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Abstract

Large vision-language models (LVLMs) have
recently dramatically pushed the state of the
art in image captioning and many image un-
derstanding tasks (e.g., visual question answer-
ing). LVLMs, however, often hallucinate and
produce captions that mention concepts that
cannot be found in the image. These hallucina-
tions erode the trustworthiness of LVLMs and
are arguably among the main obstacles to their
ubiquitous adoption. Recent work suggests that
addition of grounding objectives—those that
explicitly align image regions or objects to text
spans—reduces the amount of LVLM halluci-
nation. Although intuitive, this claim is not
empirically justified as the reduction effects
have been established, we argue, with flawed
evaluation protocols that (i) rely on data (i.e.,
MSCOCO) that has been extensively used in
LVLM training and (ii) measure hallucination
via question answering rather than open-ended
caption generation. In this work, in contrast,
we offer the first systematic analysis of the ef-
fect of fine-grained object grounding on LVLM
hallucination under an evaluation protocol that
more realistically captures LVLM hallucination
in open generation. Our extensive experiments
over three backbone LLMs reveal that ground-
ing objectives have little to no effect on object
hallucination in open caption generation.

1 Introduction

Large Vision-Language Models (LVLMs) have re-
cently displayed impressive image understanding
abilities (Li et al., 2023a; Liu et al., 2023c; Bai
et al., 2023; Fini et al., 2023; OpenAI, 2023; Anil
et al., 2023, inter alia). Their widespread adop-
tion, however, is hindered by object hallucination
in which the LVLMs—similar to “general” hallu-
cination of LLMs (Zhang et al., 2023b)—“invent”
objects (or attributes of or relations between ob-
jects) not present in the image.

A range of methods have recently been proposed
to address LVLM hallucination such as modified

decoding strategies (Leng et al., 2023; Huang et al.,
2023), post-hoc removal of hallucinated content
(Yin et al., 2023; Zhou et al., 2023), or reinforce-
ment learning (Sun et al., 2023; Zhao et al., 2023b;
Gunjal et al., 2023; Yu et al., 2023). Most of these
approaches, however, either increase inference cost
or need expensive additional training and/or data,
impeding their ubiquitous applicability.

A recent line of work (Chen et al., 2023b; You
et al., 2023; Pramanick et al., 2023) has suggested
that including grounding objectives—e.g., based
on referring expressions (Kazemzadeh et al., 2014)
where textual descriptions of image regions have to
be grounded to the respective parts of the image—
into the LVLM training reduces object hallucina-
tion. The claim is intuitive: region-level objectives
demand finer-grained image understanding than
the ‘global’ image captioning (de facto the main
training objective of LVLMs), as demonstrated in
visiolinguistic compositionality (Bugliarello et al.,
2023). Such objectives should thus, intuitively, dis-
courage models from generating content they can-
not ground in the image. Intuition aside, the empir-
ical support for the claim that grounding objectives
reduce LVLM hallucination is weak and mainly
limited to question-answering (QA) style of evalu-
ation in which the model is explicitly asked about
existence of objects in an image (Li et al., 2023b);
we argue that this evaluation protocol poorly aligns
with real-world free-form text generation tasks—
primarily open image captioning—for which there
is no empirical evidence yet that object grounding
reduces hallucination.

Contributions. In this work, we perform the first
comprehensive analysis of the effects that ground-
ing objectives have on LVLM object hallucination
in open (i.e., free-form) image captioning, address-
ing the shortcomings of existing hallucination eval-
uation protocols. Concretely, we measure the ef-
fect of adding two popular grounding objectives as
additional objectives to standard image captioning-
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based training of LVLMs: (1) the referring expres-
sions (RE) objective asks the model to generate the
bounding box of the region that corresponds to a
textual description and vice versa; whereas (2) the
grounded captioning (GC) objective demands that
the model generates image descriptions with inter-
leaved (relative coordinates of) bounding boxes for
mentioned objects. We then compare the extent of
hallucination for LVLM variants trained with and
without these grounding objectives. To this end,
we compare the hallucination measures based on
question answering (QA) (Li et al., 2023b) against
free-form metrics for open captioning (Rohrbach
et al., 2018; Jing et al., 2023). Critically, observing
that (1) existing evaluation measures and proto-
cols (Rohrbach et al., 2018; Li et al., 2023b) rely
on MSCOCO (Lin et al., 2014) and (2) MSCOCO
data is part of the training mix for most LVLMs, we
argue that existing measures are likely to underesti-
mate LVLM hallucinate; we thus extend our hallu-
cination evaluation protocol to out-of-distribution
data that LVLMs will not have seen in training.

Findings. Our experiments with three different
LLM backbones show that, under a sound eval-
uation protocol, including grounding objectives—
referring expressions and grounded captioning—to
LVLM training has little to no effect on object
hallucination, both in QA-based evaluation and
open-ended captioning. Enforcing generation of
grounded captions at inference time, on the other
hand, slightly reduces object hallucinations but the
effect is small and comes at the cost of (slight)
reduction in caption detailedness. A qualitative in-
spection of grounded captions also confirms that
forcing model to generate a bounding box for men-
tioned objects most often does not prevent it from
hallucinating content. In sum, we find that ground-
ing objectives fail to meaningfully reduce LVLM
hallucination, calling for novel methodological pro-
posals towards hallucination reduction.

2 Grounding Objectives in LVLMs

Grounding objectives seek to align natural lan-
guage expressions with regions in the image. These
objectives either take image regions as input, in the
form of a bounding box and predict correspond-
ing language expressions or produce such regions
as output. Many recent LVLMs have been trained
with grounding tasks in their training mix alongside
standard tasks like captioning and VQA (Liu et al.,
2023b; Bai et al., 2023; Wang et al., 2023b); other

models have been designed specifically for expres-
sion grounding and trained with grounding objec-
tives only (Chen et al., 2023b; You et al., 2023;
Pramanick et al., 2023; Zhang et al., 2023a; Peng
et al., 2023; Chen et al., 2023a; Zhao et al., 2023a).

Objectives. Our investigation focuses on the two
arguably most popular grounding objectives, com-
monly part of LVLM training: referring expres-
sions (Kazemzadeh et al., 2014) and grounded cap-
tioning (Plummer et al., 2015).

Referring expressions is the standard grounding
objective, included in training of nearly all LVLMs.
Given a natural language description (of a region),
the model has to ground it to the correct image
region. As is common practice, we also use the
inverse task, that is, generation of the natural lan-
guage description for the given image region.

Grounded captioning is the task of generating
an image caption in which the locations of regions
for mentioned objects are interleaved in the caption
(see Figure 2 for examples). In theory, such explicit
grounding is expected to result in closer adherence
to the image content and reduce hallucinations.

Other grounding objectives have been proposed
for LVLMs training, such as question answering
with image regions in the input or output (Zhu et al.,
2016); these, however, are outside the scope of our
study, because we focus on the effects of grounding
on hallucination primarily in free-form captioning.

Encoding regions. Different approaches exist
for representing image regions for the LVLMs.
Most commonly, regions are represented as bound-
ing boxes using either (relative) coordinates in
“plain text” (Liu et al., 2023b; Chen et al.,
2023b; Bai et al., 2023; Wang et al., 2023b)
(e.g., “[0.10, 0.05, 0.64, 1.00]”; the coordinates are
treated as text and tokenized with the tokenizer of
the corresponding LLM) or with learned embed-
dings that correspond to a fixed-size rasterization
of the image (Peng et al., 2023; You et al., 2023;
Pramanick et al., 2023). In this work, we adopt the
former region representation, i.e., relative coordi-
nates as text, as this avoids introducing additional
trainable parameters to the model.

3 Measuring Object Hallucination

LVLM object hallucination is evaluated via two
main protocols: (1) in QA-based evaluation, where
models answer questions about object existence in
the image (Li et al., 2023b) and (2) in open gener-
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A white hound and a cat looking at the camera

"A white hound and a cat looking at the camera""A white hound and a cat looking at the camera"  

CHAIR
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1.There is a hound.        
2.There is a cat.             
3.The hound is white. 

FaithScore

dog
cat
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1. Match to set

1. LLM extracts facts.

2. VQA verifies facts
2. Validate with human annotation

Figure 1: CHAIR and FaithScore are used to measure hallucinations in open caption generation with LVLMs.
CHAIR relies on human object annotation (over a fixed set) to identify objects and check if they are hallucinated.
FaithScore first uses an LLM to convert captions into facts which are then verified by a VQA model.

ation, usually image captioning (Rohrbach et al.,
2018; Wang et al., 2023a; Jing et al., 2023). The lat-
ter is arguably more indicative of models’ tendency
to hallucinate “in the wild” (i.e., in various real-
world applications) but it is also a more difficult
setup for automatic evaluation. In contrast, QA-
based evaluation is straightforward, but an untested
proxy for actual hallucination in generative tasks.

QA-Based Hallucination Evaluation. POPE (Li
et al., 2023b) is the de facto standard benchmark
for QA-based hallucination evaluation. Relying
on images annotated with objects from MSCOCO
(Lin et al., 2014), the benchmark consists of yes/no
questions about object existence (“Is there X in the
image?”). The negative questions—about objects
not in the image—are generated in three differ-
ent ways using: i) objects randomly selected from
the total pool of objects that exist in the dataset
(random); ii) the most frequently annotated ob-
jects in the dataset (popular); iii) objects with high
co-occurrence to the image’s actual objects (ad-
versarial), as co-occurrence statistics are a com-
mon cause of hallucinations (Rohrbach et al., 2018;
Biten et al., 2022; Li et al., 2023b; Zhou et al.,
2023). The performance metric is accuracy, i.e.,
the percentage of correctly answered questions.

Open Hallucination Evaluation. We focus on two
popular meatrics for quantifying hallucination in
open caption generation: CHAIR (Rohrbach et al.,
2018) and FaithScore (Jing et al., 2023), illustrated
in Figure 1). The two metrics identify hallucination
in different ways: by complementing them with one
another, we mitigate the risk of our findings merely
being an artifact of a single (imperfect) evaluation
metric. Both metrics can also indirectly quantify
how informative and descriptive the generated cap-
tions are. As our result will show (§5), there exists
a tradeoff between faithfulness/hallucination and

informativeness of the captions. We thus argue that
the hallucination metrics should be contextualized
with the measures of informativeness: factually cor-
rect but uninformative captions are as undesired as
captions with hallucinated information.

CHAIR detects hallucinated objects using the set
of 80 object classes from MSCOCO (Lin et al.,
2014) with which the images are annotated. Words
from the captions are matched—using exact string
matching—against the class names, augmented
with synonyms. The resulting list of matched ob-
jects is then cross-referenced against the gold list
of annotated objects and all matched but not anno-
tated objects are considered hallucinations. Two
scores are produced over the dataset: (1) CHAIRi

divides the total number of hallucinated objects
across all captions with the total number of de-
tected objects; (2) CHAIRs is the proportion of
images in the dataset for which the caption con-
tains at least one object hallucination. CHAIRs

is less than ideal for longer captions as they are
more likely to contain at least one hallucination;
such a binary caption-level measure would hide
potentially substantial differences in hallucination
rates between models. Because of this, we adopt
only CHAIRi in this work. Following Zhai et al.
(2023a), we additionally report the average num-
ber of matched objects per caption as well as the
gold object coverage (i.e., the average percentage
of annotated objects mentioned in the caption) as
measures of caption informativeness.

CHAIR unfortunately comes with two major
shortcomings. First, it is based on MSCOCO im-
ages and object annotations which are widely used
in a range of derivative datasets leveraged for train-
ing LVLMs (Goyal et al., 2017; Kazemzadeh et al.,
2014; Mao et al., 2016; Liu et al., 2023c). This
makes LVLMs a priori less likely to hallucinate
on MSCOCO images, which means that CHAIR
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is likely overly optimistic about (i.e., it underesti-
mates) the amount of LVLM hallucination “in the
wild”. We thus propose to extend CHAIR to an
out-of-distribution dataset, one that ideally also
comes with a larger set of object classes. Sec-
ond, CHAIR relies on exact string matching be-
tween caption words and synonym sets of the ob-
ject classes. Adapting vanilla CHAIR based on
string matching to a larger set of object classes
would, however, require significant manual effort,
as one would have to (1) create a curated list of syn-
onyms for all new classes (without overlap between
related classes) to correctly account for recall and
(2) inspect examples and create special rules for
edge cases to limit false positives (e.g., add ‘baby
X’ synonyms to all animal classes ‘X’ in order not
to falsely match the ’person’ class). Addressing
both issues simultaneously, we propose semantic
matching between the caption and object classes as
an alternative to string matching for large sets of ob-
ject classes. Our extension, dubbed CHAIR-MEN
(from CHAIR with Matching using Embeddings
of Noun phrases) (1) extracts all noun phrases from
the generation,1 (2) embeds the extracted phrases
as well as classes names with a pretrained sentence
encoder (Reimers and Gurevych, 2019)2 and (3)
makes matching decisions based on cosine simi-
larity between obtained embeddings: to each noun
phrase, we assign (i) the class amongst the image’s
objects with the most similar embedding, if cosine
exceeds a threshold t1, (ii) the class amongst the
other objects (i.e., not present in the image) with the
most similar embedding, if cosine exceeds a thresh-
old t2, or otherwise (iii) no object class. Matching
first only against the image’s objects makes false
negatives from a semantically related object not
in the image less likely. We calibrate the thresh-
olds (t1 = 0.73, t2 = 0.78) by trying to match the
scores that vanilla CHAIR produces on MSCOCO,
as an established measure for that dataset.
FaithScore (Jing et al., 2023), a model-based hal-
lucination metric, is designed with finer-grained
evaluation in mind: it does not only consider ob-
jects/entities but also other aspects that models
can hallucinate about (specifically: color, relation,
count, and ‘other’ attributes), without the need for
human annotation. FaithScore computation is a 2-
stage process that relies: (1) on an LLM to extract
‘atomic facts’ from the generated text, phrasing

1With spaCy v3 EN_CORE_WEB_SM
2BAAI/BGE-BASE-EN-V1.5 (Xiao et al., 2023)

them as statements (e.g., “There is a man”) the
factuality of which, in the context of the image, is
then (2) verified with a VQA model (question: “Is
the following statement correct?”). The final score
is then simply the proportion of positive answers
given by the VQA model. We additionally report
the average number of facts produced by the LLM
as a measure of informativeness of generated cap-
tions. The original work of Jing et al. (2023) relies
on GPT-4 to extract facts but this is too expensive
for our evaluation; instead, we use a smaller LLM3

after verifying that it successfully follows task in-
structions. We use OFA (Wang et al., 2022) as the
VQA model for FaithScore, as it is much faster and
only marginally less accurate than Llava-1.5 (Liu
et al., 2023b) according to Jing et al. (2023).

Caption Quality Metrics. Next to the hallucina-
tion measures, we add the following two standard
metrics to monitor how grounding objectives af-
fect the general caption quality: CIDEr (Vedan-
tam et al., 2015) is a measure based on n-gram
overlap with a set of reference captions. CLIP-
Score, a reference-free metric, is the cosine simi-
larity between the image and caption embeddings,
produced by a CLIP model (Radford et al., 2021a).4

4 Experimental Setup

We comprehensively analyze the effect of ground-
ing objectives on LVLM hallucination. For the sake
of transferability and robustness of our findings, our
experimental core, namely the model architecture
and training procedure, follows established prac-
tices as closely as possible. All model instances
are trained according to the same protocol, that is,
we control for everything other than the effect of
grounding, i.e., inclusion/exclusion of grounding
data during training. We primarily focus on measur-
ing hallucination in open-ended image captioning
as this, we argue, better reflects LVLM’s hallucina-
tion in real-world applications; for completeness
and comparison of evaluation protocols, we also
perform the QA-based evaluation with POPE. We
benchmark LVLMs for hallucinations in two differ-
ent caption generation scenarios: (1) in standard
image captioning, with expected caption length of
1-2 sentences (as in MSCOCO), and (2) grounded
image captioning (with standard length), where the
LVLM is explicitly prompted to interleave region

3Llama3-8B-Instruct (AI@Meta, 2024); inference done
with vLLM (Kwon et al., 2023) for speed

4We use VIT-B-16-SIGLIP-256 (Zhai et al., 2023b)
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coordinates into the caption. In the Appendix B,
we also provide results for long (i.e., detailed, de-
scriptive) caption generation.

Evaluation Datasets. Despite the previously
mentioned shortcomings, MSCOCO (Lin et al.,
2014) remains the primary dataset for evaluating
LVLM hallucination in the literature, both with QA-
based and free-form generation metrics/protocols
(Rohrbach et al., 2018; Li et al., 2023b). We
thus include MSCOCO but complement it with
the Objects365 (O365) (Shao et al., 2019) dataset
which comes with a much larger inventory of ob-
ject classes (365 classes in total, including the 80
MSCOCO classes) and, consequently, more object
annotations per image. We evaluate on 5000 and
5386 images from test portion of MSCOCO and
validation portion of O365, respectively.5 For the
POPE evaluation, we generate two new test sets
from O365, each with 1500 examples (matching
MSCOCO POPE): O365/COCO uses only the 80
classes from MSCOCO, and O365/non-COCO
utilizes the remaining 285 classes.

LVLM Architecture. We adopt the typical LVLM
architecture: (1) images are encoded by an image
encoder, (2) projected by an alignment module into
the LLM embedding space, and (3) prepended to
the embeddings of textual tokens (Liu et al., 2023b).
For the alignment module, we adopt as default the
projection by Chu et al. (2024), which uses a 2-
layer MLP followed by a pooling layer. We also
experiment with a resampler (Li et al., 2023a; Bai
et al., 2023; Alayrac et al., 2022), which learns to
encode the visual information from the image in a
set of trainable query embeddings; specifically, we
use a 3-layer perceiver-resampler (Alayrac et al.,
2022) with 32 query tokens. We leverage the Ope-
nAI CLIP ViT-L/14-224 (Radford et al., 2021b)
as the image encoder. We experiment with three
different LLM backbones: Vicuna 1.5 7B (Chi-
ang et al., 2023), Llama-3 8B (instruct) (AI@Meta,
2024), and Phi-3-mini (Abdin et al., 2024). The
LLM parameters are frozen and 4-bit quantized
(Dettmers et al., 2023); instead of direct LLM up-
dates, we learn the LoRA adapters (Hu et al., 2022)
for all parameter matrices of the LLM.

5We have additionally considered Open Images
(Kuznetsova et al., 2020), Visual Genome (VG) (Krishna
et al., 2017), and LVIS (Gupta et al., 2019) as datasets with
gold object annotations but ultimately decided against their
inclusion due to insufficient object coverage in annotations
(i.e., not all objects are annotated in every image).

Pre-Training. We pre-train the alignment module—
and only the alignment module (all other parameter
frozen)—on image-caption data. For this, we use
the 560k examples from Liu et al. (2023b).

Training Mix. LVLMs are generally instruction-
trained on a mix of tasks and datasets. The mix we
adopt reflects the main goal of our study: to iso-
late the effect of grounding objectives on LVLMs
hallucination. We thus include the following tasks:
1. Standard image captioning: we train on the
MSCOCO captions (400k examples);
2. Long captioning: we use LLAVA-DETAILED

(Liu et al., 2023c) with 23k long captions gener-
ated by GPT-4 on the basis of (short) MSCOCO
reference captions and gold object annotations;
3. VQA: we select from VQAv2 (Goyal et al., 2017)
all 170k yes/no questions. VQA is only added to
the training mix for the sake of QA-based halluci-
nation evaluation with POPE;6

4. Referring expressions (see §2): we combine
RefCOCO (Kazemzadeh et al., 2014; Mao et al.,
2016) (320k examples) and Visual Genome (Kr-
ishna et al., 2017) (we sample 320k examples);
5. Grounded captioning (see §2): we use Flickr30k-
Entities (Plummer et al., 2015) (150k examples).

We name our LVLM model variants based on
their respective training mix. The Base LVLM has
been trained only on non-grounding tasks (1-3); ad-
dition of the referring expressions and grounded
captioning tasks is indicated with +RE and +GC, re-
spectively. For brevity, we provide further training
and inference details in the Appendix A. By de-
fault, we use the pooled MLP projection from Chu
et al. (2024) for all models. Additionally, we train a
Vicuna-based model with the perceiver-resampler,
which we denote with (Perc).

5 Results

We now report the observed hallucination effects
under both protocols: in free-form captioning
and in QA-based hallucination evaluation (as indi-
cated by the POPE metric/protocol). The reported
CHAIR results correspond to our CHAIR-MEN
variant; we report the results obtained with the
vanilla CHAIR based on string matching in Ap-
pendix C. We did not separately optimize hyperpa-
rameters for each LLM and will thus refrain from
their mutual performance comparison; instead, for

6Without VQA in the training mix, the LVLMs do not
follow the POPE task instruction.
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MSCOCO O365/COCO O365/non-COCO
Model rand. pop. adv. rand. pop. adv. rand. pop. adv.
Llama-3 Base 86.87 81.73 75.83 83.13 70.47 65.63 78.53 66.13 58.20
Llama-3 +GC 86.83 82.43 78.90 81.87 71.60 68.50 77.57 67.70 60.37
Llama-3 +RE 84.10 81.87 79.93 76.07 73.10 71.73 70.53 67.07 64.57
Llama-3 +RE+GC 84.70 83.77 79.93 75.47 71.00 69.73 67.63 64.50 61.27

Phi-3 Base 87.17 85.30 81.87 81.57 77.57 73.73 79.10 74.77 66.40
Phi-3 +GC 85.30 83.73 81.80 78.93 75.53 73.47 72.43 69.50 65.80
Phi-3 +RE 86.43 85.50 83.50 78.93 76.20 74.10 75.17 72.40 68.83
Phi-3 +RE+GC 87.57 85.43 81.77 84.63 78.27 74.00 77.03 74.30 68.30

Vicuna Base 87.23 84.03 81.40 81.10 74.17 70.80 78.80 74.53 64.10
Vicuna +GC 85.73 83.93 81.43 83.17 76.20 73.17 73.57 69.27 65.73
Vicuna +RE 85.30 84.07 81.90 79.83 76.40 74.67 76.00 71.43 65.83
Vicuna +RE+GC 88.27 86.10 82.37 84.37 75.77 73.13 77.93 72.53 65.80
Vicuna (Perc) Base 85.90 82.73 78.00 79.37 69.40 65.10 76.60 67.27 57.80
Vicuna (Perc) +GC 83.93 82.23 78.33 76.37 69.77 64.97 73.20 66.47 59.20
Vicuna (Perc) +RE 83.63 82.60 78.37 76.40 73.13 70.03 69.13 68.03 62.33
Vicuna (Perc) +RE+GC 84.97 80.27 76.03 78.20 71.30 67.90 71.87 65.90 60.27

Table 1: POPE results (accuracy) for MSCOCO, O365/COCO (using the 80 MSCOCO object classes), and
O365/non-COCO (remaining 285 classes) for random, popular, and adversarial example sets.

Model R+ Rg R
Llama-3 +RE 60.02 53.69 65.41
Llama-3 +RE+GC 64.62 60.51 71.50
Phi-3 +RE 63.33 61.06 67.09
Phi-3 +RE+GC 68.23 65.50 73.33
Vicuna +RE 58.03 58.78 61.89
Vicuna +RE+GC 68.25 65.30 73.66
Vicuna (Perc) +RE 23.00 22.21 30.60
Vicuna (Perc) +RE+GC 35.68 34.32 42.20

Table 2: Precision@50 for expression grounding (pro-
vide the bounding box for a region) for the test split of
RefCOCO (R), RefCOCO+ (R+), and RefCOCOg (Rg).

each of the three LLMs, we analyze how inclusion
of grounding objectives affects their hallucination.

Referring Expressions. Before we test the effects
of grounding on free-form and QA-based halluci-
nation, we first analyze if the two grounding objec-
tives are mutually compatible. Concretely, we test
how the models trained with grounding objectives
(+RE, and +RE+GC) perform on one of the ground-
ing tasks itself. In other words, we test if and how
well models explicitly trained with grounding ob-
jectives learn to ground expressions and whether
the two grounding objectives are mutually benefi-
cial. The results for expression grounding (one of
the two RE tasks: given the description, provide the
bounding box) are shown in Table 2. The metric is
precision@50, that is, the proportion of examples
where the intersection between the predicted and
gold bounding box contains at least 50% of their
union. The results indicate that adding grounded
captioning (+GC) consistently and substantially im-
proves the performance for all three LLMs: this

strongly suggests that the two grounding objectives
are mutually compatible. Vicuna-based model with
the perceiver-resampler (Perc) aligner consider-
ably underperforms the (default) MLP aligner; we
suspect that this is because the (pre-)training data
was insufficient for it to learn to properly encode
positional information.

QA Hallucinations with POPE. Table 1 sum-
marizes the hallucination results according to the
QA-based evaluation protocol with POPE. Overall,
both grounding objectives, referring expressions
(+RE) and grounding captions (+GC) fail to con-
sistently and non-negligibly improve performance,
i.e., reduce hallucination. While their combination
+RE+GC greatly improves grounding capabilities
over +RE alone for all LLMs (Table 2), the same is
not true for QA-based hallucination reduction (i.e.,
POPE), pointing to the lack of causal link between
object grounding and hallucination reduction.

Standard Captions. Table 3 displays the perfor-
mance of our LVLM variants on standard image
captioning. We observe consistently, for all tested
models on both evaluation datasets, that grounding
objectives (i.e., their inclusion or exclusion) have
little to no effect on performance: all models learn
to generate proper captions in the MSCOCO style,
with 10 words on average and of similar general
quality, as captured by the caption quality met-
rics (CIDEr, CLIPScore). The metrics that capture
caption detailness (coverage, number of objects &
atomic facts) also show little difference between
the models. Most importantly, the same is true
for hallucination metrics CHAIRi and FaithScore,
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Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO

Llama-3 Base 112.31 11.71 10.22 3.84 56.43 1.61 91.25 4.49
Llama-3 +GC 110.40 11.33 10.68 3.61 54.34 1.56 90.74 4.50
Llama-3 +RE 109.01 11.36 10.52 3.78 55.74 1.60 90.86 4.64
Llama-3 +RE+GC 107.95 11.72 10.66 3.63 55.46 1.61 90.64 4.69

Phi-3 Base 112.54 11.97 11.41 3.28 57.54 1.68 90.98 4.88
Phi-3 +GC 114.78 12.15 11.06 3.83 56.55 1.66 90.90 4.79
Phi-3 +RE 113.22 12.07 11.14 3.43 57.18 1.68 91.06 4.87
Phi-3 +RE+GC 113.68 11.90 11.06 3.68 56.21 1.64 91.28 4.66

Vicuna Base 115.57 11.93 10.31 3.68 54.14 1.56 91.95 4.61
Vicuna +GC 117.35 11.80 9.82 3.08 53.98 1.50 92.05 4.37
Vicuna +RE 112.06 11.76 9.92 3.41 54.21 1.55 92.19 4.53
Vicuna +RE+GC 113.30 11.77 9.79 3.64 52.69 1.50 91.98 4.27

Vicuna (Perc) Base 107.74 11.27 10.05 4.73 53.71 1.55 90.56 4.46
Vicuna (Perc) +GC 110.61 11.50 9.86 4.16 54.11 1.53 90.53 4.35
Vicuna (Perc) +RE 107.38 11.31 9.96 4.54 54.21 1.57 90.66 4.51
Vicuna (Perc) +RE+GC 109.64 11.25 10.11 5.15 54.20 1.57 90.39 4.56

Objects365

Llama-3 Base — 10.99 10.15 14.51 27.67 1.94 88.68 4.56
Llama-3 +GC — 10.84 10.72 13.33 26.72 1.84 88.88 4.52
Llama-3 +RE — 10.67 10.50 12.74 26.73 1.86 88.57 4.66
Llama-3 +RE+GC — 10.98 10.74 12.48 28.16 1.96 87.97 4.86

Phi-3 Base — 11.27 11.36 12.99 29.23 2.03 88.33 4.77
Phi-3 +GC — 11.60 11.08 13.17 28.73 1.96 88.90 4.70
Phi-3 +RE — 11.41 11.22 13.30 28.20 1.97 89.06 4.88
Phi-3 +RE+GC — 11.31 11.18 12.27 28.78 1.97 88.93 4.64

Vicuna Base — 11.06 10.28 12.44 27.38 1.88 88.81 4.55
Vicuna +GC — 11.12 9.78 12.62 26.23 1.76 89.82 4.24
Vicuna +RE — 10.93 10.17 12.85 26.96 1.84 89.33 4.58
Vicuna +RE+GC — 11.07 9.83 12.60 26.25 1.79 90.20 4.24

Vicuna (Perc.) Base — 10.14 10.12 15.82 25.82 1.87 86.18 4.36
Vicuna (Perc) +GC — 10.52 9.81 14.42 25.50 1.74 87.65 4.19
Vicuna (Perc) +RE — 10.24 10.26 15.81 25.98 1.88 86.07 4.55
Vicuna (Perc) +RE+GC — 10.30 10.23 16.68 25.92 1.84 86.50 4.48

Table 3: Results on standard image captioning. CIDEr and CLIPScore indicate general caption quality; CHAIRi

and FaithScore reflect hallucination, whereas (average number of) #Words, CHAIR Coverage and Objects, and
(number of FaithScore) Facts aim to quantify informativeness.

confirming that there is no positive transfer from
grounding to hallucination reduction.

Grounded Captions. Previous results establish
that training on grounding objectives does not re-
duce hallucination in open caption generation. We
next test whether forcing the model to generate
grounded captions at inference can reduce halluci-
nation. Intuitively, prompting the model to produce
grounded captions should encourage it to generate
only objects contained in the image. The results
in Table 4 show that generating grounded captions
indeed results in some hallucination reduction, but
the effect is rather small. Reduction is more promi-
nent on Objects365 where the baseline hallucina-
tion rate is higher than on MSCOCO. On the flip
side, generating grounded captions at inference
slightly reduces their informativeness too (i.e., we
observe fewer objects and atomic facts in the gen-
erated captions). A closer qualitative inspection
(see §6) reveals that LVLMs trained with ground-
ing objectives still incorrectly describe objects or
fabricate them entirely.

6 Qualitative Grounded Caption Analysis

We show examples for grounded captioning in Fig-
ure 2. The grounding itself does not necessarily
prevent the model from hallucinating: in the first

Standard: A painting of a woman
with a vase and oranges.
Grounded: An artistic painting of
a woman with a vase .

Standard: Two elephants are in a
field near water.
Grounded: Two elephants are in
a field with water.

Standard: A small bird is stand-
ing in a pot of food.
Grounded: A black bird is eating
a peeled apple out of a pot .

Figure 2: Qualitative examples of Vicuna +RE+GC
for standard and grounded captioning. Hallucinations
are underlined in red. Predicted bounding boxes are
visualized in the image and marked in the caption.

example, the model fully hallucinates a woman
along with a bounding box for her. In the second
example, the second ‘elephant’ bounding box is
positionally correct in that it points to an animal,
but that animal is a rhino. In the third example, sim-
ilarly, the bounding box correctly contains an apple
but the attribute ‘peeled’ is hallucinated. These
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Model CIDEr↑ CLIPS.↑ #Words CHAIRi ↓ Coverage↑ Objects FaithScore↑ Facts

MSCOCO

Llama-3 +GC -8.52 0.28 -0.48 0.17 -5.63 -0.21 1.12 -0.18
Llama-3 +RE+GC -7.92 -0.20 -0.44 -0.39 -5.44 -0.25 0.88 -0.28

Phi-3 +GC -6.23 -0.25 -0.34 -0.14 -6.33 -0.28 0.63 -0.41
Phi-3 +RE+GC -8.12 -0.17 -0.24 0.44 -7.36 -0.28 1.08 -0.29

Vicuna +GC -9.32 -0.03 0.46 0.51 -6.64 -0.19 0.72 -0.09
Vicuna +RE+GC -8.22 0.09 0.91 0.03 -4.80 -0.19 0.48 0.11

Vicuna (Perc.) +GC -7.78 -0.22 0.12 0.06 -6.87 -0.22 0.61 -0.18
Vicuna (Perc.) +RE+GC -13.69 -0.16 0.23 -1.08 -8.13 -0.32 0.87 -0.19

Objects365

Llama-3 +GC — -0.02 -0.50 -1.07 -3.06 -0.25 0.46 -0.18
Llama-3 +RE+GC — -0.34 -0.31 -0.01 -3.67 -0.32 1.09 -0.30

Phi-3 +GC — -0.39 -0.03 -1.91 -2.89 -0.26 0.87 -0.22
Phi-3 +RE+GC — -0.28 -0.05 -0.48 -3.12 -0.28 0.74 -0.09

Vicuna +GC — 0.04 0.44 -1.38 -2.03 -0.17 0.21 0.09
Vicuna +RE+GC — -0.06 0.86 -1.06 -3.35 -0.27 -0.25 0.26

Vicuna (Perc.) +GC — -0.00 0.25 -0.77 -2.61 -0.21 -0.14 0.03
Vicuna (Perc.) +RE+GC — -0.12 0.30 -2.37 -3.40 -0.37 1.59 -0.06

Table 4: Absolute performance difference of grounded image captioning w.r.t. standard captioning (Table 3).

examples point to causes of hallucination that go
beyond insufficient or incorrect grounding and help
explain why grounding objectives do not really re-
duce the LVLM hallucination in open captioning.

7 Related Work

Large Vision-Language Models. LVLMs are es-
sentially Large Language Models (LLMs) (Brown
et al., 2020; Touvron et al., 2023; OpenAI, 2023;
Jiang et al., 2023) extended to “understand” visual
input. Recent models have shown an impressive un-
derstanding of images (OpenAI, 2023; Anil et al.,
2023; Li et al., 2023a; Dai et al., 2023a; Liu et al.,
2023c; Bai et al., 2023; Fini et al., 2023; Zhu et al.,
2023; Laurençon et al., 2023; Geigle et al., 2023;
Wang et al., 2023b) and a range of models have
been proposed specifically for grounding and refer-
ring (Chen et al., 2023b; You et al., 2023; Praman-
ick et al., 2023; Zhang et al., 2023a; Peng et al.,
2023; Chen et al., 2023a; Zhao et al., 2023a).

Measuring Object Hallucinations. A range of
hallucination metrics have been proposed: CHAIR
(Rohrbach et al., 2018) identifies hallucinated ob-
jects by checking captions (via string matching)
against a set of annotated objects (i.e., MSCOCO).
Wang et al. (2023a) fine-tune an LLM to identify
hallucinatory captions through comparison with
reference captions; FaithScore (Jing et al., 2023),
a reference-free approach, uses an LLM to extract
verifiable facts and then tests these facts with a
VQA model. POPE (Li et al., 2023b) indirectly
measures hallucination with questions about object
existence: while a good test of image understand-
ing , which may indicate the extent of models’ ten-
dency to hallucinate, it is not a direct measure of
hallucination in open-ended captioning.

Hallucination Mitigation. A range of ap-
proaches have been proposed to mitigate hallu-
cination: Biten et al. (2022); Dai et al. (2023b);
Zhai et al. (2023a) propose adaptions to the train-
ing data and objectives. Liu et al. (2023a); Gunjal
et al. (2023); Zhao et al. (2023b); Yu et al. (2023)
use reinforcement-learning methods to reduce hal-
lucinations in model output. Leng et al. (2023);
Huang et al. (2023) propose (training-free) decod-
ing methods that mitigate hallucinations. Zhou et al.
(2023); Yin et al. (2023) create pipeline approaches
that post-hoc clean the generated text from hallu-
cinated content. Finally, for QA hallucinations, re-
searchers have created robust instruction data (Liu
et al., 2023a), VQA examples (Hu et al., 2023), and
additional benchmarks (Lu et al., 2023).

8 Conclusion

Object hallucination remains one of the main obsta-
cles to wide-range adoption of LVLMs. Prior work
suggested that grounding objectives like referring
expressions reduce hallucination but the empirical
support for this claim is confined to QA-based eval-
uation. In this work, we carried out an in-depth
analysis of the effects that grounding objectives in
LVLM training have on their hallucination in open
image captioning. Our extensive experiments with
three backbone LLMs show that there is no causal
link between improved object grounding (via ob-
jectives like referring expressions) and hallucina-
tion reduction: this observation is true both under
QA-based and open captioning hallucination evalu-
ation protocols. Finally, we observe that explicitly
prompting LVLMs to generate grounded captions
at inference can slightly reduce hallucination but at
the expense of reduced caption informativeness.
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9 Limitations

There are two main limitations to our analysis.
First, while we aim for a comprehensive analy-
sis of the effects of different training objectives
and task mixes on downstream hallucination, there
are a number of modeling decisions that we had
to fix (i.e., we could not explore other variants)—
primarily w.r.t. to the architecture of the LVLM—
due to a limited computational budget. One could,
inter alia, consider a different image encoder, addi-
tional or larger LLMs, and/or alignment modules
other than the MLP or perceiver-resampler. Addi-
tionally, due to our limited computational budget,
we train our models on less data and for fewer
steps than a lot of other work that trains LVLMs
(e.g. Chen et al. (2023b); Liu et al. (2023b); Bai
et al. (2023)); we thus cannot rule out that a reduc-
tion in hallucination due to grounding objectives
might emerge at some larger scale of grounding
training.

Second, our findings are (modulo anecdotal ev-
idence from manual qualitative analysis of a lim-
ited number of examples) based on reliance on
imperfect automatic metrics. While this is a com-
mon practice in related work as well, we increase
the likelihood of the robustness of our findings
and conclusions by employing two mutually com-
plementing hallucination quantification metrics,
CHAIR and FaithScore (see §3), as well as addi-
tionally proposing a semantic extension to CHAIR
(CHAIR-MEN, see §3).
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Task Prompt

Standard Caption Briefly describe the image.
Long Caption Describe the image in detail.
Grounded Caption Describe the image and include

the bounding box coordinates for
every mentioned object.

VQA (POPE) QUESTION Answer with yes or
no.

Referring Expression Give the bounding box coordi-
nates for the region described as
"DESCRIPTION".

Referring Generation Briefly describe the region [x1,
y1, x2, y2].

Table 5: Prompts used for training and inference.

A Training and Details

All models were trained on a single NVIDIA
RTX3090s card, with training duration ranging be-
tween 2-4 GPU days, depending on the training
task mix. We train for one epoch (on the concatena-
tion of corpora from all tasks, as all tasks are—from
the low-level technical point of view—instances
of causal language modeling, i.e., next token pre-
diction) with AdamW optimizer (Loshchilov and
Hutter, 2019) and a cosine schedule. For LoRA,
we set r = 64, α = 128. During pre-training,
where only the parameters of the alignment mod-
ule are updated, we use batch size 32, learning rate
0.001, and weight decay 0. For training on the task
mix, we use learning rate 2e-4, weight decay 0,
and batch size 16/32/64 for Vicuna/Phi-3/Llama-3
(achieved with gradient accumulation).

For generation (i.e., inference), we use greedy
decoding with a repetition penalty (Keskar et al.,
2019) of 1.15 to avoid degenerative repetitions in
long caption generation. We use one fixed prompt
per task (see Table 5) both in training and at infer-
ence (for the subset of tasks on which we evaluate).

We encode bounding boxes with 2 signif-
icant digits (, e.g., [0.10, 0.05, 0.64, 1.00]).
For grounded captions where multiple bound-
ing boxes are needed (e.g., for something
like “three zebras”), we follow Plummer
et al. (2015) and combine the coordinates
with semicolons in the same brackets (, e.g.,
[0.10, 0.05, 0.64, 1.00; 0.50, 0.15, 0.64, 1.00]). If
we would have more than three boxes in brackets,
we instead create a single bounding box covering
all boxes to limit the final sequence length.

Model #Words CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 94.46 30.78 44.45 7.44
Llama-3 +GC 100.61 31.74 44.80 8.08
Llama-3 +RE 100.39 29.08 43.66 7.57
Llama-3 +RE+GC 103.75 26.42 43.86 7.66

Phi-3 Base 99.17 27.18 46.16 7.00
Phi-3 +GC 94.33 25.69 45.45 6.97
Phi-3 +RE 97.09 27.75 45.20 6.85
Phi-3 +RE+GC 96.55 27.74 45.69 7.12

Vicuna Base 93.91 26.10 45.12 7.18
Vicuna +GC 89.69 25.61 44.42 7.25
Vicuna +RE 96.45 28.76 43.20 6.94
Vicuna +RE+GC 90.18 26.06 44.10 7.28

Vicuna (Perc.) Base 93.98 31.52 41.18 7.02
Vicuna (Perc.) +GC 92.64 31.28 40.67 7.24
Vicuna (Perc.) +RE 96.39 32.79 40.15 7.08
Vicuna (Perc.) +RE+GC 96.14 35.10 41.32 7.94

Table 6: Results for long captions on Objects365. We
report the average number of words and CHAIR metrics.
Results with FaithScore and on MSCOCO are qualita-
tively the same so we omit them for brevity.

B Long Captions

Table 6 shows long captioning results. For brevity,
we only report the results for Objects365 with
CHAIR(-MEN): for MSCOCO and FaithScore the
results are qualitatively the same. Overall, the dif-
ferences between model variants are negligible sim-
ilar to the standard captions. The grounding objec-
tives (+RE and +GC) thus does not seem to affect
long captions. This again questions the extent to
which improved fine-grained image understanding
from grounding actually transfers to hallucination
reduction in open generation.

C CHAIR and CHAIR-MEN

We report results based on our CHAIR-MEN ap-
proach in the main paper. In the following, we
compare them against vanilla CHAIR results based
on the string matching method. In Table 7, we re-
port string-matching CHAIR results for MSCOCO,
which can be compared to Table 3 (standard cap-
tions), Table 4 (grounded captions), and Table 6
(long captions).

We find that results with CHAIR-MEN are
highly proportional to CHAIR. This validates
CHAIR-MEN as an alternative approach for identi-
fying hallucinated objects and opens up the exten-
sion to other datasets like Objects365.
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Model CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 4.36 58.84 1.62
Llama-3 +GC 4.12 57.30 1.57
Llama-3 +RE 4.36 58.06 1.61
Llama-3 +RE+GC 5.30 59.41 1.68
Phi-3 Base 4.26 60.39 1.70
Phi-3 +GC 4.39 59.79 1.67
Phi-3 +RE 4.41 59.73 1.69
Phi-3 +RE+GC 4.44 59.21 1.67
Vicuna Base 4.45 58.62 1.62
Vicuna +GC 3.46 57.74 1.55
Vicuna +RE 4.14 57.78 1.59
Vicuna +RE+GC 3.92 56.80 1.55
Vicuna (Perc.) Base 5.66 57.50 1.60
Vicuna (Perc.) +GC 4.87 57.10 1.55
Vicuna (Perc.) +RE 5.38 57.57 1.60
Vicuna (Perc.) +RE+GC 6.08 58.33 1.62

(a) MSCOCO Standard Captions
Model CHAIRi ↓ Coverage↑ Objects

Llama-3 +GC 4.32 53.21 1.41
Llama-3 +RE+GC 5.21 54.71 1.48
Phi-3 +GC 4.03 54.61 1.44
Phi-3 +RE+GC 3.49 54.28 1.43
Vicuna +GC 3.98 52.66 1.38
Vicuna +RE+GC 3.33 53.54 1.41
Vicuna (Perc.) +GC 4.78 52.29 1.38
Vicuna (Perc.) +RE+GC 6.65 52.37 1.41

(b) MSCOCO Grounded Captions
Model CHAIRi ↓ Coverage↑ Objects

Llama-3 Base 23.45 80.62 7.10
Llama-3 +GC 24.54 80.02 7.62
Llama-3 +RE 23.22 79.37 7.55
Llama-3 +RE+GC 20.63 79.23 7.20
Phi-3 Base 20.92 81.05 6.28
Phi-3 +GC 18.10 78.89 6.13
Phi-3 +RE 21.01 79.32 5.82
Phi-3 +RE+GC 22.16 79.82 6.31
Vicuna Base 17.54 80.17 6.51
Vicuna +GC 17.70 78.76 6.33
Vicuna +RE 18.27 79.59 6.16
Vicuna +RE+GC 18.20 78.68 6.49
Vicuna (Perc.) Base 23.35 77.82 6.71
Vicuna (Perc.) +GC 22.19 77.11 6.76
Vicuna (Perc.) +RE 22.74 77.85 6.67
Vicuna (Perc.) +RE+GC 24.83 78.09 7.31

(c) MSCOCO Long Captions

Table 7: CHAIR results for MSCOCO using the classic
string-matching approach.
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