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Abstract

Recent Large Vision-Language Models
(LVLMs) demonstrate impressive abilities
on numerous image understanding and
reasoning tasks. The task of fine-grained
object classification (e.g., distinction between
animal species), however, has been probed in-
sufficiently, despite its downstream importance.
We fill this evaluation gap by creating FOCI
(Fine-grained Object ClassIfication), a difficult
multiple-choice benchmark for fine-grained
object classification, from existing object
classification datasets: (1) multiple-choice
avoids ambiguous answers associated with
casting classification as open-ended QA
task; (2) we retain classification difficulty by
mining negative labels with a CLIP model.
FOCI complements five popular classification
datasets with four domain-specific subsets
from ImageNet-21k. We benchmark 12 public
LVLMs on FOCI and show that it tests for
a complementary skill to established image
understanding and reasoning benchmarks.
Crucially, CLIP models exhibit dramatically
better performance than LVLMs. Since
the image encoders of LVLMs come from
these CLIP models, this points to inadequate
alignment for fine-grained object distinction
between the encoder and the LLM and warrants
(pre)training data with more fine-grained
annotation. We release our code at https://
github.com/gregor-ge/FOCI-Benchmark.

1 Introduction

Large Vision Language Models (LVLMs)—Large
Language Model (LLM) that have been adapted
to process images as input alongside text—have
shown impressive performance on a wide range
vision-language tasks (Li et al., 2023b; Liu et al.,
2023b; OpenAI, 2023a; Anil et al., 2023). LVLMs
are mutually compared using a range of bench-
marks that test for various image understanding and
reasoning skills, such as existence and counting of
objects, localization, comparison between objects

Name this 
dog breed 
and tell me 
a fact 
about it.

LLaVA 1.5: The dog in the image is a 
Samoyed, which is a breed of dog known 
for its thick, white double coat. [...]

Idefics-2: Keeshond. These dogs were 
originally bred as ratters and watch 
dogs in Holland.

Figure 1: The importance of object recognition: LLaVA
1.5 fails to identify the dog breed. Idefics-2 correctly
recognizes it and gives a correct fact as a result.

or identifying object attributes (Goyal et al., 2017;
Hudson and Manning, 2019; Liu et al., 2023c).

LVLMs are, however, barely ever tested for fine-
grained object classification—the ability to cor-
rectly recognize different animals, plants, or man-
made objects—which is, we argue, an important
skill that complements general image understand-
ing.1 Besides it being an end-task in itself, e.g.,
to answer questions such as “What is this flower
/ animal / car / building / ... called?”, it is often
implicitly needed in information-seeking situations,
where the success depends on the models’ ability
to correctly and precisely identify an object (“Is
this mushroom edible?”, “How to cook this dish?”,
or “What is this dog breed used for?”) (Hu et al.,
2023; Chen et al., 2023; Mensink et al., 2023). As
illustrated in Figure 1, only one of the LVLMs cor-
rectly identifies the dog breed in the image and
can follow up with relevant information. Note that
this is different from general L(V)LM hallucination
(Zhang et al., 2023b), where models ‘invent’ incor-
rect information. Instead, the generated content is
correct for the object, but the object is misclassi-
fied: the information about Samoyed by LLaVa 1.5

1For simplicity, we use ‘object’ to refer to both living
entities like animals as well as to inanimate objects.
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is correct, but the dog in the image is a Keeshond.

To fill this gap in LVLM evaluation, we create
a comprehensive benchmark dubbed FOCI (Fine-
grained Object ClassIfication) that tests models’
fine-grained object recognition over a wide range
of object categories. Our key contribution is a well-
defined task formulation that avoids pitfalls of prior
work: We argue that an open question answering
(QA) formulation (i.e., answer the question “What
is this”?), as done, e.g., by Xu et al. (2023a), is an
ill-defined task for two reasons. 1) the complete
set of admissible answers is not provided (e.g., ad-
missible answers for the dog in Figure 1 include
Keeshond, Dutch Barge Dog, and Wolfspitz). For
objects with only a few synonym labels, one can
provide all answer options but this does not scale
to hundreds or thousands of objects. Constrained
decoding to only the admissible labels is computa-
tionally expensive for large label sets (Chen et al.,
2022). 2) The expected taxonomy level of the an-
swer is not specified. For the given example, dog,
Spitz, and Keeshond are all ontologically correct
answers; but recognizing a Keeshond is much more
difficult than recognizing a dog. To address the
above shortcomings, we formulate object classifi-
cation as a multiple-choice problem To avoid that
the reduction to only a handful candidate answers
renders the task trivial, we use a CLIP model (Rad-
ford et al., 2021a) in a zero-shot configuration to
mine difficult choices from the pool of class labels.
We assemble FOCI from 5 popular classification
datasets for different domains (flowers, cars, food,
aircraft, pets) and additionally create 4 domain sub-
sets from ImageNet-21k (Deng et al., 2009) for
animals, plants, food, and man-made objects.

We extensively evaluate 12 publicly available
LVLMs on FOCI and find that many of them like
the popular LLaVA 1.5 struggle with fine-grained
object classification. We observe that models with
similar performance on established benchmarks
can yield quite different and uncorrelated results
on FOCI, highlighting that fine-grained object clas-
sification is indeed a distinct skill for LVLMs, and
that FOCI should thus complement existing image
understanding and reasoning benchmarks. Com-
paring the models further, we observe that the scale
of their (pre-)training data seems to impact their
performance on FOCI significantly more than for
image understanding tasks. A comparison with the
underlying CLIP models used as the LVLMs’ im-
age encoders shows that the encoder’s zero-shot

accuracy provides an upper bound for the LVLM,
with the LVLM performance lagging drastically
behind. This suggests that the alignment between
the image encoder and LLM in LVLMs seems to
be insufficiently semantically fine-grained. We fi-
nally perform controlled experiments to isolate the
modeling and training decisions that impact the
models’ performance in FOCI. As is the case with
other benchmarks, both larger LLMs and stronger
image encoders improve results. Most importantly,
incorporating captions into the training data that
explicitly name the downstream objects helps with
classification. Similarly, including fine-grained
classification objectives to the training mix can
improve models’ FOCI performance.

2 Related Work

Large Vision-Language Models. LVLMs align
pre-trained image encoders (generally a Vision
Transformer (ViT) (Dosovitskiy et al., 2021) from
CLIP (Radford et al., 2021a)) to a Large Language
Model (LLM), yielding an LLM that can work
with images as input besides text (Chen et al.,
2022; Alayrac et al., 2022; Li et al., 2023b; Dai
et al., 2023; Liu et al., 2023b,a; Bai et al., 2023;
Laurençon et al., 2023; Chu et al., 2023; Zhang
et al., 2023a). LVLMs are commonly trained in
two stages: first, an alignment module between
the image encoder and the LLM—a shallow feed-
forward network (Liu et al., 2023b,a) or more com-
plex modules like a resampler (Alayrac et al., 2022;
Li et al., 2023b)—that projects image tokens into
the LLM input embedding space is trained using
image-caption pairs. In the second stage, the model
is trained for general-purpose inference on a mix of
tasks, e.g., visual Q&A (Goyal et al., 2017; Hudson
and Manning, 2019) and (visual) chat instruction
data (Chiang et al., 2023; Liu et al., 2023b). While
the second stage is fairly similar across the recent
models, the first stage is where training greatly
varies: on the low end, models are trained with
less than a million examples (Liu et al., 2023a,
2024); on the high end, over a billion image-text
pairs are used (Bai et al., 2023; Dong et al., 2024;
Laurençon et al., 2024). Despite differences in
data size, models on both ends of the spectrum can
achieve competitive results on popular benchmarks.
In this work, we show that better visio-linguistic
alignment in the first training stage substantially
boosts fine-grained object classification abilities.

Benchmarking LVLMs. Most existing bench-
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{Keeshond, Samoyed, 
Persian, Pomeranian, ...}

Cosine Similarity:

What is this?
A. Persian
B. Samoyed
C. Keeshond
D. Pomeranian

Answer: C

CLIP Image Encoder

CLIP Text Encoder

Keeshond
Samoyed

Persian

Pomeranian

Test Image (Keeshond)

Class Labels ① Find hard choices with CLIP similarity

② Formulate as a 
multiple-choice 

problem

③ Test LVLM 

Figure 2: Testing LVLMs on object classification through multiple-choice: (1) We compute the CLIP cosine
similarity between a test image and class labels; we select the correct label and the three most similar (wrong) labels
to (2) formulate a multiple-choice problem, which (3) is given to the LVLM who has to predict the correct choice.

marks, e.g., VQAv2 (Goyal et al., 2017), GQA
(Hudson and Manning, 2019), MME (Fu et al.,
2023), MMBench (Liu et al., 2023c), Seed-Bench
(Li et al., 2023a), or (Tong et al., 2024), test LVLMs
for image understanding and reasoning capabilities
such as recognition of color and other attributes,
object counting, recognizing object position and
orientation and similar. Other benchmarks like
MMMU (Yue et al., 2023) test world knowledge
and reasoning capabilities in different domains.

Although (fine-grained) object classification is
a prominent end-task in itself and relevant in con-
versational applications, it is barely considered in
LVLM evaluation protocols. The work that ad-
dresses the task is limited. (i) Models with in-
context learning capabilities are evaluated on few-
shot object classification but the models do not
classify images in isolation and instead compare
the target image with labeled in-context examples
(Tsimpoukelli et al., 2021; Alayrac et al., 2022). (ii)
Pali (Chen et al., 2022) was evaluated on ImageNet
(Deng et al., 2009) by scoring every class labels,
which is computationally expensive. (iii) LVLM-e-
Hub (Xu et al., 2023a) includes some image classi-
fication datasets (like ImageNet) but they formulate
it as open-ended QA task with ambiguity over ex-
pected answers, which leads to low accuracy scores
for all models. (iv) In knowledge-intensive VQA,
models have to recognize the correct object (e.g., a
specific building) to answer correctly; objects are
recognized either implicitly (the QA model needs
to know which object it is to answer correctly) or
explicitly when a knowledge base is used to re-
trieve relevant information (Hu et al., 2023; Chen
et al., 2023; Mensink et al., 2023).

Contemporary work by Kim and Ji (2024);
Zhang et al. (2024) also analyze weaknesses and

propose improvements for fine-grained classifica-
tion with LVLMs but both are limited by their use
of open-ended QA with its aforementioned chal-
lenges in evaluation. In contrast to these efforts, we
propose a standardized evaluation of LVLMs for
(fine-grained) object classification by converting
image classification datasets into difficult multi-
choice tasks with an well-defined evaluation setup.

3 Multiple-Choice Image Classification

Image classification is a fundamental problem in
computer vision with a plethora of datasets avail-
able. In this work, we focus on fine-grained object
classification where models have to differentiate
between several objects belonging to a specific do-
main, e.g., animal species or car models. We lever-
age existing datasets as resources for annotated data
and frame object classification as a multiple-choice
task with well-defined answer candidates.

Why Multiple-Choice? The standard formulation
of object classification tasks for LVLMs is via ques-
tion answering, with open-ended answer generation
Xu et al. (2023b). This formulation, we argue, rep-
resents an ill-posed problem for two main reasons:
(1) the expected level of granularity in the object
taxonomy that is expected as the answer is not de-
fined, and is difficult to define in general (e.g., for
the image from Figure 1, dog, Spitz, or Keeshond
are all correct labels); (2) the set of admissible an-
swers in existing datasets is not complete: most
objects have multiple synonymous labels, all of
which constitute a correct answer (e.g., Keeshond,
Dutch Barge Dog, and Wolfspitz), but only subsets
of those are provided as admissible labeles in exist-
ing datasets. Providing complete synonym sets and
specifying the expected level of granularity of the
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answer is, in the general case, infeasible, and while
incorporating LLMs into the evaluation might al-
leviate some issues even with incomplete answers
(Mañas et al., 2024), this would greatly increase
the cost of evaluating models. Instead, we propose
to formulate fine-grained object classification as a
multi-choice task, where the models are provided
with a set of candidate answers from which the cor-
rect answer is to be selected; this way the expected
(i.e., correct) output is well-defined.

Mining Hard Choices. To maintain difficulty de-
spite the reduction to only a small set of candidate
labels, we mine for each example image difficult
incorrect labels from all class labels used in the
concrete image classification dataset. We argue
that a reduction to the most likely incorrect classes
retains the task difficulty as even in classification
over large class sets (e.g., thousands of classes),
models easily discern between unrelated classes
and most errors stem from close classes anyways
(e.g., in the Oxford-Pets dataset, which covers 37
cat and dog breeds, cat breeds are irrelevant for
dog images). We use a CLIP model for mining
difficult candidates: for every example image, we
select the three most similar (incorrect) class labels
as negative choices. We rank the dataset classes for
an image using the standard CLIP zero-shot setup:
the text encoder embeds all class labels, the image
encoder embeds the image, and the class labels are
ranked in decreasing order of cosine similarity of
their respective text embeddings with the image
embedding. We avoid biasing the choice selec-
tion towards any concrete LVLM in our evaluation
by selecting OpenCLIP ViT-L/14 (Ilharco et al.,
2021): its image encoder has not been used by any
of the LVLMs. Figure 2 illustrates both the process
of mining negatives for an image and testing an
LVLM on the resulting set of candidate choices.
Our CLIP-based mining of hard negatives is criti-
cal for the difficulty of our benchmark: depending
on the initial classification dataset, LVLMs may ex-
hibit 20-50 points lower performance compared to
a variant where negatives are randomly selected.2

This shows that even with a small (but difficult)
candidate set, we obtain a challenging benchmark.

FOCI (Fine-grained Object ClassIfication). We
collate our FOCI benchmark from diverse exist-
ing datasets, selecting in all cases four candidate
choices for each image (i.e., the correct label and

2Tested with LLaVA 1.5.

three most similar negatives). We complement (1)
established datasets commonly used for evaluating
CLIP models (Radford et al., 2021a; Ilharco et al.,
2021) with (2) additional challenging larger-scale
datasets that we derive from ImageNet-21k (Deng
et al., 2009). For the former, we select the fol-
lowing five datasets: FGVC-Aircraft (Maji et al.,
2013) contains images of 100 different aircraft
types; Flowers102 (Nilsback and Zisserman, 2008)
contains images of 102 different flower species;
Food101 (Bossard et al., 2014) covers 101 dishes;
Oxford-Pet (Parkhi et al., 2012) contains images
of 37 cat and dog breeds. Stanford-Cars (Krause
et al., 2013) covers 196 car models.

As some of the above datasets are not particu-
larly challenging for existing CLIP models in zero-
shot evaluations, we additionally construct four
new challenging datasets from ImageNet-21k (IN-
21k). We first merge ImageNet-COG (Sariyildiz
et al., 2021) (5k classes) and ImageNet-1k (IN-1k),
for a total of 6k classes that are all leaf nodes in the
WordNet (Miller, 1994) taxonomy: this means that
no two labels stand in the is-a relation and there
cannot be multiple correct answers stemming from
different taxonomy levels (e.g., dog and Pomera-
nian). Next, we group the classes according to
their WordNet lexicographer file names, and cre-
ate a dataset for each of the four most represented
ones: Animal (1322 classes), Plant (957 classes),
Food (563 classes), and Artifact (man-made ob-
jects, 2631 classes). We prepend IN- (ImageNet-)
in our experiment to mark these datasets.

One could, in principle, add more object types
and domains to the evaluation: our goal was to in-
clude a reasonably diverse set of domains, from
which, when put together in a benchmark, one
could reliably extrapolate general fine-grained ob-
ject recognition abilities of LVLMs. For further
analysis, in Appendix D we additionally evaluate
LVLMs on more general (i.e., not domain-specific)
object classification under different image distri-
bution shifts (using ImageNet-1k) and for geo-
graphic distribution shifts with common objects
photographed in different regions of the world, us-
ing GeoDE (Ramaswamy et al., 2023).

4 Evaluating Public LVLMs

We evaluate 12 diverse and publicly available
LVLMs on FOCI. We then analyze how the per-
formance of LVLMs relates to the results of their
underlying CLIP image encoders.
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Model #P Pretrain Task Mix

Idefics-1 (Laurençon et al., 2023) 9B 350M 1M
Idefics-2 (Laurençon et al., 2024) 8B 1.5B ?
BLIP2 Flan-T5-XL (Li et al., 2023b) 4B 130M —
InstructBLIP Flan-T5-XL (Dai et al., 2023) 4B 130M 1M
InstructBLIP Vicuna (Dai et al., 2023) 8B 130M 1M
InternLM XComposer 2 (Dong et al., 2024) 7B >1B 600M
LLaVA 1.5 (Liu et al., 2023a) 7B 560k 660k
LLaVA-Next (Mistral) (Liu et al., 2024) 7B 560k 760k
MobileVLM V2 (Chu et al., 2024) 7B 1.2M 2.4M
Pali-Gemma (Beyer et al., 2024) 3B 1B ?
Phi-3-Vision (Abdin et al., 2024) 4B >10M >1M
Qwen-VL-Chat (Bai et al., 2023) 10B 1.4B 50M

Table 1: The 12 tested public LVLMs. We provide pa-
rameters count (#P; LLM + image encoder parameters)
and the dataset size (in images) used during the pretrain-
ing and task mix training phase. For some fields, we put
a conservative estimate or ‘?’ if no estimate is possible.

Model and Inference Details.. Our selected mod-
els span a variety of architectures and training
paradigms. Table 1 summarizes key information
(the number of parameters and the size of the train-
ing data) for each model. Due to our hardware
constraints, we benchmark models with LLMs hav-
ing ≤7B parameters. At inference time, we provide
the LVLMs with the image and the four candidate
choices. The choices are in random order to avoid
model-specific preferences for answer positions
(Liu et al., 2023c)); the model provides as output
one of the choices, which is compared with the
ground truth label: we then report the performance
in terms of accuracy. See Appendix A for further
details on models, the inference setup, and datasets.

4.1 Results

FOCI vs. Other Benchmarks. Table 2 displays the
results for the 12 benchmarked LVLMs on FOCI.
We first compare the models’ performance and rel-
ative ranking on FOCI with their results on pop-
ular image understanding benchmarks (we show
the models’ performance on GQA (Hudson and
Manning, 2019), MMBench (Liu et al., 2023c),
and MMMU (Yue et al., 2023) in Table 5 in the
Appendix C). Model’s results on FOCI are much
less correlated with their respective results on other
benchmarks: better results on GQA, MMBench,
or MMMU do not necessarily imply better re-
sults for fine-grained object classification and vice
versa. Qwen-VL, for example, is amongst the best-
performing models in object classification in FOCI,
but is fares much worse on the standard bench-
marks, where several yield better results. On the
other hand, Phi-3-Vision has among the best results
on the standard benchmarks but exhibits only av-

erage performance on FOCI. These results indicate
that fine-grained object classification is a skill that
is complementary to what other image understand-
ing and reasoning benchmarks test and as such
should be added to LVLM evaluation protocols.

Training Data. One important factor for strong
object recognition on FOCI seems to be the amount
of image-text data used for (pre-)training the align-
ment component of the LVLM in the first training
phase (see §2). On the common understanding
benchmarks, models like LLaVA 1.5, and LLaVA-
Next show strong results despite being pretrained
with <1M image-text pairs. However, the two best
models on FOCI, Idefics-2 and Qwen-VL, are both
pretrained on ∼1.5B images and drastically outper-
form the LLaVA models. Pali-Gemma with 1B pre-
training examples also shows a strong performance
despite its small LLM size. This suggests that
object classification requires larger-scale training
for a much more fine-grained alignment between
the image encoder and LLM, compared to what is
needed in general for image understanding, which
typically requires reasoning over ‘coarser’ object
categories (e.g., dog or tree) or attributes of these
objects (e.g., color and shape); this knowledge is
readily included in the alignment captions (and
also in the image understanding tasks included in
the fine-tuning training mix). We isolate the effect
of the alignment training data (in a smaller-scale
setup) in §5. The results for InstructBLIP are some-
what inconclusive: with Flan-T5-XL as LLM, it
exhibits good FOCI performance, but with Vicuna
(and otherwise identical training) the results are
substantially worse. This would suggest that, other
than the scale of the alignment training, the LLM
itself plays an important role.

Other Factors. Very high image resolution, which
is highly beneficial for OCR-heavy tasks like chart
understanding (Liu et al., 2024), does not seem to
be relevant for fine-grained object classification.
This stems from the comparison between LLaVA
1.5 and LLaVA-Next, where the latter’s main dif-
ference w.r.t. the former is training with (and infer-
ence on) images of higher resolution. This is unsur-
prising as images in object classification datasets
typically contain large centered objects, making
larger resolution unnecessary for solving the task.
The LLM and image encoder are likely also major
factors for the ultimate performance but we cannot
isolate them in this observational analysis; instead,
we consider them in controlled experiments in §5.
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Model IN-Food IN-Artifact IN-Animal IN-Plant Aircraft Flowers102 Food101 O.-Pet S.-Cars ∅

Idefics-1 40.18 41.90 31.37 29.55 34.62 51.70 72.44 48.51 29.42 42.19
Idefics-2 56.38 52.56 46.50 41.47 56.23 72.78 89.70 81.28 80.25 64.13
BLIP-2 Flan-T5-XL 51.47 47.41 39.22 32.59 32.94 64.32 82.51 65.00 67.68 53.68
InstructBLIP Flan-T5-XL 49.25 47.83 38.07 32.88 29.19 62.29 76.77 59.99 64.58 51.21
InstructBLIP Vicuna 43.94 42.39 37.32 30.04 31.68 50.90 63.47 54.92 48.25 44.77
InternLM XComposer 2 50.43 47.84 38.98 33.23 40.53 54.25 79.30 63.23 53.89 51.30
LLaVA 1.5 47.76 45.61 36.32 33.00 34.71 51.37 72.80 52.25 46.92 46.75
LLaVA-Next 46.32 45.54 35.51 31.86 32.49 43.91 71.30 53.72 49.48 45.57
MobileVLM v2 46.50 44.58 37.60 33.75 35.01 54.89 74.38 53.69 46.29 47.41
Pali-Gemma 54.25 48.79 42.28 37.04 39.87 69.64 82.36 75.42 64.64 57.14
Phi-3-Vision 46.66 42.75 35.11 31.27 42.33 51.59 69.98 56.36 54.50 47.84
Qwen-VL-Chat 52.36 50.95 48.45 40.09 45.96 75.95 83.92 87.82 76.23 62.41

Table 2: Accuracy on FOCI: on individual datasets and average (∅), for the 12 tested public LVLMs.
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Figure 3: We plot the LVLM accuracy against the CLIP
zero-shot accuracy (using the 4 multiple-choice options
for CLIP for a fair comparison) of the underlying CLIP
image encoder used by the LVLM.

4.2 LVLM vs. Its Corresponding CLIP

Several of the tested LVLMs keep their underly-
ing CLIP image encoder frozen throughout training.
This means that the cross-modal alignment between
the CLIP’s image encoder and its text encoder is un-
touched, allowing us to compare the performance
of these LVLMs directly against the CLIP models
from which they take the image encoder.

Specifically, we consider three LVLMs with
their corresponding CLIP models: Idefics-1, which
uses OpenCLIP ViT-H/14 (Ilharco et al., 2021),
LLaVA 1.5, which uses OpenAI ViT-L/14 (Rad-
ford et al., 2021b), and InstructBLIP Flan-T5 with
EVA-1 ViT-g/14 (Fang et al., 2022).

CLIP Zero-Shot Classification as Upper Bound.
The image and text encoder of a CLIP model were
trained jointly on huge datasets; in contrast, the
alignment of the CLIP’s image encoder to the LLM
is learned with comparatively less image-text data
(e.g., InstructBLIP is pre-trained with 100M sam-
ples while EVA-1 was trained with 11B samples).
We compare in Figure 3 the LVLM performance
against the zero-shot classification accuracy of the

Idefics-1 InstructBLIP Flan-T5-XL LLaVA 1.5
model
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Figure 4: Accuracy of three LVLMs on ImageNet-1k,
for example subsets on which the zero-shot classifica-
tion with the corresponding CLIP model is (in)correct.

corresponding CLIP model (for a fair comparison,
CLIP only considers the same 4 labels as LVLM
does in multiple-choice formulation). We observe
that the LVLM performance is indeed consistently
lower than that of the corresponding CLIP model.
However, while the CLIP zero-shot classification
accuracy seems to be an upper bound for the LVLM,
the gaps vary substantially across the FOCI datasets:
from <10% on IN-Artifact to 40-50% on Oxford-
Pets. These results indicate that, while the align-
ment between the image encoder and LLM is under-
trained in general, there are also drastic differences
in the quality of alignment for different types of
objects (i.e., domains). For certain domains (e.g.,
Oxford-Pets) the LLM seems to struggle to process
the image features, despite the CLIP image encoder
encoding sufficient information (as evidenced by
the much better corresponding CLIP performance).

CLIP wrong =⇒ LVLM wrong? We analyze
the predictions of LVLMs on instances that the cor-
responding CLIP model misclassifies to measure
whether those classification errors propagate to the
LVLM: in other words, if the CLIP model is wrong,
is the LVLM using its image encoder also bound
to misclassify the image? Figure 4 summarizes
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Figure 5: Results with MobileVLM v2 over its three
LLM sizes with otherwise identical training.

the results of this analysis on ImageNet-1k (in our
multi-choice formulation) for three LVLMs; for
the FOCI datasets we provide the same analysis in
Figure 7 in the Appendix. We observe that LVLM
accuracy plummets on examples on which the cor-
responding CLIP fails: in fact, for instances that
CLIP cannot correctly classify, the performance
of the corresponding LVLM gets close to random
(25%) for all three LVLMs in the analysis. These
observations—that CLIP performance is an upper-
bound for LVLM accuracy and that its errors prop-
agate to the LVLM—highlight that the selection
of an image encoder is a key design decision for
LVLMs performance and suggest that future im-
provements in image encoding are likely to also
propagate to LVLM object recognition capabilities.

5 Controlled Experiments

We next perform a set of controlled experiments to
disentangle the effects of individual LVLM design
choices on (fine-grained) object classification. Our
analysis encompasses three main factors: (1) the
LLM size, (2) the image encoder, and (3) targeted
changes to the training data. For (2) and (3), we
train LVLMs following the LLaVA 1.5 recipe with
StableLM 2 Zephyr 1.6B (Bellagente et al., 2024)
as LLM and OpenAI CLIP-L/14-224 as the image
encoder (see the Appendix B for training details).

LLM Size. Larger LLMs generally make for better
LVLMs, yielding better benchmark performance
due to (inter alia) improved reasoning capabilities
(Liu et al., 2023a; Karamcheti et al., 2024; Chu
et al., 2024). Our multiple-choice object classifica-
tion is not difficult from a reasoning or language-
understanding perspective, but it requires familiar-
ity with thousands of objects, which may be be-
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Figure 6: Improvements over our baseline when chang-
ing the OpenAI ViT-L/14-224 image encoder to a
higher resolution (336) or to SigLIP SO400-224.

Model IN-1k Train Half Test Half FOCI

Baseline 53.12 53.71 52.52 41.19
No Pretrain 51.94 51.56 52.32 38.71
Synthetic 54.46 55.12 53.80 41.48
Template 54.81 58.82 50.80 40.69
QA Task 57.40 59.89 54.91 43.64

Table 3: Results for experiments with changes to the
training data on: ImageNet-1k overall (IN-1k) and bro-
ken down for the training half and the held-out test half,
and the average results over the 9 FOCI datasets.

yond the knowledge stored in smaller LLMs. For
this analysis, we turn to the MobileVLM v2 model
series (Chu et al., 2024): with models trained on
top of 1.7B, 3B, and 7B LLM backbones and oth-
erwise identical architecture (image encoder and
alignment module) and training procedure (data
and training protocol for both the LLMs and subse-
quent LVLMs), we can isolate the effect of LLM
size. Figure 5 summarizes the results. Expectedly,
the performance on all FOCI datasets consistently
improves with increased LLM size: we believe
that this is because smaller LLMs simply encode
less world knowledge and have semantically poorer
representations for (fine-grained) objects.

Image Encoder. Following the observation that
the quality of the CLIP image encoder may cap
the LVLMs’ performance (Figure 3), we investi-
gate the effect that LVLM’s image encoder has
on fine-grained object recognition. Our “baseline”
LVLM aligns the OpenAI CLIP-L/14-224 (CLIP-
224 for short) image encoder with the LLM. We
then create two other LVLMs by changing the im-
age encoder with: (1) OpenAI CLIP-L/14-336
(CLIP-336 for short), which takes images of larger
resolution and (2) SigLIP SO400M-224 (SigLIP
for short) (Zhai et al., 2023) as a ‘better’ image
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encoder, boasting substantially higher benchmark
results on image processing benchmarks. Figure 6
summarizes the results. On one hand, encoding
images in higher resolution (with CLIP-336, i.e.,
increasing from 224px to 336px) leads to only a
marginal ∼1 accuracy point gain, averaged over
all FOCI datasets. The effect seems to depend on
the object type: we see gains of over 5 points on
Flowers102 & Food102 but also a 5-point drop on
Oxford-Pets. The SigLIP encoder, on the other
hand, greatly improves the baseline performance
across the board. The absolute gains of the SigLIP-
based LVLM over the baseline LVLM (CLIP-224
encoder) are, however, not proportionate to gains
that the corresponding SigLIP CLIP model yields
over CLIP-224 in zero-shot object classification.
For example, while SigLIP beats CLIP-224 by 27%
on FGVC-Aircraft,3 the SigLIP-based LVLM beats
the CLIP-224-based LVLM on the same dataset by
only 3%; inversely, on Food101, SigLIP has only
a 2% edge in CLIP comparison, but yields 12%
better performance in LVLM comparison.

Training Data. The two LVLMs trained with most
data, Idefics-2 and Qwen-VL (>1.5B images in
total over both training stages) demonstrated the
best performance on FOCI (Table 2). As this scale
of training is beyond the (computational) budget
of most practitioners, we set to quantify the FOCI
gains from adding training data at smaller data
scales, concretely at the data budget of LLaVA 1.5
(ca. 1.2M images in total, see Table 1).
Changes to Pretraining. We hypothesize that a
larger pretraining corpus benefits the LVLM due
to having more of the objects named explicitly in
the corresponding captions. We test this explicitly
by replacing a portion of the LLaVA 560k pre-
traing images (with captions) with images from
the ImageNet-1k train split to test if recognition
performance for those classes improves. To have a
held-out control set, we only use 500 of the 1000
classes (choosing every other class) for training;
we select 280 images per class, which yields 140k
training examples in total or 25% of the LLaVA pre-
training data. We consider three training strategies
for the added ImageNet images: i) with synthetic
captions, generated using BLIP (Li et al., 2022)
(Synthetic); this setup tests the effect of images
with objects but with captions that do not necessar-
ily name them (e.g., for an image of a Keeshond,
BLIP-generated caption will likely contain ‘dog’

3Taken from: openclip_classification_results.csv

but not ‘Keeshond’). ii) with template captions
(Template) such as “a picture of a $label.”; such
captions are not visually descriptive but explicitly
name the object in the image. iii) we skip the pre-
training phase entirely (No Pretrain) and perform
the task mix training on the randomly initialized
alignment module; on standard benchmarks, skip-
ping pretraining has been reported not to notably
affect performance (Karamcheti et al., 2024).

Changes to Task Mix Phase. We incorporate Ima-
geNet as an open-ended QA Task where the model
is prompted to name the image object without can-
didate answers. We use the open-ended QA for-
mulation in training to avoid model adaptation to
the multiple-choice formulation of the task we use
at test time on FOCI. We again use 500 (out of the
1000) ImageNet classes and sample 150 examples
per class (75k training examples in total). We do
not otherwise change the LLaVA task mix data.

Results. We report the results of this ablation in
Table 3. Skipping the pretraining step entirely (No
Pretrain) reduces the average FOCI performance
by over 2 accuracy points: this suggest that pretrain-
ing of the alignment module on image-text pairs
is important for fine-grained object classification,
unlike what was recently reported for other tasks
(Karamcheti et al., 2024). Training on images with
both Synthetic and Template captions has a very
limited effect on FOCI performance and the unseen
Test Half of ImageNet. Training on Synthetic
brings a ∼ 1.5-point gain for the 500 ImageNet
object classes seen in training (Train Half in Ta-
ble 3); in comparison, the Template captions bring
a much more significant gain of 5% for seen ob-
ject classes: this strongly suggests that explicitly
mentioning the objects in the captions is key for
learning the alignment module that allows LVLMs
better fine-grained object classification; just hav-
ing images containing the object does not suffice
(or is, at least, less effective). Note that only the
feed-forward alignment module is trained in the
first phase, so the improvements with Template
captions can only be the result of having learned a
better alignment and not due to the image encoder
or LLM (both frozen) obtaining better representa-
tions of objects and their mentions, respectively.
Including ImageNet as open-ended QA Task to the
second task mix training phase has a larger effect
on performance. For 500 of ImageNet-1k seen in
training (Train Half), we observe a 6% improve-
ment, but also a 2-point improvement on the images
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from the held-out Test Half and on FOCI.

6 Conclusion

In this work, we evaluate the capabilities of LVLMs
for fine-grained object classification over differ-
ent domains. We address the ambiguity of open-
ended QA-based object classification evaluation
and propose to replace it with a multiple-choice
formulation, in which we retain the task difficulty
by mining difficult (semantically closest classes)
choices with a CLIP model. This way, we cre-
ate FOCI, a novel benchmark consisting of 9 fine-
grained multi-choice object classification datasets.
We benchmark 12 public LVLMs, demonstrating
that their performance on FOCI is largely uncorre-
lated with that on other image understanding and
reasoning benchmarks: this renders fine-grained
object classification a skill that is complementary to
what the existing benchmarks test the LVLMs for.
Our ablations identify the quality of the image en-
coder and the amount of explicit caption mentions
of image objects in LVLM training data as factors
that drive the performance. We hope our work stim-
ulates wider research efforts on improving LVLMs
for fine-grained object classification, in particular
conceptual innovation (e.g., more effective train-
ing data and protocols for object classification with
LVLMs) that goes well beyond mere scaling of
LVLM pretraining to billions of image-text pairs.

Limitations

We identify three main limitations for our work:
First, while the goal of this work is not to eval-

uate every possible domain, we still likely exhibit
a bias towards Anglospheric concepts as multiple
datasets were created at British and US universities
and use images sourced from the English internet.
ImageNet in particular shows such biases (Liu et al.,
2021) in image source and for its classes. While
we briefly consider performance over geographic
distribution shifts in the Appendix, we still likely
overestimate performance for diverse cultural ob-
jects and concepts from around the globe.

Another limitation stems from the multiple-
choice formulation: while it allows for well-defined
answers, users ‘in the wild’ are more likely to
use an open-ended formulation. While we ex-
pect results between the two formulations to cor-
relate, some objects may be harder to classify in a
multiple-choice setup due to the presence of chal-
lenging confounder options, and vice versa, some

objects may be easier to classify in multiple-choice
with the correct name as an option.

Finally, we only evaluate public LVLMs using
LLMs of 7B parameters or less. We do not con-
sider larger models (e.g., LLaVA 1.5 with Vicuna-
13B) or proprietary LVLMs (e.g., GPT4 (OpenAI,
2023b) or Gemini (Anil et al., 2023)) because the
inference time is too high on our compute (or not
possible at all VRAM-wise) for the former and too
expensive with >100,000 of API calls for the latter.
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A Evaluation Details

Models & Inference: In Table 4, we specify the
exact checkpoint we used for each model. We

Model Checkpoint

Idefics-1 (Laurençon et al., 2023) HuggingFaceM4/idefics-9b-instruct
Idefics-2 (Laurençon et al., 2024) HuggingFaceM4/idefics2-8b
BLIP2 Flan-T5-XL (Li et al., 2023b) Salesforce/blip2-flan-t5-xl
InstructBLIP Flan-T5-XL (Dai et al., 2023) Salesforce/instructblip-flan-t5-xl
InstructBLIP Vicuna (Dai et al., 2023) Salesforce/instructblip-vicuna-7b
InternLM XComposer 2 (Dong et al., 2024) internlm/internlm-xcomposer2-vl-7b
LLaVA 1.5 (Liu et al., 2023a) llava-hf/llava-1.5-7b-hf
LLaVA-Next (Mistral) (Liu et al., 2024) llava-hf/llava-v1.6-mistral-7b-hf
MobileVLM V2 (Chu et al., 2024) mtgv/MobileVLM_V2-7B
Pali-Gemma 1 google/paligemma-3b-mix-224
Phi-3-Vision (Abdin et al., 2024) microsoft/Phi-3-vision-128k-instruct
Qwen-VL-Chat (Bai et al., 2023) Qwen/Qwen-VL-Chat

Table 4: The tested public LVLM with the correspond-
ing checkpoint from HuggingFace we used. 1Model
Card, tech report pending at time of writing.

adapt the respective official code of each model for
inference. All models use greedy decoding.

We use the following prompt for all models. De-
pending on the task, we change the default question
at the beginning to prime the model for the dataset
domain:

1 Default: Which of these choices is shown
in the image?

2 IN-Animal: Which of these animals is shown
in the image?

3 IN-Plant: Which of these plants is shown
in the image?

4 FGVC-Aircraft: Which of these aircrafts is
shown in the image?

5 Flowers102: Which of these flowers is
shown in the image?

6 Food101: Which of these dishes is shown
in the image?

7 Oxford-Pet: Which of these pets is shown in
the image?

8 Stanford-Cars: Which of these cars is shown
in the image?

9 Choices:
10 A. $CHOICE1
11 B. $CHOICE2
12 C. $CHOICE2
13 D. $CHOICE3
14 Answer with the letter from the given

choices directly.

We expect the model to answer with a letter and
count the example as correct if the generated an-
swer begins with the letter corresponding to the
correct answer.

Dataset Details: In general, we evaluate on the
full test split (or, if no public test split exists
like with ImageNet, the validation split) of every
dataset.

The datasets that we constructed from ImageNet-
21k (Animal, Plant, Food, Artifact) are the excep-
tion: due to the large amount of classes, we only
use 10 images per class instead of the full 50 to
keep computation time manageable. In addition,
we use the processed version of ImageNet-21k and
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not the original (>1TB large) version for disk space
reasons; the processed version has all images re-
sized to 224×224px. During creating of the four
datasets, we remove all classes that have no unique
label (keeping only the first occurrence of a label)
to achieve a 1-to-1 mapping between classes and
labels.

B Training Details

We closely follow the architecture and training
protocol of LLaVA 1.5 (Liu et al., 2023a).
As LLM, we use the instruction-trained Sta-
bleLM 2 1.6B Zephir (Bellagente et al., 2024)
(stabilityai/stablelm-2-zephyr-1_6b),
which is a small but performant LLM. The default
image encoder is OpenAI CLIP ViT-L/14-224.
Training is done on a single NVIDIA RTX 3090
with training one model taking less than 2 days.

We train the models using AdamW optimizer
(Loshchilov and Hutter, 2019) with a cosine learn-
ing rate decay schedule. For the pre-training phase,
we use learning rate 1e-3, weight decay 0, and
batch size 256. For the task-mix training phase, we
use learning rate 2e-4, weight decay 0, and batch
size 128; we do not fine-tune the full LLM but
apply LoRA (Hu et al., 2022) to all weights with
r = 64, α = 128.

C LVLM Performance on Popular
Benchmarks

We collate public results on select popular bench-
marks for evaluating LVLMs (GQA (Hudson and
Manning, 2019), MMBench (Liu et al., 2023c),
and MMMU (Yue et al., 2023)) for the models of
Table 1. Comparing these results against the per-
formance in object classification shows that the
latter is an independent skill that does not directly
correlate with these benchmarks.

D Additional Evaluation on More
Datasets

In this section, we consider general object classi-
fication datasets (not covering a specific domain)
and consider how LVLMs handle image distribu-
tion shifts for the same object using ImageNet and
its variants and GeoDE (Ramaswamy et al., 2023).

ImageNet Image Distribution Shifts. There are
several datasets that collect new images for the
classes of ImageNet-1k (Deng et al., 2009), or
at least for a subset of them. Here, we consider

ImageNet-Adversarial (Hendrycks et al., 2021b),
which contains images for 200 classes that are diffi-
cult to correctly classify for a model trained on the
ImageNet-1k training split; ImageNet-Rendition
(Hendrycks et al., 2021a), which contains for 200
classes images of the objects where the image is
painted, a plushy, origami, or other renditions; and
ImageNet-Sketch (Wang et al., 2019), which con-
tains black-and-white drawings for all 1000 classes.

CLIP models generally excel at transferring be-
tween the different image distributions due to their
large-scale training (Radford et al., 2021b). We
evaluate in Table 6 if LVLMs see similar results
despite training the alignment with the image en-
coder on magnitudes less data and generally only
with natural images. We observe that the ranking
between the models is similar to our evaluation on
FOCI in Table 2. The changes in accuracy from
ImageNet-1k to the variants are qualitatively simi-
lar to the underlying CLIP models for the LVLMs.
This suggests that other representations of objects
(like sketches) are encoded similarly enough by
the image encoder that the LVLM can ‘recognize’
without extra training on different image types.

Geographic Shifts with GeoDE. We now con-
sider geographic distribution shift using GeoDE
(Ramaswamy et al., 2023), a dataset with 40
classes for which there are images evenly dis-
tributed around the globe for six regions: Europe,
Africa, Southeast Asia, West Asia, East Asia, and
the Americas (which does not include here the US
or Canada). Results of the tested LVLMs are re-
ported in Table 7. While GeoDE is a generally
easy dataset with high accuracy throughout, we
still observe substantial differences between the
regions: European images consistently enjoy the
highest accuracy, all non-African regions follow
close by with 0-3 points worse than Europe, and fi-
nally, the African images noticeably trail behind by
2-4 points lower accuracy compared to the overall
average accuracy. This shows that geographic bi-
ases in the training data, both for the image encoder
and for the LVLM (Pouget et al., 2024), result in
disadvantages for large parts of the population.

E More CLIP Results

We present the results for conditional accuracy of
LVLMs for all datasets in Figure 7.
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Model GQA MMBench MMMU

Idefics-1 — 35.2 28.7
Idefics-2 — 76.8 43.5
BLIP2 Flan-T5-XL *44.0 — 34.4
InstructBLIP Flan-T5-XL *48.4 — 32.9
InstructBLIP Vicuna 7B *49.2 38.3 —
InternLM XComposer 2 — 79.6 43.0
LLaVA 1.5 7B 62.0 64.3 —
LLaVA-Next Mistral 7B 64.8 68.7 —
MobileVLM V2 7B 62.6 69.2 —
Pali-Gemma **65.6 — —
Phi-3-Vision — 80.5 40.4
Qwen-VL-Chat 57.5 60.6 35.9

Table 5: Performance on standard benchmarks for image understanding and reasoning. * unlike other models, has
not included GQA in training task mix. ** with model fine-tuned on GQA, not the mix version used for testing.

models IN-1k IN-adversarial IN-rendition IN-sketch ∅

Idefics-1 60.09 50.03 72.20 50.13 58.11
Idefics-2 73.39 79.84 93.23 68.21 78.67
BLIP-2 Flan-T5-XL 66.12 67.48 90.48 64.85 72.23
InstructBLIP Flan-T5-XL 66.15 69.69 90.58 64.46 72.72
InstructBLIP Vicuna 56.27 59.75 76.82 54.84 61.92
InternLM XComposer 2 65.65 73.08 83.29 56.99 69.75
LLaVA 1.5 62.44 68.53 79.30 55.88 66.54
LLaVA-Next 60.86 67.20 78.12 53.50 64.92
MobileVLM v2 61.16 64.59 79.63 54.66 65.01
Pali-Gemma 69.56 68.45 92.15 65.55 73.93
Phi-3-Vision 61.71 56.71 79.18 56.01 63.40
Qwen-VL-Chat 71.20 70.99 90.59 67.16 74.98

Table 6: Results for ImageNet-1k and four distribution-shifted versions.

F Full Experiment Results

Complementary to the Figures in the main paper,
we report the raw results of MobileVLMv2 in Ta-
ble 8 and for our trained models in Table 9.
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models Europe Africa Southeast Asia Americas West Asia East Asia All

Idefics-1 85.48 79.85 84.65 83.61 84.06 84.22 83.56
Idefics-2 90.15 86.59 90.00 89.40 90.03 89.65 89.23
BLIP-2 Flan-T5-XL 91.24 87.49 90.91 89.64 90.45 89.32 89.79
InstructBLIP Flan-T5-XL 88.64 84.10 88.46 86.87 87.99 87.60 87.20
InstructBLIP Vicuna 76.36 70.53 75.61 75.34 74.78 76.19 74.70
InternLM XComposer 2 91.54 87.59 90.81 90.48 90.63 89.54 90.04
LLaVA 1.5 86.06 82.81 86.27 84.66 86.35 84.17 84.99
LLaVA-Next 86.75 82.90 86.55 85.35 85.46 84.65 85.24
MobileVLM v2 82.13 75.16 79.27 79.26 81.09 77.99 79.05
Pali-Gemma 90.94 87.12 90.53 90.14 90.68 90.09 89.84
Phi-3-Vision 89.76 86.49 89.44 88.75 88.46 87.61 88.39
Qwen-VL-Chat 90.94 87.31 88.86 89.24 90.79 89.32 89.34

Table 7: Result on the GeoDE dataset for each region and the overall accuracy for all examples together.

Model IN-food IN-artifact IN-animal IN-plant Aircraft Flowers102 Food101 O.-Pet S.-Cars ∅

1.7B 40.89 38.67 30.36 28.19 29.07 47.72 61.03 41.26 36.08 39.25
3B 44.28 42.30 34.83 31.97 32.85 47.70 68.67 46.69 41.52 43.42
7B 46.50 44.58 37.60 33.75 35.01 54.89 74.38 53.69 46.29 47.41

Table 8: Results for the three sizes of MobileVLM v2.
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Figure 7: Conditionally accuracy on different datasets of different models if the CLIP image encoder would
(in)correctly classify an example in zero-shot.

2668



Model IN-food IN-artifact IN-animal IN-plant Aircraft Flowers102 Food101 O.-Pet S.-Cars ∅

Baseline 43.43 40.33 32.18 31.54 30.27 38.33 62.40 50.12 42.08 41.19
CLIP-336 45.01 41.51 32.81 31.20 32.49 44.15 68.73 45.05 42.61 42.62
SigLIP 49.88 47.44 36.70 34.11 33.09 56.82 74.69 54.51 50.08 48.59
No Pretrain 41.55 39.63 31.50 29.80 30.30 40.30 58.44 40.23 36.60 38.71
Synthetic 43.69 40.94 32.85 31.04 32.16 39.68 64.61 47.48 40.90 41.48
Template 44.74 39.93 32.79 31.09 30.09 38.07 62.80 46.31 40.43 40.69
QA Task 44.00 41.45 33.77 31.55 32.34 49.16 67.63 51.62 41.24 43.64

Table 9: Full results for our trained models.
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