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Abstract
Polysemy and synonymy are two crucial inter-
related facets of lexical ambiguity. While both
phenomena are widely documented in lexical
resources and have been studied extensively
in NLP, leading to dedicated systems, they are
often being considered independently in prac-
tictal problems. While many tasks dealing with
polysemy (e.g. Word Sense Disambiguiation or
Induction) highlight the role of word’s senses,
the study of synonymy is rooted in the study
of concepts, i.e. meanings shared across the
lexicon. In this paper, we introduce Concept
Induction, the unsupervised task of learning
a soft clustering among words that defines a
set of concepts directly from data. This task
generalizes Word Sense Induction. We pro-
pose a bi-level approach to Concept Induction
that leverages both a local lemma-centric view
and a global cross-lexicon view to induce con-
cepts. We evaluate the obtained clustering on
SemCor’s annotated data and obtain good per-
formance (BCubed F1 above 0.60). We find
that the local and the global levels are mutually
beneficial to induce concepts and also senses
in our setting. Finally, we create static embed-
dings representing our induced concepts and
use them on the Word-in-Context task, obtain-
ing competitive performance with the State-of-
the-Art.

1 Introduction

A crucial challenge in understanding natural lan-
guage comes from the fact that the mapping be-
tween word forms and lexical meanings is many-
to-many, due to polysemy (i.e., the multiplicity of
meanings for a given form)1 and synonymy (i.e.,
the multiplicity of forms for expressing a given
meaning). Both polysemy and synonymy have
been thoroughly studied in NLP, but mostly as in-
dependent problems, giving rise to dedicated sys-
tems. Thus, Word Sense Disambiguiation (WSD)

1In this paper, we take polysemy in its most comprehensive
definition, also including homonymy.

aims at correctly mapping word occurrences to one
of its senses (Raganato et al., 2017), while Word
Sense Induction (WSI), its unsupervised counter-
part, aims at clustering word occurrences into la-
tent senses directly from data (Manandhar et al.,
2010; Jurgens and Klapaftis, 2013). More recently,
researchers have proposed the task of Word-in-
Context (WiC), which consists in classifying pairs
of word occurrences depending on whether they re-
alize the same sense or not (Pilehvar and Camacho-
Collados, 2019). All these works take a word cen-
tric view, which aims at identifying or character-
izing the different senses of a given word, where
these senses are bound to a word. Another line
of work, which takes a broader lexicon-wide per-
spective, is concerned with identifying synonyms,
which are equivalence classes over different words
that point to the same concept (Zhang et al., 2021;
Ghanem et al., 2023), where concepts are semantic
entities that are not bound to a word. In WordNet
(Miller, 1995; Fellbaum, 1998), concepts are called
synsets, defined as sets of synonyms. However, out-
side of lexical resources, synonymy and polysemy
are usually considered as independent problems
in the NLP literature. Yet, these two views are
complementary. In lexicology, they correspond to
two perspectives on the word-meaning mapping:
semasiology and onomasiology. The former is the
word-to-meanings view, where one can observe
polysemy by looking at the different meanings a
given word has. The latter is the meaning-to-words
view, in which one can study synonymy by look-
ing at the inventory of words that speakers use to
express the same meaning.

In this paper, we propose a new task, called Con-
cept Induction, that directly aims at learning con-
cepts in an unsupervised manner from raw text.
More precisely, this task aims at learning a soft
clustering over a target lexicon (i.e., a set of words),
in such a way that each cluster corresponds to a
(latent) concept. Thus, this task both addresses
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polysemy (since polysemous words should appear
in multiple clusters) and synonymy (since synony-
mous words should appear in the same cluster(s)).
Inducing concepts can be interesting for many ex-
ternal applications, like building lexical resources
for low-resources languages (Velasco et al., 2023),
and can bring a different perspective in computa-
tional studies of meaning, moving the usual word-
centric focus to a more meaning-centric state.

Our approach to Concept Induction relies on
word occurrences for a target lexicon, represented
as word embeddings derived from a Contextualized
Language Model (in this case, BERT Large (De-
vlin et al., 2019)), which are then grouped, using
hard clustering algorithms, into concept denoting
clusters. While these concept clusters could in prin-
ciple be obtained directly from word occurrences,
we propose a bi-level methodology that leverages
both a local, lemma-centric clustering (i.e., oper-
ating on only specific word occurrences), and a
global, cross-lexicon clustering (i.e., operating on
all words occurrences). From this perspective, our
approach generalizes, and in fact builds upon clas-
sical Word Sense Induction, in that word senses
are learned jointly alongside with concepts. We hy-
pothesize that an approach taking both complemen-
tary resolutions in account will lead to improved
Concept Induction and Word Sense Induction, i.e.
that the two objectives can be mutually beneficial.

To validate our approach, we carried out exper-
iments on the SemCor dataset, which provides
a set of concepts (taking the form of WordNet
synsets) related to word occurrences. We found
that our bi-level clustering approach accurately
learn concepts, achieving F1 scores above 0.60
on the task of Concept Induction compared to
WordNet’s synsets, outperforming competing ap-
proaches that use only local and global views. This
demonstrates the benefits of our bi-level approach,
and its ability to leverage both local and global
views when inducing concepts. Interestingly, we
show that the benefits go both ways: our proposed
approach outperforms lemma-centric approaches
when evaluated for WSI. Finally, we show that
concept-aware static embeddings derived from our
approach are also competitive with state-of-the-art
approaches efficient on the Word-in-Context task,
while using less training data. Through the new
task of concept induction, we also contribute in a
new way to the ongoing debate regarding the abil-
ity to align vector representations extracted from
Contextualized Language Models to the seman-

tic representations posited by (psycho-)linguists.
In this vein, we conduct a qualitative evaluation
of obtained clusters to ensure they indeed reflect
concepts and gather synonyms. The source code
we used for experiments is available at https:
//github.com/blietard/concept-induction.

2 Related Work

2.1 Lexical resources for concepts

Princeton’s WordNet (PWN) (Miller, 1995; Fell-
baum, 1998) is a lexical database that has been
been the most widely used as a reference for most
wordsense-related tasks for many years. In Word-
Net, the entry corresponding to a lemma has dif-
ferent wordsenses, each of them mapping to a
synset. Synsets are WordNet’s equivalents of our
concepts. Lemmas whose wordsenses belong to
the same synset are synonymous. WordNet 3.0
contains 117,659 synsets and is built from the
work of psycholinguists and lexicographers, that
not only describes synonymy but also other lexical
relations such as hypernymy/hyponymy, antonymy,
meronymy/holonymy, etc. But the amount of re-
sources needed to create such lexical databases
with human experts is considerable, making them
a very rare and precious resource. They are not
available for a large number of active languages,
and even more rare for dead languages (Bizzoni
et al., 2014; Khan et al., 2022).

2.2 Word senses with Language Models

With the recent development of neural Contextual-
ized Language Models (CLM), several work use
their hidden-layers to extract vector representations
of word usages and retrieve word senses. These
representations are fed to a classification (for WSD)
or a clustering (in the case of WSI) algorithm to
distinguish the word’s senses (Scarlini et al., 2020;
Nair et al., 2020; Saidi and Jarray, 2023). These
embeddings-based approaches have applications in
other fields: Kutuzov and Giulianelli (2020) and
Martinc et al. (2020) use sense clusters found using
CLM embeddings to study the change in meaning
of words, and Chronis and Erk (2020) propose a
many-Kmeans method to investigate semantic sim-
ilarity and relatedness. Another line of work uses
list of substitute tokens sampled from the CLM
head to infer senses (Amrami and Goldberg, 2019;
Eyal et al., 2022) and are sucessful on WSI bench-
marks like Manandhar et al. (2010) and Jurgens
and Klapaftis (2013).

2685

https://github.com/blietard/concept-induction
https://github.com/blietard/concept-induction


2.3 Structures of Meaning in CLM

Recent research probes neural CLMs for aligne-
ments between representations from their latent
spaces and semantic patterns and relations. Sec-
tion 7.2 of Haber and Poesio (2024) summarizes
findings about polysemy in contextualized CLMs,
showing that these models were able to detect pol-
ysemy and in some cases distinguish actual poly-
semy from homonymy. They report that represen-
tations from different senses may however overlap.
Hanna and Mareček (2021) shows that pretrained
BERT embed knowledge of hypernymy but is lim-
ited to the more common hyponyms.

Velasco et al. (2023) build on top of WSI tech-
niques in an attempt to automatically construct a
WordNet for Filipino, thus proposing a modeling
of synonymy in this language. However, the evalu-
ation of the synsets they obtained is limited by the
lack of sense-annotated data for Filipino, and they
could not evaluate the impact of their methodology
on the two levels (senses and concepts).

Works like Ethayarajh (2019) and Chronis and
Erk (2020) study the kind of information that was
distributed across layers. The former concludes
that syntactic and word-order information are dis-
tributed in the first layers while in deeper layers,
representations are heavily influenced by contexts.
The latter demonstrates, with a multi-prototypes
embedding approach, that semantic similarity is
best found in moderately late layers, while related-
ness is best found in last layers.

3 Concept Induction

Our main motivation behind Concept Induction is
to present a view of the mapping between words
and their meaning(s).2 This view is systemic, mean-
ing that it should not be defined for individual
words neither for individual concepts, but rather
acknowledging these as a whole with interactions
and relations. This extends beyond the primary
objective of WSI, which defines word senses as
pertaining to individual words only and does not
explore relations between lemmas or concepts.

3.1 Basic notions

Consider a set of target words (or lemmas) and for
each lemma, we have a set of occurrences of this
word in a context (e.g. a sentence or a phrase). The

2This mapping is called patterns of lexification by François
(2022); see also coexpression and synexpression in the termi-
nology proposed by Haspelmath (2023).

set of target lemmas is referred to as the lexicon,
while the corpus is the set of all occurrences. Our
goal is to study the meaning of target words as they
are used in the corpus.

In this study we call sense of a word its usage to
refer to a concept. A polysemous word has multiple
senses, each of them referring to a distinct concept.
Two words are said to be synonyms for a given
concept when each of them has one of their senses
referring to this shared concept. Senses are defined
“locally”, i.e. bound to an individual word of the
lexicon, as opposed to concepts which are defined
“globally”, i.e. across the whole lexicon. An oc-
currence of a word w realizes one of w’s senses.
Consider the words “test” and “trial” and the fol-
lowing corpus: (A) the jury found them guilty in
a fair trial. (B) candidates competed in a trial of
skill. (C) the hero underwent a test of strength. The
corpus is composed of two occurrences of “trial”
and one occurrence of “test.” In the corpus, “trial”
is polysemous. Its first sense, illustrated in A, refers
to a process of law. Its second sense, in B, refers to
the concept of the act of undergoing testing. The
sense of “test” in sentence C also corresponds to
this concept: it’s a case where “test” and “trials”
are synonymous. Shifting the focus from senses to
concepts, we will say that B and C instantiate the
same concept, while A is an instance of a different
concept.

3.2 Task definition
The goal of Concept Induction (CI) is to automati-
cally learn a set of concepts directly from the data,
i.e. learning a soft clustering CW in the set of
target words W that should correspond to the mul-
tiple concepts instantiated by occurrences of the
corpus. CW is a soft clustering because a word
can be assigned to several clusters (when it is poly-
semous). Using a different perspective than WSI,
the framework of Concept Induction provides a
more complete view on meaning across the lexicon.
Both WSI and CI capture polysemy, but CI also
reveals synonymy across the lexicon. Like WSI,
Concept Induction does not require a pre-defined
set of concepts.

3.3 Formal framework
Let W be the lexicon. For all word w in W , we de-
note owi the i-th occurrence of w in the corpus. We
define Ow = {owi }1≤i≤mw

the set of mw occur-
rences of w. The corpus, denoted O, is the union
of all Ow.
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“process of law to
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“a challenge to
evaluate a skill”

W O S C CW
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(occurrence-level)
Concepts

(Word-level)
Definitions

otrial1

otrial2

otrial3

otrial4

otest1

otest2

otest3

Figure 1: Illustration of our framework. The words “trial” is polysemous and has two senses corresponding to two
different concepts, and is synonym with “test” for this second meaning.

For a given word w ∈ W , the set Ow can be
partitionned according to its different senses. We
denote swj the part of occurrences of w in the corpus
corresponding to the j-th sense of w. We refer to
these groups of occurrences as the sense clusters of
w. The set Sw = {swj }1≤j≤nw forms a partition of
Ow, and we call S the set of all sense clusters of all
words, i.e. S =

⋃
w∈W Sw. S is a “local” (lemma-

centric) partition of the whole O. The task of Word
Sense Induction aims at learning the partition S
given a corpus O.

In this work, we aim at dividing the corpus into
concepts instead of senses. We denote ck the group
of occurrences of words corresponding to the con-
cept indexed by k, and C = {ck}1≤k≤p the par-
tition of O in p concept clusters. Unlike sense
clusters of S, a concept cluster ck ∈ C can gather
occurrences of different words: C is a “global” par-
tition. Each occurrence owi of a word w ∈ W is as-
sociated to a sense cluster swj and a concept cluster
ck ∈ C. We can say that a concept corresponding
to ck is instantiated by occurrence owi through the
sense corresponding to swj , or conversely that owi
uses the sense reflected in swj to mean the concept
described by concept cluster ck. All occurrences of
sense cluster swj ∈ S appear in the same concept
cluster ck ∈ C.

In summary, S and C are partitions of O and are
naturally constrained as follows:

1. By definition, a sense in S is associated to one
and only one word w ∈ W .

2. An occurrence owi realizes exactly one sense
swj ∈ S

3. An occurrence owi instantiates exactly one con-
cept ck ∈ C.

4. In a given sense swj ∈ S, all occurrences are
assigned to the same concept ck ∈ C.

5. All swj ∈ Sw (i.e. same word) refer to distinct
concepts.

From the partition C on occurrences, one can
derive CW , a clustering of the set of words W
into concepts. To each concept cluster ck ∈ C we
associate a cluster in CW that contains all lemmas
of W whose occurrences were assigned to ck. In
CW , a polysemous word with n senses appears in
n distinct clusters (one per sense), and synonyms
appear in at least one common cluster (one per
shared concept).

We denote ĈW the word-level soft-clustering
and Ĉ the partition of occurrences that are learned
on the data.

In Figure 1 we illustrate this framework, using
a corpus of occurrences of the words “test” and
“trial”. In this scenario, W = {“test”, “trial”} and
two concepts are instantiated: a process of law to
determine someone’s guilt and a challenge to eval-
uate a skill. The lemma “trial” exhibits two senses
as it has occurrences corresponding to both con-
cepts: “trial” is polysemous. The second concept is
also instantiated by occurrences of “test”, therefore
“trial” and “test” show synonymy in this case. This
toy example also follows all constraints formulated
above.
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4 Methodology

In this section we describe the methods we pro-
pose and evaluate for Concept Induction. We learn
a clustering ĈW drawing inspiration from the re-
lations between O, S, C and CW . In particular,
the overall objective of our methodology consist in
finding C (i.e. partition occurrences into concept
clusters) to derive CW . Section 3.3 highlighted
that there are two levels of partitions: a local level
(senses) and a global one (concepts). The proposed
approaches rely on both levels and the use of a
Contextualized Language Model (CLM) to gather
representations of occurrences influenced by the
context.

4.1 Proposed Bi-level Method
Local (lemma-centric) clustering Firstly, we
propose to learn a word-sense partition for each
target words individually. Using the CLM hid-
den layers, we extract a vector representation (the
occurrence embedding) of every occurrence owi .
We then learn a partition Ŝw of each Ow using a
clustering algorithm on the embeddings. Each Ŝw

describes the locally estimated sense clusters of
word w. Jointly considering these partitions for
all w ∈ W , we obtain a partition Ŝ of the whole
set of occurrences O. This partition is local in the
sense that each word has its occurrences clustered
independently from other words.

Global (cross-lexicon) clustering Once we have
a local clustering Ŝ, we turn from considering
words independently to consider all words together.
In this step, we learn a global clustering by merging
local clusters of occurrences. To do so, we average
embeddings of all occurrences in the same local
cluster to get a single embedding representing each
local cluster. Then we run a second clustering al-
gorithm, this time using the averaged embeddings
of local clusters. This global clustering defines a
new partition Ĉ of the the corpus O: when two lo-
cal clusters ŝw1

j and ŝw2
j′ are merged into the same

global cluster ĉk (because their embeddings were
clustered together), all their occurrences are as-
signed to global cluster ĉk. From this global oc-
currence partition Ĉ we can easily extract ĈW , a
word-level soft-clustering of lemmas whose occur-
rences appear in the same ĉk.

This Bi-level method directly implements the
system of contraints described in Section 3.3. Only
constraint 5 is not enforced by design. Indeed, our
local clusters being learned and not informed by

an expert, the local clustering step may make er-
rors, especially if the data for a given word are
sparse. Allowing the global clustering to merge
local clusters enables the correction of local clus-
tering’s recall errors using information from the
global level.

We also want to highlight that the proposed
methodology is generic, in the sense that it is not
tied to a specific choice of clustering algorithm.

4.2 Local-only and Global-only
Sense-inducing systems (WSI approaches) that cre-
ate only local clusters of occurrences for each word
are said to be Local-only systems. We use them
as baseline models that only produce word-level
clusters of size 1 and do not reflect synonymy, but
still learn polysemy.

On the other hand, consider a system in which
each occurrence is mapped to its own local cluster
(i.e. no actual local clustering step), and the global
step divides occurrences directly into global clus-
ters. We refer to this kind of system as Global-only
approaches. They allow to evaluate how useful the
local clustering step is in the process: we hypothe-
size that the local step in Bi-level will reduce poten-
tial variance in occurrences by aggregating them,
increasing Precision compared to Global-only.

5 Experiments

In this section, we evaluate the abilities of the pro-
posed methods to induce concepts and compare the
proposed bi-level approach to other methods. We
investigate the advantages of the bi-level approach
not only for the global viewpoint but also in the
local setting.

5.1 Settings
Data. We choose to use the annotated part of the
SemCor 3.03 corpus. This dataset contains occur-
rences for a wide number of words, and morpho-
syntactic annotations provide their lemma and their
Part-of-Speech tag. Among all lemmas having at
least 10 annotated occurrences, we keep only nouns
(excluding proper nouns)4 composed only of al-
phabetical characters with a minimum length or 3

3http://web.eecs.umich.edu/~mihalcea/
downloads.html#semcor

4For the sake of simplicity and clarity, this study is focused
only on nouns. Indeed, other Parts-of-Speech induce extra
difficulties. Verbs for instance required extra preprocessing
steps and decisions (e.g. include or exclude gerundive uses,
past participle employed like adjectives, etc.). Extension of
experiments to other PoS is left to future work.
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letters. The resulting lexicon W contains 1,560 dif-
ferent lemmas, for which we gather a corpus O con-
taining a total of 52,997 occurrences5. SemCor is
also semantically annotated, with each occurrence
of a target lemma assigned to a synset in WordNet,
that we consider to be the concept it refers to. We
derive a reference partition of the occurrences C
and a reference soft-clustering of the words CW

from annotations, for a total of 3,855 different con-
cepts (WordNet’s synsets) covered in O. This set of
concepts is the subset of WordNet corresponding
to the textual data.

Evaluation of Concept Induction We compare
the learned word clustering ĈW to the reference
CW . We choose to use the BCubed metrics (Bagga
and Baldwin, 1998), obtaining Precision and Re-
call for the evaluated clustering compared to the
reference, as well as an F1 score. To account for
overlapping clusters, we use the Extended BCubed
metrics proposed by Amigó et al. (2009), which has
already been used as evaluation in SemEval2013
WSI task (Jurgens and Klapaftis, 2013).

Using BCubed metrics, for a given evaluated
clustering, low precision would mean that grouped
lemmas should not have been clustered together
because none of their occurrence annotations map
to a shared concept according to annotations . Low
recall means that the evaluated system fails to cap-
ture clusters of lemmas whose occurrences share a
concept according to annotations. The number of
common clusters between two words also impacts
BCubed metrics: if two lemmas appear together
in too many clusters compared to the reference
clustering, precision is decreased; if the number of
common clusters is too low, recall is decreased.

Development. To learn the clustering, candidate
systems have access to the full set of occurrences-
in-context but not their annotations. To choose the
appropriate set of hyperparameters, we create a Dev
split of the annotations by randomly sampling 10%
of concepts and revealing semantic annotations of
the corresponding occurrences. We use them to
evaluate Concept Induction for this small set of
concepts, and choose the set of hyperparameters
that scores best in BCubed F1.

Evaluation splits In the final evaluation phase,
we compute scores on all concepts / all occurrences,

5Sentences in which the lemma appears, paired with its
position within them. If the lemma appears multiple times
in the same sentence, we create several distinct occurrences,
where only the position varies.

including the Dev split, as concepts in it are part
of the whole subset of WordNet described by Sem-
Cor’s annotations. In the full data, we found that
88% of the concepts were instantiated using only
a single lemma. To better evaluate cases of syn-
onymy, we also evaluate systems on a subset of
the corpus, denoted “Synon”, that contains only
occurrences of concepts showing synonymy (the
remaining 12% of concepts, instantiated through at
least 2 distinct lemmas). Statistics are provided in
Table 5 in Appendix B. Note that it only changes
the set of concepts/lemmas for which the system is
being evaluated, not the clustering’s training data.

5.2 Systems and baselines

Clustering Algorithms. We try two differ-
ent clustering algorithms relying on different
paradigms: Kmeans (used in Chronis and Erk
(2020)), a centroid-based algorithm with a fixed
number of clusters, and Agglomerative clustering
(used in Saidi and Jarray (2023); Velasco et al.
(2023); dubbed “Agglo” for short), a deterministic
hierarchical approach using a distance threshold
to create a dynamic number of clusters instead of
using a fixed one. Another difference between
Kmeans and Agglo is that the former assumes that
expected clusters are of nearly-spherical shape and
balanced in number of points, while the latter does
not make assumptions on the shape of data. Details
of tested hyperaprameter values are provided in
Appendix C.

Representations. Following Chronis and Erk
(2020) and Eyal et al. (2022), we use BERT Large
(Devlin et al., 2019), a masked language model
with 24 layers and 345M parameters. This allows
for direct comparisons with these approaches. Also,
BERT Large was found by Haber and Poesio (2021)
to allow for better grouping of sense interpretations
than other LLMs.6 We average subwords’ embed-
dings if needed. It is a common practice in previous
work on semantic-related tasks to use the average of
the last 4 layers to get embeddings; we decided to
adopt the same "4 layers average pooling" strategy,
but trying with different possible sets of layers (see
Appendix C). Therefore, for a set of four layers,
we average hidden states across the selected layers
to get a single 1024-dimensional vector. We found
that layers 14 to 17 obtained the best results on Dev
for all methods (global/local-only and bilevel).

6We leave to further work the use of autoregressive and/or
newer Language Models.
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Full data Synon.
Concept Induction P R F1 P R F1

Baselines
Lemmas 1.0 .43 .61 1.0 .61 .50
Oracle WSI 1.0 .75 .86 1.0 .39 .56
Local-only Systems
Kmeans Local .73 .70 .71 .67 .38 .49
Agglo Local .92 .53 .67 .92 .35 .50
Eyal et al. (2022) .31 .75 .44 .37 .39 .38

CI Systems
Kmeans Global .48 .65 .56 .68 .54 .60
Kmeans Bi-level .70 .59 .64 .82 .47 .59
Agglo Global .61 .60 .60 .82 .50 .62
Agglo Bi-level .75 .60 .66 .86 .49 .62

Table 1: Concept Induction BCubed Precision (P), Re-
call (R) and F1on the SemCor data averaged over 5
runs.

Sense-inducing systems. Comparison to Local-
only systems will give a (strong) baseline just by
inducing senses without aiming at concepts. We
used the same clustering algorithms. We also im-
plement the WSI method proposed by Eyal et al.
(2022). It relies on a different paradigm, using the
Language Model for substitution instead of word
embeddings. From lists of substitutes, they build a
graph of substitutes in which they find communities
and then assign each occurrence to a community of
substitutes to find the wordsenses. Because Local-
only methods only induce senses, their hyperpa-
rameters are chosen to maximize a WSI objective
on polysemous words of the dev split.

Baselines We construct a candidate clustering
ĈW where each lemma has its own cluster. This
baseline model is referred to as the “Lemmas” base-
line. This is to evaluate the extent to which the
information contained by the lemma alone can be
used to induce concepts without any knowledge on
word senses neither on context. As a second base-
line, we create for each lemma as many singletons
as the number of different concepts its occurrences
are annotated with. All created clusters are of size
1: we account perfectly for polysemy but not at
all for synonymy. This second baseline is dubbed
“Oracle WSI”.

5.3 Concept Induction in SemCor

In Table 1 we display the Concept Induction scores
(F1) of proposed baselines and systems on the full
SemCor data and on the Synon. split. On the full
data, both the Lemmas and Oracle WSI baselines
achieve very good performance because they have,
by design, a perfect precision (they do not cluster
lemmas at all and do not overestimate the num-

ber of clusters) and because 88% of concepts are
instantiated with only a single lemma (thus their
recall is still good). However, they are very limited
on the Synon. split of the data, where concepts are
instantiated with multiple lemmas.

The proposed Concept Induction systems reach
scores ranging from .56 to .66 on the full data, half
of them outperforming the Lemmas baseline, and
from .59 to .62 on the Synon. split, outperforming
all other systems. While still challenging, it ex-
hibits that it is indeed possible to induce WordNet-
based concepts in a corpus using LMs hidden layers
vectors.

We also see that Kmeans-based approaches are
consistently outperformed by Agglomerative meth-
ods. This indicates that the representational spaces
in LM hidden layers are not organized in a nearly-
spherical fashion as Kmeans algorithm assumes,
but rather are populated less uniformly. This is
reflected in precision and recall: Agglomerative
systems reach a higher precision than Kmeans with
similar recall.

Overall, results are in favor of Bi-level ap-
proaches over Global-only systems, with substan-
tial improvements in F1 on the full data while ob-
taining (nearly) identical performance on concepts
of multiple lemmas, and large increases in pre-
cision while the loss in recall is minimal. This
demonstrates that considering the local (lemma-
centric) perspective is beneficial to a global (cross-
lexicon) view when inducing concepts. The local
clustering, with the subsequent representation aver-
aging, helps reducing variance in occurrences and
therefore allow to reach higher levels of precision
in the global clustering compared to Global-only.
We would also like to emphasize that, while Global-
only systems are more simple in design, their com-
putational cost is usually higher than Bi-level ones,
especially when the clustering algorithm’s time
complexity is quadratic with respect to the number
of occurrences.

5.4 Qualitative Analysis of Concepts Clusters
We manually annotate word clusters (obtained from
our best-performing approach, the Agglo Bi-level
system) containing at least 2 lemmas according
to the semantic similarity between lemmas. Dis-
tribution of cluster sizes (in number of lemmas)
can be found in Appendix D. We distinguish four
categories: synonyms when lemmas are cognitive
synonyms (e.g. “necessity” and “need”), near-
synonyms for lemmas close to be synonyms but
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Cluster size
2 3 4+

Nb. of annotated clusters 50 50 23

Category (% of annotated clusters)
Synonyms 42 38 17
Near-synonyms 24 24 35
Related 26 36 48
Invalid 08 02 0

Table 2: Qualitative manual evaluation of obtained word
clusters of size ≥ 2.

showing slight difference in meaning (e.g. “duty”
and “task”, the former being stronger than the lat-
ter),7 related when lemmas show a topical (e.g.
“dirt”, “sand” and “mud”) or lexical relations (e.g.
antonyms like “man” and “woman”) and invalid
clusters when lemmas show no semantic relation
(e.g. “child” and “idea”).

Proportions of these annotations are displayed in
Table 2 with respect to the cluster size, the number
of lemmas in the cluster. For a given cluster size,
if the number of clusters exceeds 50, we randomly
sample 50 clusters to be annotated. Overall, the
proportion of synonyms and near-synonyms is gen-
erally above 50% and less than 10% of clusters
are invalid, indicating that most learned concepts
are reliable and meaningful. We argue that the re-
maining related term clusters, while not synonyms,
may still be interesting in less fine-grained stud-
ies. The portion of related clusters is in line with
findings from previous work showing that BERT
was also reflective of other lexical relations, such
as hypernymy (Hanna and Mareček, 2021).

5.5 Benefits at the Local Level

We now turn back to the local level and assess
whether the information brought at the global level
helps distinguishing senses of individual words.
Here we do not evaluate the word-level soft clus-
tering, but the occurrence-level division of Sem-
Cor’s data, considering each word independently.
In other words, we evaluate WSI in SemCor using
annotations as the reference sense clustering.

Evaluation of induced senses For each word
w ∈ W , we compare how its set of occurrences
Ow is divided in Ĉ to how it is divided in the ref-
erence C provided by annotations using BCubed
metrics, and we average scores obtained across W .
We display the WSI BCubed F1, as in previous WSI

7Notions of cognitive synonymy and near-synonymy are
discussed by Stanojevic (2009).

WSI F1 ρ

Local-only Systems
Kmeans Local .61 NA
Agglo Local .77 .04
Eyal et al. (2022) .46 .51

CI Systems
Kmeans Global .76 .51
Kmeans Bi-level .78 .30
Agglo Global .80 .53
Agglo Bi-level .80 .46

Table 3: WSI BCubed F1and sense number correlation
coefficient ρ on SemCor full data. Not computed for
Kmeans because the number of cluster is constant.

tasks like Jurgens and Klapaftis (2013). Follow-
ing Amrami and Goldberg (2019), we report ρ the
Spearman correlation coefficient between the num-
ber of clusters a lemma is assigned to and its num-
ber of senses according to annotations, to ensure
that the number of created senses actually scales
with the actual degree of polysemy.

Note that, for CI systems, we evaluate the divi-
sion of occurrences provided by the final cluster-
ing Ĉ (i.e. how occurrences are clustered after the
global step and its potential merge operations). The
quality of sense clusters induced by the local-step
only is actually evaluated with Local-only systems.

Local results. Results of this local evaluation
are displayed in Table 3. Let us recall that Local-
only systems’ hyperparameters are chosen to max-
imize the WSI F1on the dev split, while those of
CI systems maximize the Concept Induction F1.
Nonetheless, one can observe that all CI systems
outperform their Local-only counterparts, achiev-
ing higher WSI F1and ρ even though their hyper-
parameters are not chosen to match the WSI itself.
This indicates that the information brought at the
global level by considering cross-lexicon relations
may indeed help improving WSI, and benefits be-
tween local and global levels go both ways.

We explain the relatively poor performance of
State-of-the-Art WSI system by the fact that we
are in a particular setting, where the number of oc-
currences per lemma is relatively low in SemCor
(30 per lemma on average) and so is the average
number of occurrences per concept. Data sparsity
is a favorable ground for word senses to be misrep-
resented. As such, methods meant to be applied
on larger datasets like the one of Eyal et al. (2022)
may not work as well as expected. Our results show
the limitations of these systems when the amount
of training data is low and the interest of aiming at
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Model Acc.

Eyal et al. (2022) (CBOW) 59.3
Eyal et al. (2022) (Skip-Grams) 61.9

Ours (Agglo global) 58.8
Ours (Agglo bi-level) 59.7

Table 4: Accuracy scores on the nouns of the WiC test
dataset (Pilehvar and Camacho-Collados, 2019).

concepts to get senses. This scenario is motivated
in areas where data are not available in large quan-
tities and still require to induce senses. In the case
of the study of Lexical Semantic Change (the evo-
lution of word meanings over time), recent works
perform WSI in diachronic corpora that are often
unbalanced and small (Tahmasebi et al., 2021).

6 Extrinsic Evaluation with
Concept-aware Embeddings

In their work, Eyal et al. (2022) derive sense-aware
static embeddings from their WSI method, train-
ing them on the Wikipedia dataset and used them
for the Word-in-Context (WiC) task. They achieve
nearly-SotA results on the dataset proposed by Pile-
hvar and Camacho-Collados (2019), and report to
be outperformed only by methods using external
lexical knowledge and resources. We proceed to
the same extrinsic evaluation of our work, con-
structing concept-aware embeddings using concept
clusters of Concept Induction systems (Global-only
and Bi-level Agglo). To obtain such embeddings,
we average all vectors representating occurrences
in SemCor contained each global cluster to get one
vector per concept cluster.

The WiC task consists of determining whether
two occurrences of a target lemma w correspond to
the same sense. The WiC dataset’s target words are
nouns and verbs, but like in the rest of this paper,
we restrict our scope to nouns.

To solve the task, we use BERT Large to create
representations of the two target occurrences. Each
of them is assigned to a concept by finding the
closest concept-aware using cosine distance. The
decision depends on whether the two occurrences
are mapped to the same concept (true) or to dis-
tinct ones (false). Results are displayed in Table 4.
Our concept-aware embeddings obtain very similar
results to those of their sense-aware embeddings,
with ours derived from our bi-level approach even
outperforming their CBOW method. Interestingly,
our embeddings were trained with far fewer re-
sources than theirs, as we used 52 997 occurrences

from the SemCor dataset while they used a dump
of Wikipedia, gathering millions of occurrences.
This emphasizes the value of concept-aware embed-
dings: the use of cross-lexicon information allows
competitive results with fewer resources.

7 Conclusion

In this paper, we argued that, while word senses
allow to investigate polysemy, concepts are a larger
perspective that allows the study of polysemy as
well as synonymy. We defined Concept Induction,
the unsupervised task to learn a soft-clustering of
words in a large lexicon, directly from their in-
context occurrences in a corpus. Then, we pro-
posed a formulation of this problem in terms of
local (lemma-centric) and global (cross-lexicon)
complementary views, and tested an approach that
uses information from both levels using contextu-
alized Language Models. On concept-annotated
SemCor corpus, we found that this bi-level view
was beneficial for Concept Induction, and even for
Word Sense Induction with a low amount of train-
ing data. We validated the quality of obtained clus-
ters with manual annotations, ensuring that clusters
mostly correspond to actual synonyms and con-
cepts. Finally, we showcased an external applica-
tion of our methodology to create concept-aware
embeddings that can be competitive to other meth-
ods on semantic tasks, such as Word-in-Context.

Concept Induction opens the way for a different
perspective on lexical semantics in NLP, and can
be a basis for many studies of lexical meanings as
it is expressive enough to reflect relations on both
sides of the word-meaning mapping.

8 Limitations

The formal framework we defined uses terminol-
ogy and notions from rather structuralist/relational
assumptions of the language’s lexical system (e.g.
senses, discrete concepts, etc.). We made this
choice based on how lexical databases like Word-
Net (and its derivatives), or other like the Historical
Thesaurus of English for instance, are designed
using the "word/sense/concept" structure. From a
purely practical point of view, this choice makes
sense as these resources would be the primary
source for task data’s annotations. Conceptually,
senses are also a notion widely used in computa-
tional linguistics and we wanted to propose Con-
cept Induction as a step "beyond" this conventional
aspect and its related tasks. Future research may ex-
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plore definitions/extensions of Concept Induction
outside of this structuralist/relational framework,
towards cognitive semantics for instance (Geer-
aerts, 2010).

Evaluating Concept Induction is mainly limited
by the low amount of suitable annotated corpora.
Not only the data need to be annotated in concepts,
but these annotations must cover a wide variety
of lemmas for synonymy to be sufficiently repre-
sented in the corpus. Future work may find or cre-
ate datasets meeting these requirements to evaluate
Concept Induction outside of SemCor.

For now, the study is limited to nouns. Perfor-
mances of benchmarked algorithms and systems
may change with other Part-of-Speech tags.

Our Bi-level method allows the global clustering
to merge local clusters, leveraging lexicon-level
information to be used to correct Word Sense In-
duction errors at the lemma-level. By its sequential
nature, our method does not allow to split local clus-
ters using global-level information, which could
lead to better results. Further research directions
include creating an iterative version of our method-
ology (alternating local and global clustering), or
attempting to tackle both clustering objectives si-
multaneously with bi-level constrained clustering.

Our results about sense-induction at the local
level showed that usual WSI methods may not be
robust in our setting where there are few occur-
rences for some lemmas. We demonstrated that,
in this setting, concept-inducing methods provided
a better division in word senses. In many fields
of linguistics, corpora are not very large and do
not contain hundreds of occurrences for each word.
Nonetheless, it is still uncertain if this observed
advantage of CI systems would still hold on big-
ger datasets with many occurrences per lemma, a
setting better-suited for usual WSI methods.

In this paper, we limited our study to Nouns, the
morpho-syntactic class exhibiting the most promi-
nent semantic features. We leave to further research
the study of Concept Induction for Verbs, Adjec-
tives, or the heterogeneous family of Adverbs.

9 Ethical Considerations

Our methodology uses pretrained Contextualized
Language Models, which are know to encode and
replicate social biases contained in their training
data and sometimes amplify them. While we do
not observe surface-level biases arising when man-
ually annotating concept clusters, it is still an open

question of how these social biases may influence
or even change results when inducing concepts in
SemCor.
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A Extended BCubed to Evaluate CI and
WSI

The extension of BCubed for overlapping clusters
rely on two quantities, Multiplicity Precision (MP)
and Multiplicity Recall (MR). In the case of Con-
cept Induction, MP and MR between two lemmas
are defined as follows:

MP(w1, w2) =

Min (|f(w1) ∩ f(w2)|, |g(w1) ∩ g(w2)|)
|f(w1) ∩ f(w2)|

MR(w1, w2) =

Min (|f(w1) ∩ f(w2)|, |g(w1) ∩ g(w2)|)
|g(w1) ∩ g(w2)|

with w1 and w2 two lemmas, and g a reference
clustering function and f the clustering function
we want to evaluate. MP (resp. MR) can be com-
puted for every lemma w1 with every other lemma
w2 sharing at least one cluster with w1 in f (resp.
in g). We denote MP(w1, ·) and MP(w1, ·) the
obtained averages. In the case of non-overlapping
clusters, this formulation gives the same result as
the original (non-extended) BCubed. To evaluate
WSI, the formulation is the same but we do not
evaluate at the word-level but at the occurrence-
level.

Precision, Recall and F-score are obtained as
follows:

Precision =
1

|W |
∑

w∈W
MP(w, ·)

Recall =
1

|W |
∑

w∈W
MR(w, ·)

Fβ = (1 + β2)
Recall×Precision

β2 × Precision+Recall
.

By default we fix β = 1, as we compare the learned
clustering and the reference clustering as equals
and therefore do not find that Precision and Recall
should be weighted differently.

Amigó et al. (2009) showed that the benefits
of BCubed over other clustering scores. For in-
stance, Rand Index does not handle well the case
of many small clusters, which is likely to be the
case for Concept Induction. We also prefer Ex-
tended BCubed over Overlapping Normalized Mu-
tual Information (McDaid et al., 2011) as the latter
is matching-based. That is, the repetition (or non-
repetition) of identical clusters will have no impact
on the measure. However, we can easily imagine
identical clusters of words to be repeated as they
may correspond to distinct concepts. In Extended
BCubed, repeated clusters are taken in account as
we measure the number of times two lemmas are
clustered together. The denominator of MP ensures
that over-estimating the number of common clus-
ters is also penalized, and those of MR ensures that
under-estimating is penalized. Min operators are
there to prevent both quantities to grow over 1.

B Splits and dataset statistics

In Table 5 we display statistics over the different
splits we used. Dev is a subset containing a sample
of 10% of concepts and their occurrences. Synon.
is a subset containing only concepts instantiated
with 2 lemmas or more, and their occurrences.

C Used hyperparameters and layers

C.1 CLM layers
Prior work like Ethayarajh (2019) showed that
later layers usually correlates with deeper levels of
contextualization and more semantic information,
Chronis and Erk (2020) showed that moderately-
late were preferred for lexical similarity while very
last layers were preferred for semantic relatedness.
To get embeddings, we try 4 sets of layers corre-
sponding to different depths: first layers (1 to 4),
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#Occs #Lemmas #Concepts #Occs/Concept #Occs/Lemmas dLex dPolysemy

Full data 52’997 1’560 3’855 13.75 33.97 1.14 2.83
Dev 4795 389 386 12.42 12.33 1.14 1.13
Synon 13’158 630 447 29.44 20.89 2.24 1.59

Table 5: Statistics on the different data splits in annotated SemCor. The split “Synon” only contains occurrences of
concepts instantiated with multiple lemmas (cases of synonymy). dLex is the average number of unique lemmas per
concept, dPolysemy is the average number of distinct concepts per lemma.

Systems Best hyperparameters

Local-only Kmeans k = 3
Local-only Agglo linkage = average, ν = 1.0
Global-only Kmeans π = 120%
Global-only Agglo linkage = average,ν = 3.5
Bi-level Kmeans k = 8, π = 120%
Bi-level Agglo linkage = average (both), νlocal = 0.0, νglobal = 4.5
Bi-level Kmeans (local Agglo) linkage = average νlocal = 0.0, π = 120%
Bi-level Agglo (local Kmeans) k = 10, linkage = average, νglobal = 4.5

Table 6: Best hyperparameters on the Dev split.

moderately early layers (8 to 11), moderately late
(14 to 17), and last layers (21 to 24). To get the
representation of a word’s occurrence, we simply
average its embeddings from the four chosen layers
into one single 1024-dimensional embedding. For
Concept Induction, we find that best results were
obtained using layers 14 to 17, that are the reported
results.

C.2 Hyperparameters
For Eyal et al. (2022), we tried different resolu-
tion, varying it from 1e-3 to 10, for the Louvain
clustering but found very little to no effect.

For Kmeans at the local level, we varied the num-
ber of clusters k between 2 and 10. For Agglom-
erative clustering at both levels, we tried single,
average and complete linkage.

The distance threshold in Agglo τ was indexed
on the distribution of distances. We fixed an hyper-
parameter ν and derived τ = avg(d) − ν. std(d)
with d the distribution of distances between clus-
tered instances. We made ν vary between -4 and
+8. For global Kmeans, the number of clusters
was indexed using a proportion π on the number of
lemmas (e.g. 120%×W ), π varying from 40% to
400%. This may help transfering hyperaparameters
to other dataset in future research.

Best hyperaparameters choices are in Table 6

D Concept Clusters Size Distribution

The distribution of the concept cluster size (in num-
ber of lemmas) obtained with Bi-level Agglo sys-
tem can be found in Figure 2
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Figure 2: Distribution of cluster size (in number of
lemmas) obtained by the Bi-level Agglo system.

E Scientific Artifacts

We used WordNet and SemCor, both prop-
erties of Princeton University. Licence can
be found at https://wordnet.princeton.edu/
license-and-commercial-use.
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