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Abstract

Modern large language models (LLMs) have
exhibited cooperative synergy on complex task-
solving, and collective decision-making (CDM)
is a pivotal component in LLM-based multi-
agent collaboration frameworks. Our survey on
52 recent such systems uncovers a severe lack
of diversity, with a heavy reliance on dictatorial
and plurality voting for CDM. Through the lens
of social choice theory, we scrutinize widely-
adopted CDM methods and identify their lim-
itations. To enrich current landscape of LLM-
based CDM, we present GEDI, an electoral
CDM module that incorporates various ordinal
preferential voting mechanisms. Our empiri-
cal case study across three benchmarks shows
that the integration of certain CDM methods
can markedly improve the reasoning capabili-
ties and robustness of some leading LLMs, all
without requiring intricate system designs. Ad-
ditionally, we find that some CDM mechanisms
generate positive synergies even with as few as
three agents. The voting-based methods also
demonstrate robustness against single points
of failure, as well as diversity in terms of hit-
rate@k and subject-wise impacts.1

1 Introduction

While multi-agent systems have constantly gar-
nered attention even before the advent of large lan-
guage models (LLMs), as evidenced by prior works
(Wooldridge, 2009; Dorri et al., 2018). The recent
advancements in LLMs have significantly sparked
interest in LLM-based agents. Furthermore, novel
techniques such as effective prompt engineering
(Wei et al., 2023; Wang et al., 2023c) and agent-
interaction schemes (Yao et al., 2023; Shinn et al.,
2023) have propelled a surge in research on collab-
orative LLM agents (Xi et al., 2023; Wang et al.,
2023b). Researchers have deployed LLM-based
agents in various environments and scenarios: from

1Our code and data are available at https://github.
com/xiutian/GEDI

Figure 1: Distribution
of CDM methods in
52 LLM-based multi-
agent collaboration sys-
tems, denoting a severe
lack of diversity.
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simulating small community (Liu et al., 2023a;
Park et al., 2023) to predicting court judgement
(Hamilton, 2023), crafting digital avatars (Jarrett
et al., 2023; Yang et al., 2024), and participating in
dialogue-based games (Xu et al., 2023a; Stepputtis
et al., 2023; Li et al., 2023c), among others.

However, the existing accounts on LLM-based
multi-agent collaboration has been heavily focus-
ing on inter-agent communication and interaction
workflows. In contrast, another vital aspect, collec-
tive decision-making (CDM), appears to have been
largely neglected and overly simplified. Our review
of 52 recent LLM collaboration systems (§ 2) re-
veals that systems either appoint a ‘dictator’ agent
to make decisions for the group (Hao et al., 2023;
Nair et al., 2023) or depend on simplistic plurality
voting (Chan et al., 2023; Zhang et al., 2023b; Xu
et al., 2023b), with one case adopting an utilitarian
approach (Jarrett et al., 2023).

This study examines prevalent CDM methods
through the lens of social choice theory (Arrow
et al., 2010) and illustrate their failure to meet fun-
damental criteria (§ 3): dictatorial methods are
fragile for their absolute dependency on one single
agent; plurality voting, while simple and intuitively
flawless, disqualifies Independence from Irrelevant
Alternatives (IIA) and Condorcet criterion; utilitar-
ian violates both Majority and Condorcet criteria.
Such deviations from key criteria may impede the
transition from individual preferences to collective
decisions among LLM-based agents.

While Arrow’s theorems (Arrow, 1951) estab-
lishes the axiomatic impossibility of designing a
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perfect voting-based CDM system, we can still
circumvent some limitations and risks by incorpo-
rating a variety of CDM methods into LLM-based
multi-agent frameworks. To this end, we develop
an electoral CDM module, GEDI (§ 4), which of-
fers a range of CDM mechanisms that were not pre-
viously tested in such frameworks. To evaluate the
potential impact of various CDM methods, we con-
duct an empirical case study (§ 5) on three multiple-
choice question-answering (MCQA) benchmarks:
MMLU (Hendrycks et al., 2021), MMLU-Pro
(Wang et al., 2024a), and ARC-Challenge (Clark
et al., 2018), using a suite of models with various
sizes and architectures.

Our key findings (§ 5.2) are as follows: (1) ap-
plying a CDM method generally leads to better re-
sults compared to a single-agent decision-making
on MCQA benchmarks, though at the cost of in-
creased computation; (2) the degree of synergy
depends significantly on the backbone model and
the benchmark. Some LLMs exhibit substantial
improvements with voting-based methods, while
others show little to no effect under any CDM;
(3) most voting methods require only a minimal
quorum, as few as three agents, to be effective;
and (4) CDM methods exhibit varying levels of
robustness against unreliable agents, different hit-
rates@k, and varying impacts across different sub-
ject domains.

We hope these observations will encourage fur-
ther evaluation of the effectiveness of LLM-based
multi-agent frameworks and provide valuable in-
sights for advancing LLM-based Multi-Agent Sys-
tems (MAS).

2 A Concise Survey on LLM-based
Multi-Agent Collective
Decision-Making

2.1 Background

Multi-agent systems are composed of multiple com-
puting elements with autonomous action and in-
teraction capabilities (i.e., ‘agent’) (Wooldridge,
2009). Prior to the advent of LLMs, research
on multi-agent systems had already been a focal
point various across disciplines (Silver et al., 2017;
Dorri et al., 2018). The swift progression of LLMs
has since ignited an intensified interest in employ-
ing LLMs as agents (Xi et al., 2023). Notably,
the advent of effective prompting schemes has
greatly boosted the performance of individual LLM
agent: Chain-of-Thought (Wei et al., 2023), Self-

Consistency (Wang et al., 2023c), ReAct (Yao et al.,
2023), Reflexion (Shinn et al., 2023), DiVeRSe (Li
et al., 2023e) among others. Although single-agent
frameworks have shown remarkable success in cer-
tain NLP tasks, they often struggle with more intri-
cate challenges, such as common sense reasoning
and long-term planning (Wang et al., 2023b). In
response, some researchers advocate multi-LLM-
agent collaboration as a promising path.

2.2 Collective Decision-Making in LLM-based
Multi-Agent Collaboration

Collective decision-making (CDM) is the process
by which a group of autonomous entities arrives at
a decision (Bose et al., 2017). This phenomenon is
prevalent in both animal societies and human com-
munities, with numerous interdisciplinary studies
corroborating that CDM typically yields superior
decisions compared to those made by individuals
alone (King and Cowlishaw, 2007; Couzin et al.,
2011).

Recent development of LLMs has made self-
governing CDM processes feasible in LLM-based
multi-agent systems. However, our survey of 52
newly proposed frameworks indicates that CDM
mechanisms have not received adequate focus.
Specifically, most systems either depend on the
dictatorial judgment of a single agent (often by
preassigned role) or employ plurality voting for
decision-making. As depicted in Figure 1, we can
categorize current LLM-based multi-agent systems
into four groups based on their CDM approaches:
(1) dictatorial, (2) plurality, (3) utilitarian, and (4)
those with no CDM or unspecified.

Dictatorial Among the reviewed papers, dicta-
torial methods are most popular. As the name
implies, it is a one-agent-rule system in which a
single agent, often pre-designated, has the right to
ratify a decision. Nonetheless, such system can
be ‘collective’ in a sense that the ‘dictator’ may be
counseled by and communicated with other agents.

Most dictatorial frameworks designate a spe-
cial agent who oversees collaboration, evaluates
outcomes, and has the final say over system-level
decisions. Such agent has many alias: ‘leader’
(Hao et al., 2023; D’Arcy et al., 2024), ‘decider’
(Nair et al., 2023), ‘commander’ (Wu et al., 2023),
‘critic’ (Li et al., 2023a), ‘teacher’ (Jinxin et al.,
2023), ‘judge’ (Liang et al., 2023; Xiong et al.,
2023; Sun et al., 2023; Talebirad and Nadiri, 2023),
‘evaluator’ (Tang et al., 2023), ‘planner’ (Zhang
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et al., 2023a; Fang et al., 2024), ‘recruiter’ (Li
et al., 2023f), ‘inspector’(Hua et al., 2024; Wang
et al., 2024b), ‘discriminator’ (Hang et al., 2024),
‘task agent’(Li et al., 2023b), ‘QA-Checker’ (Tang
et al., 2024). Some specific cases include creating
virtual software and game development companies
hosting LLM-agents of various roles to achieve
rapid and low-cost development of software (Qian
et al., 2023; Chen et al., 2023a). Specially, Chen
et al. (2023b) suggest an ‘oligarchic’ small group
of ‘planner’ and ‘observers’ instead of a single
decision-maker.

Plurality Voting Plurality voting selects the op-
tion with the most first-preference votes (i.e., rela-
tive majority). For simplicity, we consider majority
voting, which that requires more-than-half votes
(i.e., absolute majority), and consensus, which de-
mands an unanimous agreement from every agents,
to be two variations of plurality voting.

Frameworks that adapt plurality voting often in-
troduce multi-round discussion to reach resolution
or majority agreement (Xu et al., 2023b). Multi-
agent debate process is found to improve LLMs’
factuality (Du et al., 2023), reasoning capabilities
(Zhang et al., 2023b), and financial trading per-
formances (Li et al., 2023d). Chan et al. (2023)
also improve the quality of evaluation provided
by LLM-agents on natural language generation
tasks via debates. Chen et al. (2023d) fashion au-
tomatic team formation and LLM-agent experts re-
cruitment. Chen et al. (2023c) quantify consensus-
seeking process by appending self-assigned ‘state’
values of LLM-agents and measuring their con-
vergence. Notably, Wang et al. (2023d) showcase
that multiple ‘personas’ of a single LLM can also
‘self-collaborate’. In some cases, plurality voting is
chosen to match simulated target scenarios. Hamil-
ton (2023) trains nine separated agents as judges
to simulate the U.S. Supreme Court and achieve
better-than-random judgement prediction accuracy
on 96 real-world cases. In textual or conceptual
games like Werewolf (Xu et al., 2023a) and Avalon
(Stepputtis et al., 2023; Shi et al., 2023), agents are
bound by the game rule to take this method.

Utilitarian Utilitarian approaches quantify the
impacts of possible decisions and choose the one
that maximizes the collective ‘utility’ or ‘reward’
gained by a group. However, utilitarian is distinct
from other methods for its non-self-governing: the
utilities are externally predetermined or updated.
Jarrett et al. (2023) propose to train LLM agents

as digital proxy to represent individual preferences
via an utilitarian ‘payoff function’. Although utili-
tarian is rare in newly proposed LLM-based frame-
works, it is a pillar method in many previous non-
LLM multi-agent systems (Dorri et al., 2018).

No CDM or Unspecified Some multi-agent sce-
narios necessitate no CDM. For instance, simulat-
ing social interaction and behaviors among LLM-
agents (Park et al., 2023; Liu et al., 2023a; Ghaf-
farzadegan et al., 2023; Hua et al., 2023; Zhang
et al., 2024; Wei et al., 2024), while one-to-one
agreement can happen occasionally. Other systems
intrinsically deny a CDM process, such as strictly
linear collaboration workflow (Hong et al., 2023;
Wang et al., 2023a; Ding et al., 2023; Rasheed
et al., 2024) or decentralized team arrangements (Li
et al., 2023c; Nakajima, 2023; He et al., 2023). In
addition, some frameworks involve human judge-
ment for system-level decisions (Ghafarollahi and
Buehler, 2024; Ni and Buehler, 2024).

Thus far, having seen a great lack of diversity
of CDM methods in LLM-based multi-agent col-
laboration, we draw our inspiration from social
choice theory and scrutinize the pros and cons of
the widely-used methods.

3 A Social Choice Theory Perspective on
Collective Decision-Making

Social choice theory concerns passing from individ-
ual preferences to collective decisions (Arrow et al.,
2010). While humans have practiced and refined
collective decision-making since antiquity, modern
social choice theory has not been established until
the publishing of Kenneth J. Arrow’s renowned So-
cial Choice and Individual Values (Arrow, 1951),
which axiomatically formalizes the theory and com-
paratively analyzes various electoral systems.

3.1 Related Work Incorporating Social
Choice Theory into NLP Research

The related research to date has tended to focus on
integrating social choice theory into model align-
ment (Mishra, 2023), model ensemble (Jiang et al.,
2023b), text generation and preference extrapola-
tion (Fish et al., 2023). More specifically, Jarrett
et al. (2023) take an utilitarian approach to employ
LLM agents as digital representatives of human.
Irurozki et al. (2022); Rofin et al. (2023) point out
the limitations of canonical mean-average aggre-
gation of multi-task scores in NLP benchmarking
and propose novel aggregation methods based on
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social choice theory. Wang et al. (2023c); Xue et al.
(2023) propose to select answers from multiple gen-
erated reasoning paths by plurality voting and yield
improved results over utilitarian approaches.

Most recently, Li et al. (2024) demonstrate the
synergy of plurality voting on gpt-3.5 (Ouyang
et al., 2022) and Llama-2 (Touvron et al., 2023),
echoing some of our findings, yet it lacks compar-
isons with other CDM methods. Another concur-
rent work (Yang et al., 2024) examines the differ-
ences between human and LLM from a voting be-
havior perspective. Nevertheless, previous studies
do not overlap with our primary aim of diversifying
LLM-based multi-agent CDM methods.

3.2 Criticism on Prevalent CDM Methods in
LLM-based Multi-Agent Collaboration

In the context of LLM-agent collaboration, dictato-
rial methods rely on a single agent who is informed
and counseled by other agents to decide for the
group. While dictatorship is often computing-wise
efficient, its absolute dependency on a sole agent
makes it is more biased and less robust than more
‘democratic’ processes.

In contrast, utilitarian and cardinal voting meth-
ods certainly aggregate and disclose broader indi-
vidual preferences from group members. However,
an unignorable drawback of these methods is the
unstable and arbitrary nature of externally imposed
utilities (Brandt et al., 2016). Provided that agents
have accurate cardinal utilities over choices, which
is a strong assumption, then an uneven distribu-
tion of utilities is another potential concern: such a
system could easily violate Majority criterion (see
Figure 11) or even collapse to autocratic if one
agent with dominant utility impact was present.

Plurality voting showcases a paradigmatic exam-
ple of ordinal voting (also known as preferential
or ranked voting), another decentralized decision-
making family. Although there are other widely-
practiced ordinal voting methods available, to the
best of our knowledge, all existing LLM-agent col-
laboration frameworks that employ voting methods
select plurality voting, as shown in Figure 1. The
simple method may seem intuitively ‘safe’. How-
ever, through the lens of Arrow’s theorems (Ar-
row, 1951), this method contradicts some rather
self-evident criteria. To name two, the method
violates both Independence from Irrelevant Alter-
natives (IIA) criterion, as shown in Figure 8, and
Condorcet criterion, as illustrated in Figure 9.

In fact, Arrow’s theorems mathematically prove

CDM
Method

Major
-ity

Mono
-tonic

Consis
-tency IIA Cond

-orcet
Ballot
type

Dictatorial (Blind) ✗ ✓ ✓ ✓ ✗ Ranking
Range Voting ✗ ✓ ✓ ✓ ✗ Scores
Plurality ✓ ✓ ✓ ✗ ✗ Single*
Borda Count ✗ ✓ ✓ ✗ ✗ Ranking
IRV ✓ ✗ ✗ ✗ ✗ Ranking
Ranked Pairs ✓ ✓ ✗ ✗ ✓ Ranking

Table 1: Criteria compliance of some typical CDM
methods. Range Voting can be viewed as a special
utilitarian method. IIA denotes Independence from
Irrelevant Alternatives. *Single ballots can be derived
from ranking ones. Find some examples in Appendix D.

that every electoral system has some fundamental
flaws, as exemplified in Table 1. The axiomatic
impossibility of constructing a perfect voting sys-
tem, however, motivates us to reduce the risk of
falling into a single point of failure. To this end,
we argue it is of great pragmatic values to diver-
sify current landscape of LLM-agent with modern
decentralized voting systems. In order to leverage
LLM-agents’ natural-language-based ‘judgement’
rather than imposed ‘utility’ or ‘reward’, we place a
particular emphasis on ordinal preferential voting.

4 Diversifying LLM-based Multi-Agent
CDM

To enhance the diversity of CDM approaches
within LLM-agent frameworks, we propose incor-
porating a range of CDM methods rooted in human
socio-political practices. Specifically, we craft an
electoral CDM module, named General Electoral
Decision-making Interface (GEDI), which inte-
grates several common ordinal preferential voting
systems. Figure 2 highlights a few key distinctions
between GEDI and other commonly used CDM
methods in LLM-based MAS.

4.1 Definition
Following conventional practice (Arrow et al.,
2010; Brandt et al., 2016), consider a multi-
alternative decision-making process. Let N =
{1, 2, ..., n} be a finite set of n agents, A =
{a1, a2, ...am} be a finite set of m distinct alter-
natives, where m ≥ 2 and for all a, b ∈ A, a ̸= b.
A preferential ranking ballot (i.e., vote) can be de-
fined as a strict partial ordering ≻ of A (Rosen,
2007). Specifically, ≻ is transitive: for all a, b, c ∈
A, if a ≻ b and b ≻ c then a ≻ c); and com-
plete: for all a, b ∈ A, a ≻ b or a ≺ b. Note that
there is also a weak ordering variation that accepts
voters stating indifference to two alternatives (i.e.,
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Figure 2: Comparison among different LLM-based multi-agent CDM structures: utilitarian, dictatorial, plurality and
our expansion. Agenda refers to assigned tasks or interactive environment. Blue and green arrows denote interaction
between agents and preference communication to CDM systems respectively. Rather than generate a single decision,
GEDI uniquely outputs ordinal rankings, providing more information on agents’ collective preferences.

preferential ties).
Concretely, the input of GEDI is composed of:

(1) a profile P = (≻1,≻2, ... ≻n), which denotes
a collection of ballots from each voter i ∈ N ; (2) a
voting system (i.e., social choice function (SCF)),
which is defined as a map f : L(A)n → C(A)
that returns a set of alternatives for each profile of
strict preferences. The output f(P ) is a nonempty
ordered subset of the alternative set A.

4.2 Assessed Electoral Methods

We select 10 CDM methods to assess in the fol-
lowing case study: Blind Dictatorial, Informed
Dictatorial, Mis-informed Dictatorial, Range Vot-
ing, Plurality, Borda Count, Bucklin, Minimax, and
Ranked Pairs, along with random baselines.

Dictatorial Blind dictatorial (or random ballot)
arbitrarily chooses an agent and admits its pref-
erence ranking as the decision without consulting
with fellow agents (Aziz et al., 2013). Alternatively,
informed dictatorial is a counselled version in
which a ‘dictator’ agent first reviews ballots of the
voting ensemble and then forms its own decision.
We also entail a mis-informed variation to verify
the impact of information communicated via bal-
lots, in which the ‘dictator’ is consulted by random
ballots rather than actual ones from the ensemble.

Range Voting Agents rate alternatives under a
designated cardinal range, and the winner is se-
lected by highest overall scores (Menton, 2013).
This approach resembles utilitarian methods, yet

the ‘utilities’ (i.e., overall scores) are given by
agents rather than externally assigned.

Plurality Simple plurality (relative majority)
considers only the first-preference in each vote,
ignoring any later preferences. The winner is the
candidate who receives the most top-choice votes.

Bucklin Voting The first-preference votes are
accounted for first, and if no choice has absolute
majority, next-in-line preference votes are then ac-
counted. Repeat the process until an absolute ma-
jority winner emerge (Erdélyi et al., 2015).

Borda Count Choices gain points from their
places on each ballot, and the overall points de-
termine the winner (Emerson, 2013; Davies et al.,
2014). In standard Borda count, a preference ballot
on m alternatives awards m− i points for the i-th
ranked alternative. Unlike range voting, Borda is
distinct from utilitarian methods because Borda
still utilises ordinal preferences.

Instant-Runoff Voting (IRV) A multi-round
mechanism that repeatedly eliminates the alterna-
tive with fewest first-preference votes and ‘trans-
fers’ the votes of the eliminated to surviving alter-
natives (Freeman et al., 2014). The reverse order
of elimination comprise the sorted list of collec-
tively preferred options. While there are various
early exit designs (e.g., choose a winner once an
absolute majority appears), we include the standard
IRV to get the full sorted list.
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Minimax A method that selects the choice with
least ‘worst disfavor’ (Brams et al., 2007). For-
mally, let f(a, b) represent the overall ‘favor’ of
a over b (i.e., the number of pairwise wins of a
against b across all ballots) for a distinct pair of
alternatives a, b ∈ A. f(a, b) can be negative
if more voters favor b over a. The ‘worst disfa-
vor’ of a is defined as max f(b, a). The winning
alternative is the one minimizes the worst disfa-
vor, i.e., the one with the minimum max f(b, a):
aw = argmin

a
(max

b
f(b, a)).

Ranked Pairs Concretely, let (a, b) denotes the
aggregated pairwise comparison result of a, b ∈ A,
and a positive (a, b) indicates more agents prefer
a over b. Ranked pairs method breaks down com-
plete ballots into preferential pairs and ranks them
by prevalence. Starting from the most frequent
pairs (i.e., arg max

a,b∈A
(a, b)), the method fills a pair-

wise comparison matrix, marking the pairs and
their transitive results positive, ignoring any con-
flicting pairs with smaller frequency. The winner
is arg

a∈A
((a, b) > 0) s.t. ∀b ∈ A, a ̸= b, the one who

has positive signs over all other alternatives.

5 A Case Study on MCQA Benchmarks

5.1 Experiment Setup

Datasets As the primary scope of this study is
on decision-making process rather than choice-
generation, MCQA benchmarks particularly suits
the research interest, for they have alternatives (i.e.,
choices) predefined. Following previous studies
on benchmarking general performances of LLM
agents (Park et al., 2022; Liu et al., 2023b; Zhang
et al., 2023b; Google, 2023; Jiang et al., 2023a), we
select MMLU (Hendrycks et al., 2021), MMLU-
Pro (Wang et al., 2024a), and ARC-Challenge
(Clark et al., 2018) as the case study testbeds.

Backbone Models In an effort to simulate agents
built on language models of diverse architectures
and parameter sizes, we curate a collection of
six open-sourced models, including mistral-7b
(Jiang et al., 2023a), glm-4-9b (Zeng et al.,
2023), llama-3-8b/70b (AI@Meta, 2024) and
qwen-1.5-72b/110b (Qwen, 2024). In addition,
since most existing LLM-based multi-agent col-
laboration frameworks employ high performance
models with huge parameter sizes to create agents,
following their suits, we also test two widely-used
proprietary models: gpt-3.5 (Ouyang et al., 2022)

and gpt-4 (OpenAI, 2023). Specifications of se-
lected models can be found in Appendix A Ta-
ble 5. The temperature of all models are fixed at
0.7 (within a 0.0 to 1.0 range) except for OpenAI
models, whose temperatures are maintained at 1.0
(within a 0.0 to 2.0 range).

Metric and Assessment For simplicity, we har-
ness unmodified language models as test agents
and prefix a short instruction ‘You are the {random
number}-th rater’ ahead of questions to identify
them. A decision ensemble is composed of a des-
ignated number of agents built on the same back-
bone model. Every agent is requested to provide
a preferential ranking of choices on each question
independently. Having gathered all rankings (i.e.,
votes) to form a profile, GEDI outputs collective
preferential ranks conforming to selected voting
rules. Uniquely, under informed and mis-informed
dictatorial rules, a ‘dictator’ agent besides the vot-
ing ensemble is provided with other agents’ votes
and then enquired (see § 4.2). As described in
§ 4.1, given a profile P containing 10 preferential
rankings from agents, a voting system f of GEDI
outputs an ordered list f(P ) of all choices. We
consider a question is correctly answered if the first
element of the output list match the corresponding
gold label. In accordance with the original setup
of MMLU (Hendrycks et al., 2021), we implement
a 5-shot example prompting that utilises the devel-
opment sets of the datasets. All methods take the
same preferential ranking format votes except for
range voting that requires numerical preferential
scores in addition to the rankings.

5.2 Main Results

The 5-run average overall accuracy results are re-
ported in Table 2, and corresponding statistics of
valid ranking profiles are detailed in Appendix C.

Random Baselines and Range Voting The ac-
curacies for random baselines hover around 25.0
for the 4-choice MMLU and ARC-Challenge, and
approximately 10.0 for the 10-choice MMLU-Pro.
These figures confirm a balanced distribution of
correct choices within the test sets. Most models,
especially the smaller ones, exhibit inferior per-
formance when implementing score-based range
voting (i.e., cardinal ranking) compared to ordi-
nal ranking methods. However, llama-3-70b,
gpt-3.5, and gpt-4 are exceptions, as their range
voting outcomes exceed those of blind dictatorial.
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Base Model Rand. Score Dictatorial-based Ordinal Ranking

MMLU Rand.
Range
Voting

Blind
Dicta.

Informed
Dicta.

Mis-Informed
Dicta.

Plurality Bucklin
Borda
Count

IRV Minimax
Ranked

Pairs

mistral-7b 24.8 51.8 (-4.6) 56.4 55.9 (-0.5) 36.1 (-20.3) 56.8 (+0.4) 57.1 (+0.7) 56.9 (+0.5) 56.9 (+0.5) 57.0 (+0.6) 57.0 (+0.6)

llama-3-8b 25.0 37.7 (-7.3) 45.0 36.5 (-8.5) 32.2 (-12.8) 45.9 (+0.9) 46.4 (+1.4) 46.3 (+1.3) 45.7 (+0.7) 45.9 (+0.9) 46.0 (+1.0)

glm-4-9b 25.2 61.3 (-0.4) 61.7 54.3 (-7.4) 53.0 (-8.7) 64.6 (+2.9) 64.5 (+2.8) 64.1 (+2.4) 64.9 (+3.2) 64.4 (+2.7) 64.6 (+2.9)
llama-3-70b 25.3 74.9 (+1.6) 73.3 70.1 (-3.2) 62.6 (-10.7) 73.9 (+0.6) 73.8 (+0.5) 73.7 (+0.4) 73.9 (+0.6) 73.9 (+0.6) 73.9 (+0.6)

qwen-2-72b 25.1 69.2 (-0.5) 69.7 69.7 (±0.0) 39.5 (-30.2) 70.0 (+0.3) 69.9 (+0.2) 70.0 (+0.3) 69.9 (+0.2) 69.9 (+0.2) 69.9 (+0.2)

qwen-1.5-110b 25.0 71.3 (-1.5) 72.8 73.0 (+0.2) 46.3 (-26.5) 72.9 (+0.1) 72.9 (+0.1) 72.7 (-0.1) 72.9 (+0.1) 72.9 (+0.1) 72.9 (+0.1)

gpt-3.5 24.9 63.0 (+2.2) 60.8 64.7 (+3.9) 36.9 (-23.9) 65.9 (+5.1) 65.5 (+4.7) 65.6 (+4.8) 65.6 (+4.8) 65.6 (+4.8) 65.6 (+4.8)
gpt-4 25.0 80.7 (+5.1) 75.6 82.1 (+6.5) 70.9 (-4.7) 82.5 (+6.9) 81.9 (+6.3) 81.9 (+6.3) 81.9 (+6.3) 81.9 (+6.3) 81.9 (+6.3)

MMLU-Pro

mistral-7b 9.6 20.9 (-9.0) 29.9 27.7 (-2.2) 15.6 (-14.3) 31.7 (+1.8) 30.7 (+0.8) 31.4 (+1.5) 31.2 (+1.3) 31.7 (+1.8) 31.7 (+1.8)

llama-3-8b 9.7 18.9 (-2.4)* 21.3 23.8 (+2.5) 19.3 (-2.0) 22.2 (+0.9) 23.8 (+2.5) 24.5 (+3.2) 22.6 (+1.3) 23.0 (+1.7) 23.4 (+2.1)

glm-4-9b 9.6 26.2 (-5.7)* 31.9 28.2 (-3.7) 23.9 (-8.0) 36.4 (+4.5) 35.9 (+4.0) 34.8 (+2.9) 36.7 (+4.8) 35.6 (+3.7) 36.2 (+4.3)
llama-3-70b 10.3 46.7 (+3.5) 43.2 44.6 (+1.4) 24.6 (-18.6) 42.8 (-0.4) 43.5 (+0.3) 43.6 (+0.4) 43.0 (-0.2) 43.2 (±0.0) 43.5 (+0.3)

qwen-2-72b 10.4 35.1 (-1.7) 36.8 37.4 (+0.6) 19.5 (-17.3) 37.2 (+0.4) 36.7 (-0.1) 36.7 (-0.1) 37.2 (+0.4) 37.3 (+0.5) 37.2 (+0.4)

qwen-1.5-110b 10.1 45.7 (+0.9) 44.8 42.8 (-2.0) 16.6 (-28.2) 44.7 (-0.4) 44.9 (+0.1) 44.6 (-0.2) 45.1 (+0.3) 45.0 (+0.2) 44.8 (±0.0)

gpt-3.5 9.9 28.5 (+2.6) 25.9 27.1 (+1.2) 13.0 (-12.9) 26.5 (+0.6) 27.0 (+1.1) 28.5 (+2.6) 26.5 (+0.6) 26.7 (+0.8) 27.2 (+1.3)

gpt-4 9.9 46.4 (-0.5) 46.9 46.9 (±0.0) 34.6 (-12.3) 47.3 (+0.4) 47.5 (+0.6) 47.7 (+0.8) 47.5 (+0.6) 47.8 (+0.9) 47.7 (+0.8)

ARC-Challenge

mistral-7b 24.9 53.1 (-17.9) 71.0 70.3 (-0.7) 47.7 (-23.3) 71.7 (+0.7) 71.7 (+0.7) 71.6 (+0.6) 71.7 (+0.7) 71.7 (+0.7) 71.6 (+0.6)

llama-3-8b 25.2 44.4 (-21.8) 66.2 52.8 (-13.4) 41.1 (-25.1) 71.3 (+5.1) 70.0 (+3.8) 70.0 (+3.8) 71.6 (+5.4) 71.3 (+5.1) 71.3 (+5.1)
glm-4-9b 24.8 69.9 (-9.7)* 79.3 80.1 (+0.8) 65.1 (-14.2) 82.7 (+3.4) 82.3 (+3.0) 82.0 (+2.7) 82.8 (+3.5) 83.0 (+3.7) 82.7 (+3.4)
llama-3-70b 25.3 88.9 (+1.1) 87.8 87.9 (+0.1) 80.8 (-7.0) 88.5 (+0.7) 88.4 (+0.6) 88.1 (+0.3) 88.5 (+0.7) 88.4 (+0.6) 88.4 (+0.6)

qwen-2-72b 24.8 84.7 (-1.1) 85.8 86.0 (+0.2) 36.7 (-49.1) 86.3 (+0.5) 86.2 (+1.3) 85.8 (±0.0) 86.3 (+0.5) 86.3 (+0.5) 86.2 (+0.4)

qwen-1.5-110b 24.7 87.0 (-0.7) 87.7 88.3 (+0.6) 53.4 (-34.3) 88.1 (+0.4) 88.1 (+0.4) 88.0 (+0.3) 88.1 (+0.4) 88.1 (+0.4) 88.1 (+0.4)

gpt-3.5 25.2 78.1 (+1.2) 76.9 77.0 (+0.1) 29.9 (-47.0) 78.2 (+1.3) 77.9 (+1.0) 78.2 (+1.3) 78.1 (+1.2) 77.9 (+1.0) 77.9 (+1.0)

gpt-4 25.0 92.9 (+0.4) 92.5 92.8 (+0.3) 87.3 (-5.2) 92.9 (+0.4) 92.7 (+0.2) 92.8 (+0.3) 92.8 (+0.3) 92.8 (+0.3) 92.9 (+0.4)

Table 2: Overall accuracy results on MMLU, MMLU-Pro and ARC-Challenge benchmarks. ‘Rand.’ and ‘Dicta.’
denote ‘random’ and ‘dictatorial’, respectively. The numbers in parentheses are relative to the blind dictatorial
baselines. Performance gains are marked in red, and loss in blue. Notable cases are marked in bold. *Results
marked with asterisk are calculated utilizing partial profiles (see Appendix C).

Dictatorial Methods The colored numbers in Ta-
ble 2 indicate results relative to blind dictatorial,
which serves as the baseline for comparing. Al-
though most models perform better under informed
dictatorial than under blind dictatorial, they do not
outperform other ordinal ranking methods.

It should be noted that informed dictatorial cost
more than voting-based methods computationally,
since it necessitates a complete ballot profile from
the ensemble, in addition to the ‘dictator’. The sub-
par performance of informed dictatorial implies
that a ‘dictator’ agent is unable to utilize the in-
formation from ensemble ballots more effectively
than the voting systems.

As anticipated, the significantly reduced accu-
racies under mis-informed dictatorial demonstrate
the detrimental effect of providing the ‘dictator’
with random ballots. Remarkably, glm-4-9b and
gpt-4 exhibit a relatively minor decline compared
to other models across the three datasets, indicating
their resilience to misleading information.

Ordinal Ranking Methods It is consistently ob-
served that the application of voting-based ordinal
ranking methods, even those as straightforward as

plurality, results in accuracies that match or sur-
pass those achieved by blind dictatorial. The ex-
tent of improvement varies depending on the spe-
cific model in question. Notably, models built on
smaller models (<10B) and those within the GPT
series exhibit substantial performance enhance-
ments when electoral CDM methods are employed,
in stark contrast to medium models (10-110B).

For MMLU benchmark, the adoption of a voting
method leads to average accuracy increases of ap-
proximately 2.9%, 4.9%, and 6.5% for glm-4-9b,
gpt-3.5, and gpt-4, respectively. Given that
MMLU-Pro is a 10-choice test, the relative im-
provements due to CDM may appear less pro-
nounced. Nonetheless, llama-3-8b and glm-4-9b
still register noticeable accuracy gains under voting
methods. In particular, minimax and ranked pairs
methods demonstrate robustness, showing positive
effects on all models across the three benchmarks.

These findings call for a reassessment on existing
LLM-agent collaboration frameworks, particularly
regarding the extent to which the impacts of their
proposed systems may be attributed to the imple-
mentation of specific CDM methods. However, it
is also observed that some CDM methods exhibit
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marginal and indistinct differences in performance
on certain models, warranting further detailed ex-
amination.

5.3 Analysis and Discussion

Having observing that the agents build on gpt-3.5
and gpt-4 demonstrate the most significant im-
provement under ordinal ranking methods, we fol-
low up with additional inquires and analyses.

Minimum Effective Voting Quorum Firstly, we
pose an intuitive question regarding the voting quo-
rum: What is the minimum number of agents to
compose an effective decision group?
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Figure 3: Accuracy comparison of voting ensembles of
different sizes built on the same backbone models. The
Range results of glm-4-9b is excluded for insufficient
profiles (see Appendix C).

Figure 3 illustrates the notable impact on accu-
racy when varying the number of voting agents,
using llama-3-8b and glm-4-9b on the ARC-
Challenge dataset, and gpt-3.5 and gpt-4 on the
MMLU benchmark. Overall, most CDM meth-
ods start exhibiting significant improvements and
surpass the blind dictatorial baseline in situations
involving more than two agents, where a majority
can be established.

For GPT models, noticeable drops occurs when
the voting group increases to two. Borda takes
a few more agents to reach the plateau, which is
likely attributed to its ballot weight scale that is
based on the number of choices (4 in our case).
Range voting starts higher yet stabilizes lower than
other methods. Surprisingly, for gpt-4, simply

requiring a range vote rather than ordinal prefer-
ential vote greatly increases its judgement even
without multiple agents! However, the results of
range voting vary slightly when increasing number
of voting agents, demonstrating a ensemble-size-
independent property that is not seen on gpt-3.5.
In particular, llama-3-8b shows the most variance
when applying different CDM, mostly due to a
smaller number of valid profiles (see Appendix C).
Nonetheless, since the ensemble size directly im-
pacts the required computational resources, a con-
sideration of cost-benefit trade-offs is essential.

Robustness against Unreliable Agents The vot-
ing quorum scenario presupposes that all agents
can accurately express their preferences. However,
one might wonder: What if LLM agents are unreli-
able (i.e., malfunctioning or incapable)? An extra
advantage of involving more agents in decision-
making is the increased robustness against a single
point of failure. To assess the resilience of various
methods to unreliable voters, we incrementally re-
placed the voting ensemble of 10 fully functional
agents with unreliable ones who cast random votes.
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Figure 4: Accuracy impact of increasing number of
unreliable agents built on gpt-3.5 and gpt-4.

Figure 4 depicts the performance of compro-
mised voting ensembles under different voting
rules. Most voting methods maintain their integrity
until the number of unreliable agents reaches 4, and
then their accuracies converges to the random base-
line at 25%. As anticipated, informed dictatorial
is the first to collapse, since the entire system fails
once the ‘dictator’ is incapable of making a rea-
sonable judgment (utilitarian methods relying on
single external utility-calculation module would be
the same case). Contrary to expectations, plurality
exhibits a commendable robustness compared to
more sophisticated methods.

Difference in Hit-Rate@K Let hit-rate@k de-
notes a cumulative accuracy of taking the first k
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preferences of an answer. We find that although a
few methods yield seemingly even performance
gains, they are distinguishable in terms of hit-
rate@k, as illustrated in Figure 5. Notably, de-
spite being robust against unreliable agent, plural-
ity falls short in scenarios where the elimination
of the worst choices is of the higher priority than
the selection of the best. On the other hand, Borda,
ranked pairs, and informed dictatorial methods
have the strongest discriminant power on exclud-
ing the wrong choices. Intriguingly, while blind
dictatorial performs poorly on the first choice, its
hit-rate@3 surpasses some electoral methods.
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75 80 85 90 95 100
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Minimax
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GPT-3.5-Based Agents GPT-4-Based Agents

Figure 5: Hit-rate@k comparison of different voting
rules utilising ballots given by voting agents. Green
lines are drawn to highlight similar hit-rate@1.

Subject-wise Performance Improvements In-
specting the subject-wise results in Figure 6, we
find that, under the same voting method, the perfor-
mance gains are not evenly distributed across dis-
ciplines. Taking plurality for instance, the subject-
wise accuracy improvements range from -5.8% to
+15.0% for gpt-3.5 and from 1.4% and 9.4% for
gpt-4.

GPT-3.5 GPT-4

Figure 6: Box plots of subject-wise accuracy improve-
ment variations under different CDM methods.

Vice versa, for the same discipline, the impacts
under different CDM methods vary as well. For
instance, the dark green bar outlined by golden
border in Figure 7(a) indicates that ranked pairs is
-3.7% less accurate than plurality on ‘professional

accounting’. Conversely, the corresponding one in
Figure 7(b) shows no difference between plurality
and Borda Count on the same subject.
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Figure 7: An example of CDM impacts on subject-
wise accuracies when holding the model fixed (gpt-4
in this case). Each bar denotes a subject-wise accuracy
difference between the compared CDM method pair.

Above observations again support our motiva-
tion for diversifying decision-making methods in
LLM-based multi-agent collaboration.

6 Conclusion and Future Work

In the midst of the expanding research on LLM-
based agents, we have surveyed 52 multi-agent col-
laboration frameworks and revealed a significant
lack of diversity in CDM. We have scrutinized pop-
ular CDM methods and indicate their fundamental
limitations through a social choice theory perspec-
tive. Aiming to diversify the current CDM land-
scape, we have drew inspiration from human soci-
etal practices and explored various CDM methods
in an empirical case study across multiple bench-
marks. Our experiments have produced a wealth of
observations and insights, demonstrating how such
diversification can illuminate the study of collective
behaviors in LLMs.

Our study also opens up numerous avenues for
future research. For instance, matching specific
tasks with appropriate CDM methods to enhance
agent decision-making quality holds promising
practical value. Moreover, since social choice the-
ory addresses collective preferences, we expect that
it could inspire broader interdisciplinary NLP re-
search, particularly language model alignment and
aggregation.
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Limitations

Multi-Choice Question-Answering (MCQA)
Benchmarks as CDM Testbed while the experi-
ments on MMLU, MMLU-Pro and ARC yield no-
table and insightful observations, we acknowledge
that MCQA is not fully aligned with collective
decision-making. Foremost, LLM have demon-
strated inconsistency in multi-choice ranking task
(Zhao et al., 2024). Secondly, most MCQA bench-
marks have predetermined ‘correct’ answers; how-
ever, CDM processes can also be relevant in scenar-
ios where there is no absolute right or wrong. For
instance, measuring bias in LLM agents involves
aggregating the ‘preferences’ of individual agents,
where no objectively ‘correct’ choices exist. There-
fore, an additional avenue for future work could
involve constructing a benchmark that measures
preference representativeness rather than one based
on true-or-false judgments.

Self-contained Testing All experiments are self-
contained systems of sole backbone model. In other
words, we do not test any ensemble containing
voting agents built on different LLMs, which could
be another future direction.

Unexhausted Inclusion of Voting Strategies in
GEDI Although we attempted to cover common
modern electoral systems, the CDM method list of
GEDI is not exhaustive. For instance, in an effort
to keep the module compact and lightweight, we do
not include compound mechanisms that combine
multiple voting strategies. However, such mech-
anisms are achievable by arranging a pipeline of
multiple GEDI modules if so wish.

‘Voting Tax’ The ‘voting tax’ of electoral CDM
methods refers to the computation cost of imple-
menting such methods. The tax is composed of two
parts: agent actions and ballot processing. Agent
actions takes largest proportion as operating LLM
agents is highly costly. The cost of inter-agent com-
munication should be taken into consideration as
well. Compared with vast computational resources
required by model inference, ballot processing part
consumes much minor.

Another aspect to consider the cost-benefit trade-
offs is the ‘participation’ in decision-making. Hu-
man voters could feel certain degree of fulfillment
by participation alone regardless of results, as they
have expressed their preferences in social decision-
making processes. LLM agents, however, can

not benefit through participation. This distinc-
tion makes voting population factor in LLM-agent
CDM a totally utilitarian one.

Broader Impacts and Ethical
Considerations

The purpose of this research is to explore the possi-
bilities of implementing diverse collective decision-
making methods among LLM-based agents. How-
ever, this study does not support nor encourage any
attempt to utilize LLM agents as representatives to
replace human judgment in real-world democratic
decision-making processes.
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A Reproducibility Statement

We employ 8 backbone models for the experi-
ments. gpt-3.5 and gpt-4 are commercially
available proprietary models. Specifically, we
adopt the snapshot models gpt-3.5-turbo-1106
and gpt-4-0125-preview. As for the open-
source models, we adopt Mistral-7B-v0.3,
glm-4-9b-chat, Llama-3-8B/70B-Instruct,
and Qwen1.5-72B/110B-Instruct. The sources
of above models are listed in Table 3.

Models Sources

mistral-7b https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
llama-3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
glm-4-9b https://huggingface.co/THUDM/glm-4-9b-chat
llama-3-70b https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
qwen1.5-72b https://huggingface.co/Qwen/Qwen1.5-72B-Chat
qwen1.5-110b https://huggingface.co/Qwen/Qwen1.5-110B-Chat
gpt-3.5-turbo https://platform.openai.com/
gpt-4 https://platform.openai.com/

Table 3: Specification and sources of evaluated models.
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B Surveyed LLM-based Multi-Agent
Collaboration Frameworks and
Systems

CDM Method Systems and Frameworks Note

Dictatorial

Xiong et al. (2023) Assigned role
Wu et al. (2023) Assigned role
Hao et al. (2023) Assigned role
Liu et al. (2023b) Assigned role
Li et al. (2023a) Assigned role
Zhang et al. (2023a) Assigned role
Nair et al. (2023) Assigned role
Talebirad and Nadiri (2023) Assigned role
Liang et al. (2023) Assigned role
Tang et al. (2023) Assigned role
Qian et al. (2023) Assigned role
Sun et al. (2023) Assigned role
Chen et al. (2023a) Assigned role
Jinxin et al. (2023) Assigned role
Li et al. (2023b) Assigned role
Fang et al. (2024) Assigned role
Tang et al. (2024) Assigned role
Hang et al. (2024) Assigned role
D’Arcy et al. (2024) Assigned role
Hua et al. (2024) Assigned role
Wang et al. (2024b) Assigned role
Li et al. (2023f) Assigned role
Chen et al. (2023b) Oligarchy

No CDM
or
Unspecified

He et al. (2023) Decentralized team
Li et al. (2023c) Decentralized team
Nakajima (2023) Decentralized team
Ni and Buehler (2024) Human judgement
Ghafarollahi and Buehler (2024) Human judgement
Wang et al. (2023a) Linear workflow
Ding et al. (2023) Linear workflow
Hong et al. (2023) Linear workflow
Rasheed et al. (2024) Linear workflow
Wei et al. (2024) Linear workflow
Liu et al. (2023a) Scenario simulation
Park et al. (2023) Scenario simulation
Ghaffarzadegan et al. (2023) Scenario simulation
Hua et al. (2023) Scenario simulation
Zhang et al. (2024) Scenario simulation

Plurality

Du et al. (2023) Consensus
Wang et al. (2023d) Consensus
Chen et al. (2023d) Consensus
Chen et al. (2023c) Consensus
Li et al. (2023d) Consensus
Shi et al. (2023) Game rule
Stepputtis et al. (2023) Game rule
Xu et al. (2023a) Game rule
Chan et al. (2023) Relative majority
Xu et al. (2023b) Relative majority
Zhang et al. (2023b) Relative majority
Li et al. (2024) Relative majority
Hamilton (2023) Scenario simulation

Utilitarian Jarrett et al. (2023)

Table 4: Full list of 52 surveyed LLM-based multi-agent
collaboration works.

C Main Experiment Statistics

For MMLU and MMLU-Pro datasets, we curate
subject-wise balanced test subsets by selecting first
100 cases of each subject (i.e., discipline). Thus,
the subset contains 5,700 questions for MMLU and

1,400 for MMLU-Pro. Regarding ARC-Challenge,
the whole test set of 1,172 cases are used.

We consider a profile to be valid if (1) the profile
comprises ballots from all voting agents, and (2) ev-
ery ballot includes a complete and non-duplicated
ranked list of choices and matches the instructed
format. Only valid profiles are forwarded to GEDI
and processed. The statistics of main experiments
are summarized in Table 5.

MMLU Range
Ordinal
Ranking

Informed
Mis

-informed

mistral-7b 2379 4788 5422 5596
llama-3-8b 1253 1946 4961 5121
glm-4-9b 332 3470 5502 5447
llama-3-70b 3909 5110 5576 5435
qwen1.5-72b 4642 5657 5698 5700
qwen1.5-110b 5569 5625 5685 5692
gpt-3.5-trubo 5627 5397 5569 5679
gpt-4 5515 5572 5539 5648

MMLU-Pro

mistral-7b 554 564 1180 1382
llama-3-8b 3 (1161*) 261 1162 1255
glm-4-9b 3 (1359*) 376 1294 1323
llama-3-70b 1239 1293 1396 1394
qwen1.5-72b 388 831 1284 1383
qwen1.5-110b 632 1138 1319 1399
gpt-3.5-turbo 655 1283 1400 1400
gpt-4 1375 1386 1399 1397

ARC-Challenge

mistral-7b 373 1033 1131 1163
llama-3-8b 252 317 1024 1043
glm-4-9b 1 (1096*) 1081 1153 1159
llama-3-70b 901 1135 1172 1172
qwen1.5-72b 1068 1172 1172 1172
qwen1.5-110b 1166 1169 1171 1171
gpt-3.5-trubo 1172 1172 1172 1172
gpt-4 1172 1172 1171 1172

Table 5: Overview statistics of output profile validity of
different models on tested datasets. Specifically, since
voting profiles of all non-dictator agents is a prerequisite
for informed dictatorial, we filter out incomplete pro-
files of other agents before feeding them to the ‘dictator’.
Therefore, the valid profile counts for informed dictato-
rial are bound to be fewer than the original ones. *Since
llama-3-8b and glm-4-9b yield too few complete pro-
files under range voting for certain benchmarks, we
utilize incomplete profiles with valid ballots to calculate
those accuraies in the main experiments.
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D Several CDM Method Criteria
Examples

× 6× 4

× 4

Initial: Amber wins for having 
more first-preference votes

After introducing a new 
alternative Coral, the relative 
preferential position 
between Amber and Blue 
remain unchanged

>6 4

× 3 × 3
After: Blue wins for getting 
most first-preference votes

4 > 3 = 3

Agent Votes

Votes after Introducing 
a New Choice

Figure 8: An example of plurality voting (the choice
with the most first-preference votes wins) violating In-
dependence from Irrelevant Alternatives (IIA) criterion.
Initially, Amber wins for two more first-preference
votes. However, after introducing a new choice Coral ,
while the relative preferential position between Amber
and Blue remain unchanged, Blue wins for getting
one more first-preference vote than other two options.

× 4

× 4 × 3 × 3
Blue is the Plurality 

winner for getting most 
first preferential votes

4 > 3 = 3
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Amber is the Condorcet winner for having more 
preferential votes in every pairwise-comparison

× 3 × 3

Agent Votes
Plurality Winner

Breakdown into pairwise comparisons

Aggregation Condorcet Winner

Figure 9: An example of plurality voting violating Con-
dorcet criterion. While Blue is the plurality winner for
getting the most first-preference votes, Amber is actu-
ally the Condorcet Winner, meaning that Amber gets
more preferential votes in every pairwise-comparison
with other alternatives. This misalignment is due to that
plurality voting takes only first-preference into account.
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Round 1: Amber is eliminated 
for least first-preference votes  

Round 1: Blue is eliminated 
for least first-preference votes  

Round 2: Blue is eliminated 
for least first-preference votes, 
Coral wins

Round 2: Coral is eliminated 
for least first-preference votes, 
Amber wins

Scenario 1 Scenario 2

Preferential
Order

Agent Votes

Figure 10: An example of violating monotonicity crite-
rion (Woodall, 1997) in preferential instant-runoff vot-
ing (IRV): repeatedly eliminating the option with the
least first preference votes each round until a winner is
left. In Scenario 2 (right), two agents alter their votes by
putting Coral first, but this ‘favorable’ action actually
harms Coral and prevent it from supposed winning.
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Blue is the utilitarian winner for 
getting more utilities from votes
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U
= 10 × 10 + 0 × 2
= 100
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Amber is the Condorcet winner for it has more 
preferential votes in pairwise-comparison than Blue

Utilitarian Winner

Condorcet Winner
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10 = 10 × 9 + 10 × 2
= 110 > 100

Agent Votes

Pairwise
Aggregation

simplify

Figure 11: An example of utilitarian method violating
Majority and Condorcet criteria. Blue is the utilitarian
winner for getting more utilities from votes, but Amber
is preferred by the majority of the agents (10 out of
12). In addition, Amber is also the Condorcet Winner,
meaning that Amber gets more preferential votes in
pairwise-comparison with other alternatives.
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