Figure 3, we can see an interesting phenomenon
observed throughout our experiments. After each
epoch, i.e., completing another iteration over the
entire dataset, the training loss drops significantly.
This is consistent with what is known about LLMs
memorizing the data during training and overfit-
ting (Tirumala et al., 2022).

Our hypothesis is as follows:

In order to teach pre-trained LLMs new
knowledge, the knowledge must be re-
peated in numerous ways.

This is well known for LLM pre-training (Kand-
pal et al., 2023), and we see in this case that this

holds for fine-tuning as well. The rationale for this
hypothesis is that mere memorization of sentences
does not entail knowledge of their content, as was
already shown in (Berglund et al., 2023). By pro-
viding the information in numerous forms (like the
data augmentation process we used), the various
relationships in the data (e.g., a =⇒ b, b ≠⇒ c)
stand a higher chance of appearing naturally. We
believe this can potentially both increase LM,Q
in general, as well as ameliorate Berglund et al.’s
Reversal Curse. While promising, this result still
warrants further research.

7 Conclusion and Future Work

Large language models possess vast amounts of
knowledge on various topics. In this work, we
tested their capability to adapt to new knowledge:
both specialized and completely unseen. This is
among the first studies to compare two prominent
approaches in this domain, namely fine-tuning and
retrieval augmented generation. While fine-tuning
can be useful for many use-cases, we found that
RAG is a more reliable choice for knowledge injec-
tion.

Some aspects of this work still warrant further re-
search. For example, we focused on unsupervised
training as our primary fine-tuning method, as op-
posed to instruction-tuning or RL-based methods.
Researching combinations of various techniques,
with diverse auxiliary knowledge bases, may yield
improved results. This approach, combined with
our hypothesis from Section 6, could further en-
hance our understanding of knowledge injection
via FT.

While we believe that this work further enhances
our understanding of knowledge in LLMs, there is
a lot more work to be done in this field. Specifically,
more research is required regarding the question
of knowledge representation in LLMs, especially
from a theoretical perspective.

Finally, further efforts are needed to measure
knowledge in LLMs. While we employed an em-
pirical approach as described in Equation (2), it is
important to explore other definitions and perspec-
tives on knowledge as well, and extend upon this
work.

8 Limitations

As in all machine learning applications, the choice
of hyperparameters significantly impacts the re-
sults. We therefore strongly recommend optimiz-
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ing all relevant hyperparameters for specific cases.
We have supported our claims by running the ex-
periments on three different models. However, gen-
eralization to other LLMs should be tested thor-
oughly. For example, GPT-4 achieves near perfect
accuracy for some MMLU tasks (Nori et al., 2023),
and thus further improvement is not applicable.

Finally, while we chose various topics for the
knowledge bases, all of our sources came from
Wikipedia. Other datasets may yield different re-
sults, and must be evaluated carefully.
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A The Importance of Repetition Figures

Figure 3: Training loss over time for Mistral-7B.

Figure 4: Model accuracy on the current events task as
a function of the number of paraphrases.

B RAG Ablation Study

As mentioned in Section 5, we compared various
values of K ∈ {0, . . . , 5}, shown in Table 3.We
were unable to find an optimal value of K per
model, per 0/5-shot, or per task. In fact, other
than Anatomy that worked well with K = 2 con-
sistently, there seems to be no patterns that aid in
predicting the performance per K, unlike the re-
sults presented in (Lewis et al., 2020) for other
setups. Moreover, the gap between the best and
worst performing Ks can be large.
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Unfortunately, we must conclude that this addi-
tional hyperparameter is unstable. This is a down-
side of using RAG in practice, and the choice of K
cannot be ignored.

C Paraphrase Examples

Below is the prompt we used to generate para-
phrases with GPT-4:

Your task is to paraphrase a text para-
graph. The paragraph is given below.

Make sure to keep the same meaning but
change the wording. Do not change any
factual information.

Try to keep roughly the same length of
the original text.

Give NUM _ PARAPHRASES different
paraphrases for each text.

These paraphrases should be as different
from each other as possible.

Return a JSON formatted string with one
key, called ’paraphrases’, and a list of
paraphrases.

Input paragraph:

Below are some examples. First, an example
taken from the following Wikipedia page: "51st
International Emmy Awards".

Paraphrase I

The fifty-first edition of the International
Emmy Awards Competition accepted
submissions across all categories from
December 7, 2022, until the closing date
of February 16, 2023.

Paraphrase II

The International Emmy Awards Com-
petition, now in its 51st year, accepted
submissions across all categories starting
from December 7, 2022, until the dead-
line on February 16, 2023.

Paraphrase III

The fifty-first edition of the International
Emmy Awards Competition accepted
submissions across all categories from
December 7, 2022, until the closing date
of February 16, 2023.

The next example was taken from the follow-
ing Wikipedia page: "2023 Indianapolis mayoral
election".

Paraphrase I The mayoral election in
Indianapolis took place on November 7,
2023, with preliminary elections occur-
ring on May 2. The sitting mayor, Demo-
crat Joe Hogsett, successfully ran for a
third term. Both Hogsett and his Repub-
lican opponent, Jefferson Shreve, moved
on to the main election.

Paraphrase II On November 7, 2023,
citizens of Indianapolis cast their votes
to elect their Mayor, following primary
elections on May 2. Joe Hogsett, the
Democrat already in office, won his bid
for a third term. Hogsett and the Repub-
lican candidate, Jefferson Shreve, were
the two contenders in the final electoral
round.

Paraphrase III

The mayoral election in Indianapolis
took place on the 7th of November,
2023, following primary elections that
occurred on the 2nd of May. Joe Hogsett,
the incumbent Democrat, successfully
ran for a third term. Both Hogsett and his
Republican challenger, Jefferson Shreve,
made it through to the final round of the
election.

D Current Events Existing Knowledge
Examples

To give a better understanding of how a model
might be able to answer questions about new
information, with better than random success,
we present three possible scenarios as examples.
These scenarios show how models with stronger
reasoning skills can infer the correct answer even
for unseen information.

The first scenario involves questions about
previously unseen information, where basic
reasoning abilities allow a model to make an
educated guess.

Question: What was a key issue that led
to the 2023 United Auto Workers strike?

Answers:

248



Task Model
# Retrieved documents (k)

1 2 3 4 5

Anatomy (0-shot)
Mistral 7B 0.615 0.681 0.630 0.644 0.622
Llama2 7B 0.444 0.489 0.467 0.474 0.481
Orca2 7B 0.607 0.637 0.600 0.585 0.637

Anatomy (5-shot)
Mistral 7B 0.659 0.667 0.659 0.681 0.674
Llama2 7B 0.496 0.563 0.541 0.526 0.526
Orca2 7B 0.630 0.659 0.600 0.600 0.600

Astronomy (0-shot)
Mistral 7B 0.651 0.678 0.678 0.664 0.664
Llama2 7B 0.447 0.434 0.447 0.434 0.467
Orca2 7B 0.711 0.730 0.730 0.750 0.730

Astronomy (5-shot)
Mistral 7B 0.704 0.684 0.658 0.684 0.724
Llama2 7B 0.461 0.447 0.474 0.428 0.454
Orca2 7B 0.730 0.737 0.750 0.743 0.763

Biology (0-shot)
Mistral 7B 0.736 0.722 0.757 0.743 0.736
Llama2 7B 0.438 0.472 0.493 0.479 0.472
Orca2 7B 0.639 0.618 0.639 0.625 0.639

Biology (5-shot)
Mistral 7B 0.722 0.778 0.778 0.771 0.743
Llama2 7B 0.500 0.521 0.507 0.465 0.472
Orca2 7B 0.625 0.639 0.625 0.660 0.660

Chemistry (0-shot)
Mistral 7B 0.450 0.470 0.470 0.500 0.470
Llama2 7B 0.320 0.320 0.300 0.380 0.360
Orca2 7B 0.370 0.420 0.400 0.410 0.440

Chemistry (5-shot)
Mistral 7B 0.540 0.490 0.500 0.510 0.470
Llama2 7B 0.280 0.320 0.340 0.340 0.380
Orca2 7B 0.390 0.430 0.400 0.430 0.470

Prehistory (0-shot)
Mistral 7B 0.728 0.725 0.750 0.735 0.728
Llama2 7B 0.481 0.460 0.457 0.457 0.429
Orca2 7B 0.648 0.645 0.660 0.670 0.679

Prehistory (5-shot)
Mistral 7B 0.710 0.750 0.759 0.756 0.762
Llama2 7B 0.512 0.485 0.525 0.519 0.531
Orca2 7B 0.660 0.688 0.685 0.698 0.688

Table 3: RAG ablation study.

1. Dissatisfaction with the quality of
cafeteria food.

2. Disagreements over employee dress
codes.

3. Discontent with stagnant wages and
tiered employment systems.

4. Debates over the color scheme of
the factories.

In this case it is easy to guess that the third

option is the most likely, even without knowledge
of this specific strike.

A second scenario involves questions where
prior knowledge about a topic may aid a model in
answering.

Question: What environmental concern
was raised by some scientists as a result
of the 2023 Hawaii wildfires?
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Answers:

1. Rising temperatures.
2. Melting ice caps.
3. Charred soils running off into the

shoreline.
4. Increased air pollution.

In this case, knowing the geography of Hawaii,
as well as immediate effects of wildfires, enables
a model to give the first two options a lower
likelihood. This process of elimination increases
the probability of choosing one of the remaining
options (the third option is the correct answer).

A third scenario arises due to the automatic
question generation process, some questions
strongly rely on pre-existing knowledge.

Question: What event in 2021 was
compared to the September 2023 New
York floods?

Answers:

1. Hurricane Katrina.
2. Hurricane Ida.
3. Hurricane Sandy.
4. Hurricane Harvey.

Since only one of these events occurred in 2021
(Hurricane Ida), and all the models tested have
been exposed to events from 2021 during pre-
training, this question can potentially be answered
without using additional current information.

Finally, to demonstrate why it is reasonable
to assume that models cannot generally answer
questions about new information, with better than
random success, look at the following example:

Question: How did Matthew Belk, a
National Weather Service meteorologist,
describe the September 2023 northeast-
ern U.S. floods?

Answers:

1. 50-year event.
2. 100-year event.
3. 200-year event.
4. 500-year event.

Even with some knowledge about floods and
their statistical properties, it would be very difficult
to guess that this specific meteorologist would call
the flood a ‘200-year event’. This is especially true
if the model was not exposed to information about
the details of the flood.
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