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Abstract
The growing demand for larger-scale models
in the development of Large Language Models
(LLMs) poses challenges for efficient training
within limited computational resources. Tradi-
tional fine-tuning methods often exhibit insta-
bility in multi-task learning and rely heavily on
extensive training resources. Here, we propose
MoDULA (Mixture of Domain-Specific and
Universal LoRA), a novel Parameter Efficient
Fine-Tuning (PEFT) Mixture-of-Expert (MoE)
paradigm for improved fine-tuning and param-
eter efficiency in multi-task learning. The
paradigm effectively improves the multi-task
capability of the model by training universal
experts, domain-specific experts, and routers
separately. MoDULA-Res is a new method
within the MoDULA paradigm, which main-
tains the model’s general capability by connect-
ing universal and task-specific experts through
residual connections. The experimental results
demonstrate that the overall performance of
the MoDULA-Flan and MoDULA-Res meth-
ods surpasses that of existing fine-tuning meth-
ods on various LLMs. Notably, MoDULA-
Res achieves more significant performance im-
provements in multiple tasks while reducing
training costs by over 80% without losing gen-
eral capability. Moreover, MoDULA displays
flexible pluggability, allowing for the efficient
addition of new tasks without retraining ex-
isting experts from scratch. This progressive
training paradigm circumvents data balanc-
ing issues, enhancing training efficiency and
model stability. Overall, MoDULA provides a
scalable, cost-effective solution for fine-tuning
LLMs with enhanced parameter efficiency and
generalization capability.

1 Introduction

Recent advancements in open-source Large Lan-
guage Models (LLMs), such as LLaMA (Tou-

*Equal Contribution.
†Corresponding Author.

vron et al., 2023a), Qwen (Bai et al., 2023), and
Yi (Young et al., 2024), have achieved notable
successes in natural language processing. How-
ever, the increasing complexity and growing size
of these models make efficient training within
limited computational resources challenging. Re-
searchers tried to address this with Parameter Ef-
ficient Fine-Tuning (PEFT), such as LoRA (Hu
et al., 2021), Prefix Tuning (Liu et al., 2023), and
(IA)3 (Liu et al., 2022). LoRA has gained promi-
nence for its high performance using low-rank
matrices, but it often encounters instability when
trained on large, mixed datasets. To mitigate this
issue, MoLoRA (Zadouri et al., 2024) has been
introduced by extending LoRA and integrating the
Mixture-of-Expert (MoE) architecture as shown in
Figure 1(a). This approach trains multiple LoRA-
adapters concurrently, each serving as an expert,
to enhance the base LLMs’ generalization abil-
ity across diverse tasks. The integration of MoE
into LoRA aims to improve training efficiency and
stability, facilitating more effective fine-tuning of
large-scale language models for a wide range of
natural language processing applications.

Despite its advantages, MoLoRA has some limi-
tations. One limitation is the absence of domain-
specific LoRA adapters, as the same experts are
employed universally across all tasks. This unifor-
mity may limit the performance ceiling, especially
for significantly distinct tasks like math and code,
where the inclusion of domain-specific experts
could potentially enhance performance (Zeng et al.,
2021). Another challenge is the limited pluggabil-
ity of MoLoRA; adding new task capabilities ne-
cessitates retraining all parameters from all experts,
which can be inefficient and time-consuming.

To address the challenges, we propose a three-
stage training paradigm called MoDULA, where
different domain-specific experts can be trained
separately. Moreover, we introduce a more ad-
vanced method MoDULA-Res (Mixture of Domain-
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Figure 1: Illustrations of MoLoRA(a), MoDULA-Flan(b), and MoDULA-Res(c) with router omitted.

Specific and Universal LoRA with Residual Con-
nection), which incorporates a residual structure
to make the training more stable, as seen in Fig-
ure 1(c). Unlike MoLoRA, which employs multiple
identical LoRA adapters as experts, our paradigm
incorporates a universal expert alongside multi-
ple domain-specific experts. The universal expert
learns task-agnostic representations, while each
domain-specific expert operates as a bias adapter,
focusing on domain-specific knowledge. Intu-
itively, arranging these adapters in parallel and
allocating weights to each adapter via a router con-
stitutes the MoDULA-Flan (Mixture of Domain-
Specific and Universal LoRA with Flan Rout-
ing) method as seen in Figure 1(b). However,
this method may potentially compromise universal
capabilities. To address this, MoDULA-Res in-
troduces a refined method that enables domain-
specific experts to receive input from the output of
the universal expert. This design ensures a coher-
ent flow of information and facilitates the optimal
integration of both universal and domain-specific
expert functionalities through a residual connec-
tion. By dynamically adjusting the contributions of
domain-specific experts, MoDULA-Res adapts to
individual tasks while preserving broad generaliza-
tion capabilities. This flexibility allows the model
to leverage its general competencies for task un-
derstanding and summarization when encountering
new tasks, thereby achieving a more balanced and
effective adaptation in multi-task scenarios.

During model training, our MoDULA employs
a three-stage optimization process, with detailed
illustrations displayed in Figure 2: 1) Initially,
only the universal expert is trained to adapt to gen-
eral tasks quickly; 2) Subsequently, each domain-
specific expert is trained individually, focusing on

its corresponding task; 3) Finally, the parameters of
all experts are frozen, and only router is trained to
learn the optimal combination strategy for different
tasks. This progressive training paradigm allows
our methods to avoid retraining from scratch, dis-
tinguishing it from MoLoRA, which trains only a
new expert for a new specific task and retraining the
router. This paradigm significantly reduces compu-
tational costs, mitigates data balancing challenges,
and enhances the model’s pluggability.

To evaluate the effectiveness of our proposed
methods, we conduct extensive experiments on a di-
verse set of open-source LLMs, including LLaMA-
2 (Touvron et al., 2023b), Qwen (Bai et al., 2023),
and Yi (Young et al., 2024), across various tasks.
The results consistently demonstrate that MoD-
ULA exhibits a significant performance, achiev-
ing 4.5% improvements compared to MoLoRA.
By introducing residual connections, MoDULA-
Res achieves even greater improvements without
compromising the general capabilities. Addition-
ally, our approach showcases superior adaptability
to new tasks, outperforming MoLoRA in finance
and e-commerce domain with less training data and
parameters, highlighting the enhanced task plugga-
bility of our approach, making it an efficient and
general solution for multi-task learning in LLMs.

2 Related Works

2.1 Large Language Model

Recently, the field of natural language processing
has witnessed a paradigm shift with the advent
of LLMs (Anil et al., 2023b; Almazrouei et al.,
2023; Xu et al., 2023; Scao et al., 2022; Brown
et al., 2020; Achiam et al., 2023; Zhang et al.,
2023; Du et al., 2022). These state-of-the-art mod-
els have departed from traditional approaches that
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relied on convolutional or recurrent architectures
for feature extraction, instead embracing novel
techniques such as BERT (Devlin et al., 2019),
which leverages the power of Transformers trained
on extensive datasets, yielding bidirectional en-
coder representations. Similarly, Generative Pre-
trained Transformer (GPT) (Brown et al., 2020)
employs decoder layers from Transformer architec-
ture (Vaswani et al., 2017) as feature extractors and
utilizes autoregressive training on vast texts.

Guided by the principles of scaling laws (Kaplan
et al., 2020), the development of LLMs has led to
the emergence of colossal models boasting over
100 billion parameters, with prominent examples
including GPT-4 (Achiam et al., 2023) and Gem-
ini (Anil et al., 2023a). Interestingly, open-source
models such as OPT (Zhang et al., 2022), Fal-
con (Almazrouei et al., 2023), and Gemma (Mes-
nard et al., 2024) have demonstrated competitive
performance compared to their closed-source coun-
terparts, despite possessing a more modest param-
eter count. The training process of LLMs typi-
cally involves leveraging immense amounts of tex-
tual data to enable the prediction of subsequent
tokens, empowering these models to generate co-
herent and comprehensible responses to a wide
range of prompts. This training method has proven
to be highly effective in capturing the intricacies of
language and paved the way for LLMs to achieve
SOTA performance across various NLP tasks.

2.2 MoE for PEFT
Our research closely aligns with the work done by
MoLoRA (Zadouri et al., 2024), LoraHub (Huang
et al., 2023a), MoELoRA (Liu et al., 2024),
SiRA (Zhu et al., 2023), and C-Poly (Wang et al.,
2023), which explore the intersection of PEFT and
MoE. MoLoRA employs a full soft MoE on top
of LoRA, utilizing a learned gating mechanism
to average all experts, and trains the experts in a
single stage. LoraHub investigates LoRA compos-
ability for cross-task generalization and introduces
a simple framework for the purposive assembly
of LoRA modules trained on diverse given tasks,
aiming to achieve adaptable performance on un-
seen tasks. It can fluidly combine multiple LoRA
modules with just a few examples from a new task,
without requiring additional model parameters or
human expertise. MoELoRA devises multiple ex-
perts as the trainable parameters and proposes a
task-motivated gate function for all MOELoRA
layers to regulate the contributions of each expert

and generate distinct parameters for various tasks.
SiRA proposes a sparse mixture of low rank adap-
tion that enforces the top k experts’ routing with
a capacity limit. It uses expert dropout to reduce
over-fitting. C-Poly combines task-common skills
and task-specific skills and jointly learns a skill
assignment matrix.

While these methods have significantly con-
tributed to the field, they face particular chal-
lenges and limitations. Training experts on mixed
datasets as in MoLoRA may lead to performance
degradation due to data inconsistency and interfer-
ence (Dong et al., 2024). LoraHub relies on few-
shot examples in inference stage, and MoELoRA
requires task-id to determine which experts should
be activated, which weaken the flexibility of both
methods. Sparse routing, as used by SiRA, requires
careful tuning of the top-k and capacity hyperpa-
rameters for each dataset. C-Poly’s joint learning
of task-common and task-specific skills can make
balancing general and specialized abilities difficult.
Additionally, incorporating new experts or skills
in these methods may require retraining or modi-
fying existing components, potentially impacting
system stability and training complexity. Train-
ing new experts often demands substantial data,
resulting in high training costs and sub-optimal per-
formance in specific domains. Maintaining optimal
performance on domain-specific benchmarks after
adding new capabilities can be challenging, and
newly added modules may not consistently achieve
top performance in their respective benchmarks.
These factors can affect the adaptability and effi-
ciency of MoLoRA, SiRA, and C-Poly in meeting
expanding task demands.

In contrast, MoDULA method trains universal
and domain-specific experts separately, mitigat-
ing performance degradation from mixed datasets.
Designed with "pluggability" in mind, the MoD-
ULA method allows new experts to be added with-
out changing existing ones, ensuring system sta-
bility and low training costs. After adding a new
expert, only the router requires retraining to main-
tain near-optimal performance. This staged train-
ing balances general and domain-specific capabili-
ties, making our method adaptable and efficient for
growing task requirements.

3 Method

In this section, we present MoDULA for LLM
fine-tuning. Within this paradigm, we propose
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Figure 2: Illustrations of the three-stage training paradigm for MoDULA-Res.

two methods: MoDULA-Flan and MoDULA-
Res. MoDULA-Flan consists of a universal ex-
pert and an array of domain-specific experts, while
MoDULA-Res further incorporates residual connec-
tions between the universal and domain-specific ex-
perts to enhance performance and stability. Figure 1
illustrates the differences between MoLoRA, our
proposed MoDULA-Flan and MoDULA-Res. In
all of these, the base LLMs retain a frozen weight
configuration, denoted as W0, corresponding to the
fixed linear layers within the architecture.

MoLoRA. The MoLoRA method serves as the
foundation of our MoDULA. As shown in Fig-
ure 1(a), the MoLoRA consists of a router θMR and
a set of LoRA experts E1, E2, . . . , En. Each ex-
pert Ei includes two key components: BM

i and
AM

i . The dynamics of the MoLoRA method can
be summarized by the following equations:

sMi = θMR (xm)i = softmax(WM
R xm)i (1)

yM
m = EM (xm) +W0xm (2)

EM (xm) =

n∑

i=1

sMi BM
i AM

i xm (3)

In these equations, xm represents the hidden vec-
tor of the m-th token in the input sequence, sMi
denotes the routing coefficient for expert Ei, WM

R

is the weight matrix of the router, and EM (·) ex-
presses the collective function of the experts in the
MoLoRA module.

MoDULA. Based on MoLoRA, we propose a
three-stage training paradigm called MoDULA, as
illustrated in Figure 2. In the first stage, only
the universal expert is trained, while the domain-
specific experts and router are deactivated. In

the second stage, the domain-specific experts are
trained individually for each corresponding task,
while the parameters of the universal expert are
kept frozen. In the third stage, all the experts’ pa-
rameters are fixed, and only the router is trained.
With the MoDULA paradigm, we propose two
methods: MoDULA-Flan and MoDULA-Res.

MoDULA-Flan. MoDULA-Flan maintains
the same architecture as MoLoRA, as illustrated
in Figure 1(b). However, it implements the
MoDULA paradigm to separate the experts in
MoLoRA into universal expert and domain-specific
experts. The specific training details are as
follows. In the first stage, the universal ex-
pert Eflan

∗ is trained on universal datasets. In
the second stage, the domain-specific experts
Eflan

1 , Eflan
2 , . . . , Eflan

n are trained on their re-
spective domain-specific datasets. The forward
process in this stage is formally articulated through
Equations (4) and (8).

yflan
m = Eflan

i (xm) +W0xm (4)

where i ∈ {1, 2, . . . , n}. In the third stage, the pa-
rameters of all experts are kept frozen, and only the
router θflanR is trained. The calculation involved in
this routing determination is formally illuminated
through the following equations:

sflani = θflanR (xm)
i
= softmax(W flan

R xm)
i

(5)

yflan
m = Eflan(xm) +W0xm (6)

Eflan(xm) =
∑

i

sflani Eflan
i (xm) (7)

Eflan
i (xm) = Bflan

i Aflan
i xm (8)
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Base Model Method Avg. GSM8K Arithmetic MathQA HumanEval MBPP Medical MedQA

Qwen-7B

Not fine-tuned 44.65 46.63 56.65 35.48 21.95 32.00 76.00 43.83
LoRA 25.93 7.21 49.61 26.40 9.15 17.20 42.80 29.14

LoraHub 49.37 44.81 86.33 37.09 22.40 29.60 81.00 44.38
MoLoRA 48.94 48.21 78.49 37.42 23.78 32.78 79.20 42.73

MoDULA-Flan 50.32 48.67 87.06 36.98 23.17 33.60 78.40 44.38
MoDULA-Res 51.36 46.63 90.37 37.98 25.00 33.00 82.00 44.55

LLaMA-2-7B

Not fine-tuned 27.45 13.72 6.89 29.41 14.63 18.00 77.60 31.89
LoRA 15.40 1.29 2.69 22.48 0.00 0.00 53.40 27.97

LoraHub 38.69 22.03 63.47 31.17 13.80 24.00 83.60 32.79
MoLoRA 38.53 23.12 60.87 30.48 15.24 21.40 83.60 35.03

MoDULA-Flan 38.67 20.39 61.40 31.35 15.24 24.40 84.20 33.69
MoDULA-Res 39.62 22.37 70.66 31.73 15.24 22.80 85.20 29.31

Yi-6B

Not fine-tuned 38.04 33.81 39.92 35.41 14.63 23.00 70.00 49.49
LoRA 16.07 2.51 0.88 20.41 0.00 0.00 61.20 27.49

LoraHub 46.77 35.97 82.03 35.50 14.24 24.80 84.60 50.28
MoLoRA 41.49 34.87 46.50 34.50 16.46 23.20 82.80 52.08

MoDULA-Flan 45.09 35.25 73.85 35.88 12.20 23.00 84.80 50.66
MoDULA-Res 48.61 34.50 92.72 36.29 16.46 24.40 85.80 50.12

Qwen-14B

Not fine-tuned 54.55 61.87 69.32 44.42 24.39 43.80 85.60 52.47
LoRA 55.58 56.86 92.58 39.23 26.83 37.60 82.80 53.18

LoraHub 57.47 66.74 88.91 43.91 24.32 38.10 86.20 54.12
MoLoRA 56.79 63.38 83.56 44.48 26.22 41.40 85.80 52.71

MoDULA-Flan 56.95 63.53 83.19 45.25 25.61 42.40 85.60 53.10
MoDULA-Res 58.42 67.78 91.45 45.13 18.90 44.80 88.00 52.87

LLaMA-2-13B

Not fine-tuned 41.71 23.28 80.28 32.53 15.24 27.20 70.60 42.81
LoRA 16.33 1.18 4.28 25.27 0.00 0.00 55.00 28.59

LoraHub 44.01 34.21 72.15 36.17 14.23 26.20 84.20 40.92
MoLoRA 45.62 33.51 74.57 34.21 19.51 30.40 85.80 41.32

MoDULA-Flan 44.70 35.48 67.31 34.53 20.73 28.60 83.80 42.46
MoDULA-Res 47.93 36.47 84.26 35.18 20.73 31.20 86.40 41.24

Yi-9B

Not fine-tuned 56.45 51.33 93.27 39.97 25.61 49.20 82.60 53.18
LoRA 16.23 0.69 0.82 22.95 0.00 0.00 61.40 27.73

LoraHub 58.54 54.13 89.47 42.21 33.13 53.10 85.20 52.56
MoLoRA 56.97 57.99 68.89 41.86 32.32 54.20 86.80 56.72

MoDULA-Flan 60.54 60.04 96.36 41.47 29.88 54.80 86.80 54.43
MoDULA-Res 60.55 59.06 96.86 41.51 34.15 51.20 87.20 53.86

Table 1: Main experimental results of baseline methods, MoDULA-Flan, and MoDULA-Res on domain-specific
benchmarks.

MoDULA-Res. In order to further improve the
general ability of the model, we propose MoDULA-
Res, a more advanced method that leverages the
strengths of both universal and domain-specific ex-
perts. The architecture of MoDULA-Res is shown
in Figure 1(c). MoDULA-Res integrates both the
universal expert Eres

∗ and the domain-specific ex-
perts Eres

1 , Eres
2 , . . . , Eres

n , tuned in a balanced
way to cater to both general and domain-specific
tasks. MoDULA-Res introduces a residual connec-
tion that allows the model to incorporate the output
of universal expert directly into the final result, en-
suring that critical information is preserved and
enhancing model robustness.

The forward process in MoDULA-Res module
involves two stages. Initially, a hidden vector hm
is computed using the universal expert:

hm = Bres
∗ Ares

∗ xm (9)

where xm is the hidden vector for the m-th token,

and Bres
∗ and Ares

∗ correspond to the universal ex-
pert matrices. Subsequently, the hidden vector hm
is refined by the domain-specific experts with resid-
ual connection to produce the final output yresm :

yres
m = Eres(hm) +W0xm + hm (10)

where the function Eres(·) represents the operation
of the domain-specific experts:

Eres(hm) =

n∑

i=1

sresi Bres
i LeakyReLU(Ares

i hm) (11)

sresi is the weight for each expert, computed as:

sresi = θresR (xm)i = softmax(W res
R xm)i (12)

This integration of a three-stage training paradigm
and residual connection ensures that the MoDULA-
Res module effectively generalizes and specializes
simultaneously, thereby enhancing performance
across both broad and focused applications.
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4 Experiments

4.1 Expert Configurations

A detailed comparison is conducted among the stan-
dard LoRA (Hu et al., 2021), MoLoRA (Zadouri
et al., 2024), and our newly proposed MoDULA-
Flan and MoDULA-Res. The base models selected
for this study include LLaMA-2 (Touvron et al.,
2023b), Qwen (Bai et al., 2023), and Yi (Young
et al., 2024). In the training of MoDULA, a batch
size of 128 is utilized, encompassing 1 epoch with
a learning rate of 2e-4. The maximum input se-
quence length is defined as 4096 tokens for both
LLaMA-2 and Yi. In contrast, Qwen series has
8192 tokens due to variations in maximum posi-
tional embeddings among different model zoos.
The intrinsic rank is configured to 16 for universal
and 8 for domain-specific experts. For the multi-
task results, the checkpoint selection is based on the
average metrics across all tasks. To enhance fine-
tuning efficiency, we leverage libraries like Hug-
gingFace’s Transformers (Wolf et al., 2020) and
PEFT (Mangrulkar et al., 2022), based on which
we design MoDULA.

Benchmark Few-Shot Metric

GSM8K 5 acc
Arithmetic 0 acc
MathQA 5 acc
HumanEval 0 pass@1
MBPP 0 pass@1
Medical 5 acc
MedQA 0 acc

MMLU 5 acc
C-Eval 5 acc

FinGPT-headline 0 acc
Title-Optimization 0 GPT-4 Judge
Keyword-Recommendation 0 GPT-4 Judge

Table 2: Few-shot example numbers and evaluation
metrics for benchmarks.

4.2 Training Datasets

To equip our MoDULA-Flan and MoDULA-
Res with comprehensive capabilities across uni-
versal, mathematical, coding, and medical do-
mains, the datasets airoboros-3.2 1, orca-math-
word-problems-200k 2, CodeAlpaca-20k 3, and
MedQA (Jin et al., 2019) are integrated.

1https://huggingface.co/datasets/jondurbin/airoboros-3.2
2https://huggingface.co/datasets/microsoft/orca-math-

word-problems-200k
3https://huggingface.co/datasets/sahil2801/CodeAlpaca-

20k

In order to evaluate the pluggability of our meth-
ods, we fine-tune the baselines, MoDULA-Flan,
and MoDULA-Res on three datasets from differ-
ent domains: FinGPT-headline 4 from the finance
domain, and Title-Optimization and Keyword-
Recommendation from the e-commerce do-
main. The Title-Optimization and Keyword-
Recommendation datasets are sourced from real-
world requirements on alibaba.com 5, a leading
e-commerce platform. By fine-tuning on these di-
verse datasets, we aim to demonstrate the adaptabil-
ity and effectiveness of MoDULA-Res in various
domain-specific applications, showcasing its mod-
ular design and ability to capture both general and
domain-specific knowledge.

Base Model Method MMLU C-Eval

Qwen-7B

Not fine-tuned 58.21 62.1
MoLoRA 55.77 61.44

MoDULA-Flan 56.16 62.29
MoDULA-Res 57.65 62.34

LLaMA-2-7B

Not fine-tuned 45.91 34.02
MoLoRA 47.45 35.95

MoDULA-Flan 45.65 34.22
MoDULA-Res 48.23 36.18

Yi-6B

Not fine-tuned 63.30 73.63
MoLoRA 63.11 73.17

MoDULA-Flan 62.17 72.33
MoDULA-Res 63.41 74.15

Qwen-14B

Not fine-tuned 66.89 70.87
MoLoRA 67.21 70.35

MoDULA-Flan 65.98 69.82
MoDULA-Res 66.58 70.13

LLaMA-2-13B

Not fine-tuned 54.92 38.11
MoLoRA 56.08 40.34

MoDULA-Flan 57.01 39.22
MoDULA-Res 56.23 40.94

Yi-9B

Not fine-tuned 68.10 70.57
MoLoRA 67.70 69.83

MoDULA-Flan 66.07 68.41
MoDULA-Res 68.13 69.83

Table 3: Experimental results of different methods on
universal benchmarks.

4.3 Evaluation Benchmarks and Metrics

To comprehensively assess the performance of
various methods, we conduct evaluations across
a diverse set of benchmarks. Domain-specific
performance is evaluated by testing mathematical
abilities on GSM8K (Cobbe et al., 2021), Arith-
metic (Brown et al., 2020), and MathQA (Amini
et al., 2019), coding skills on HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021), and
medical knowledge on MedQA (Jin et al., 2020)

4https://huggingface.co/datasets/FinGPT/fingpt-headline
5https://www.alibaba.com/
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Base Model Method Avg. GSM8K Arithmetic MathQA HumanEval MBPP Medical MedQA FinGPT
headline

Qwen-7B

Not fine-tuned 44.65 46.63 56.65 35.48 21.95 32.00 76.00 43.83 74.91
MoLoRA 49.92 47.38 84.05 36.88 22.56 32.00 80.20 46.34 75.41

MoDULA-Flan 50.66 48.36 88.12 36.41 26.22 32.60 79.00 43.93 76.61
MoDULA-Res 50.85 45.87 89.37 37.99 28.05 31.02 79.60 44.06 80.61

LLaMA-2-7B

Not fine-tuned 27.45 13.72 6.89 29.41 14.63 18.00 77.60 31.89 22.39
MoLoRA 37.05 16.75 57.20 30.51 16.46 20.40 82.20 35.82 32.38

MoDULA-Flan 37.37 17.43 59.38 30.61 15.85 23.20 81.80 33.30 24.89
MoDULA-Res 37.86 21.61 67.59 31.26 12.80 24.00 81.20 26.56 33.83

Yi-6B

Not fine-tuned 38.04 33.81 39.92 35.41 14.63 23.00 70.00 49.49 64.92
MoLoRA 48.58 36.42 93.50 36.78 16.46 23.80 81.20 51.92 65.96

MoDULA-Flan 47.98 35.17 92.57 36.18 16.46 24.80 80.20 50.50 61.77
MoDULA-Res 48.70 34.57 93.63 36.15 17.07 23.40 85.60 50.51 73.26

Table 4: Experimental results of MoLoRA, MoDULA-Flan, and MoDULA-Res on domain-specific and FinGPT-
headline (finance) benchmarks.

Base Model Method Avg. T.O. Avg. K.R.

Qwen-7B

Not fine-tuned 44.65 6.23 44.65 5.28
MoLoRA 49.89 6.94 48.64 5.92

MoDULA-Flan 50.19 5.44 49.59 6.78
MoDULA-Res 51.17 7.28 50.29 7.02

LLaMA-2-7B

Not fine-tuned 27.45 2.76 27.45 4.25
MoLoRA 35.35 3.54 36.23 5.98

MoDULA-Flan 37.21 6.48 37.33 6.52
MoDULA-Res 38.80 6.62 38.12 7.37

Yi-6B

Not fine-tuned 38.04 3.01 38.04 5.45
MoLoRA 45.91 3.92 44.37 5.78

MoDULA-Flan 47.93 5.92 46.59 6.38
MoDULA-Res 48.28 6.94 47.88 7.58

Table 5: Experimental results of methods on T.O. and
K.R. (e-commerce) benchmarks. Avg. denotes the
average performance of different methods on domain-
specific benchmarks. T.O. denotes the Title Optimiza-
tion task and K.R. the Keyword Recommendation task.

and the Medical (Jin et al., 2019) dataset. General
capabilities are measured via MMLU (Hendrycks
et al., 2021) and C-Eval (Huang et al., 2023b)
benchmarks, which both cover a wide range of
tasks. To evaluate the pluggability and adaptabil-
ity of different methods on new domain-specific
tasks, we test their performance on the FinGPT-
headline (Yang et al., 2023) dataset from the fi-
nance domain, as well as the Title-Optimization
and Keyword-Recommendation datasets from the
e-commerce domain.

Title optimization and keyword recommenda-
tion are critical tasks in e-commerce that aim to
enhance product visibility and market responsive-
ness. These tasks involve integrating high-exposure
queries from specific leaf categories into product
titles to refine original titles and generate new

keywords, ultimately achieving a higher Click-
Through Rate (CTR). By evaluating the methods of
these real-world e-commerce tasks, we can assess
their effectiveness in capturing domain-specific
knowledge and potential for practical application
in industry settings. The specific evaluation met-
rics used for each benchmark are summarized in
Table 2, providing a clear overview of the perfor-
mance measures employed in our experiments.

4.4 Main Experimental Results

Our experimental results yield several significant
observations that demonstrate the robustness and
effectiveness of the proposed approach, providing
valuable insights into its performance across vari-
ous benchmarks and real-world applications.

Superior Advancement over Baselines: Ta-
ble 1 highlights the significant performance im-
provements achieved by our proposed paradigm
across Qwen, LLaMA-2, and Yi. Models that
are fine-tuned with our paradigm outperform the
base models by an average of 16.6% and surpass
the performance of MoLoRA by 6.3% on average.
Notably, Yi demonstrates the most substantial im-
provement, with an impressive average increase of
10.9% over MoLoRA.

Further analysis reveals that performance ad-
vancements are more pronounced in smaller-scale
models than in their larger counterparts, e.g., 4.9%
for Qwen-7B while 2.9% for Qwen-14B. This in-
dicates that small-scale models with fewer param-
eters and inadequate training are more prone to
losing general capability when learning multiple
tasks, while residual connections can effectively
mitigate this problem.
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Moreover, MoDULA-Flan does not consistently
outperform MoLoRA, suggesting that it has the
issue of decreased general capabilities (for exam-
ple, the arithmetic benchmark of LLaMA-2-13B
dropped sharply due to the decline in text under-
standing ability). In contrast, MoDULA-Res ad-
dresses this issue by introducing residual connec-
tions for general and expert modules, leading to
more stable performance and significant improve-
ments over MoLoRA and MoDULA-Flan.

Despite MoDULA-Res demonstrates overall
strong performance, it faces challenges with
GSM8K and MedQA tasks, likely due to the mis-
match between pre-training data and task-specific
requirements. We recognize these limitations and
leave them for further research.

Excellent Robustness on Comprehensive
Benchmarks: In order to determine whether the
general capability of MoDULA-Res trained on
multiple tasks will decline, we conduct experi-
ments using the base, MoLoRA, and the MoDULA-
Res model on the comprehensive benchmarks
MMLU and C-Eval.

The results in Table 3 indicate that the average
performance of MoDULA-Res across multiple mod-
els is about 1% higher than that of MoLoRA and
the base model, suggesting that the model’s gen-
eral capability is maintained and even partially im-
proved through residual connection.

Flexible Pluggability over Baselines: To show-
case MoDULA-Res’s pluggability, we introduce
the finance domain (FinGPT-headline) in addi-
tion to the initial domains of mathematics, coding,
and medical care. Then, we retrained MoLoRA,
MoDULA-Flan, and MoDULA-Res, respectively.
MoLoRA is trained from scratch on the com-
bined dataset, while MoDULA-Flan and MoDULA-
Res only require training a new financial expert
and the router. This results in MoDULA-Flan and
MoDULA-Res using only 19.8% and 37.3% of
the training parameters and data compared to
MoLoRA, respectively.

The results in Table 4 indicate that MoDULA-
Res achieves the best average multi-task perfor-
mance among the three models, with an average
improvement of 8.0% in the financial task. No-
tably, the overall improvement of Yi-6B is more
significant, exceeding 11.0%, due to the fewer
parameters and relatively balanced pre-training
data. MoLoRA encounters issues with data bal-
ance, requiring numerous experiments to adjust the
data ratio for each task to achieve the best overall

performance when new domain-specific tasks are
introduced, which is time-consuming and labor-
intensive.

Outstanding Performance in E-Commerce:
To assess MoDULA’s practical applicability in e-
commerce, we introduce title optimization and
keyword recommendation tasks, which involve re-
fining titles and generating keywords using high-
exposure queries to enhance readability and include
more key points. We employ GPT-4 to evaluate the
optimized titles and keywords across five dimen-
sions: helpfulness, relevance, accuracy, readability,
and fluency. Each dimension is scored 0, 1, or 2,
with a maximum total score of 10.

Table 5 demonstrates that MoDULA-Res signifi-
cantly improves performance on title optimization
and keyword recommendation benchmarks, with
gains of 44.7% and 24.3% over MoLoRA, respec-
tively. Moreover, MoDULA-Res maintains superior
performance on the original multi-task benchmarks.
These results highlight MoDULA-Res’s potential
for e-commerce applications and adaptability to
new tasks under resource constraints.

4.5 Analysis on Domain-specific Experts
Allocation

To further analyze MoDULA-Res, router distribu-
tions for domain-specific experts based on Yi-6B
and Qwen-14B are visualized in Figure 3. Models
in Table 1 are reused, and we select layer 0-10-
20-30 and 10-20-30-40 for Yi-6B and Qwen-14B,
respectively.

The results indicate that for both the Yi
and Qwen models, the router within the MoD-
ULA paradigm allows various experts to concen-
trate on their own domain. However, the interpreta-
tion of expert assignments varies across different
layers in different models due to the model’s train-
ing data and method. For instance, Yi’s deeper lay-
ers focus more on separating experts, while Qwen
in the shallower layers.

5 Conclusion

In this paper, we introduce MoDULA, a novel
multi-stage training PEFT MoE paradigm that en-
hances efficiency and domain-specific adaptation
for LLMs. By integrating universal and domain-
specific experts through a three-stage training
methodology, MoDULA optimizes both general-
ization and specialized performance. Experiments
on various open-source LLMs, such as LLaMA-2,
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Figure 3: Router distributions of MoDULA-Res based on Yi-6B (left) and Qwen-14B (right) on domain-specific
tasks.

Qwen, and Yi, demonstrate that MoDULA outper-
forms existing methods, achieving over 80% re-
duction in training costs and a 5% performance
improvement. These results highlight MoDULA’s
potential as a scalable and efficient solution for
fine-tuning LLMs, paving the way for future ad-
vancements in NLP.
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Limitations

While our proposed MoDULA paradigm shows sig-
nificant advancements in parameter efficiency and
multi-task adaptability for LLMs, there are still
some limitations that need to be addressed. Despite
the overall strong performance of MoDULA-Res, it
shows sub-optimal results on certain benchmarks
like GSM8K and MedQA. This may be due to dis-
crepancies between the model’s pre-training data
and the specific task datasets, requiring further in-
vestigation to identify the root causes and develop
targeted solutions. Our experiments also focus on a
limited set of language models (LLaMA-2, Qwen,
Yi) and domain-specific tasks (mathematics, cod-
ing, medical, finance, e-commerce). To establish

stronger generalizability, it would be valuable to
extend our evaluations to a broader range of base
models and diverse task domains. Furthermore,
the current study primarily emphasizes the plug-
gability and training efficiency of MoDULA when
incorporating new domain experts. However, the
scalability and robustness of this approach when in-
tegrating a larger number of experts require further
exploration and stress testing.

Future research directions include investigating
techniques to mitigate performance degradation on
specific benchmarks, conducting comprehensive
evaluations on a wider range of models and tasks,
exploring the scalability limits of expert integra-
tion, streamlining the multi-stage training process,
and enhancing the interpretability of the router’s
decision-making. By acknowledging these limi-
tations and outlining potential avenues for future
work, we aim to provide a balanced perspective
on the current state of our research and highlight
opportunities for further advancements in PEFT for
LLMs.
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A Analysis on the Residual Connection

The results in Table 6 validate the importance of the
residual connection in the MoDULA-Res method.
Comparing MoDULA-Res with its non-residual
counterpart reveals the residual connection’s role in
enhancing domain-specific tasks while preserving
general language understanding.

The residual connection’s impact varies among
models. For instance, Qwen-7B and Yi-6B models
show significant score improvements of 1.71 and
3.01 points, respectively, whereas LLaMA-2-7B
shows a smaller gain of 1.77 points. This suggests
that the benefits may be model-specific, meriting
further investigation.

In domain-specific tasks, MoDULA-Res excels,
particularly in mathematics and medical fields.
For example, in Arithmetic and Medical datasets,
MoDULA-Res exceeds its non-residual variant by
over 5 points, signifying the residual connection’s
role in effective knowledge transfer.

However, in some tasks like MBPP and
MedQA, the non-residual model slightly outper-
forms MoDULA-Res. This nuance suggests a need
to further analyze the residual connection’s mecha-
nism across various tasks to improve the model’s
robustness.

In conclusion, the findings affirm the MoDULA-
Res method’s efficacy. Residual connections sig-
nificantly enhance overall performance on domain-
specific tasks, offering a promising avenue for fu-
ture enhancements in the PEFT paradigm. Contin-
ued exploration of residual connections in multi-
task learning is expected to yield more powerful
and versatile language models.

B GPT-4 Judge Prompt for E-commerce
Tasks

Figure 4: The GPT-4 judge prompt for Title-
Optimization task.

Figure 5: The GPT-4 judge prompt for Keyword-
Recommendation task.
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Base Model Method Avg. GSM8K Arithmetic MathQA HumanEval MBPP Medical MedQA

Qwen-7B MoDULA-Res 51.36 46.63 90.37 37.98 25.00 33.00 82.00 44.55
MoDULA w/o. Res 49.65 46.47 85.35 35.24 24.39 33.60 78.20 44.31

LLaMA-2-7B MoDULA-Res 39.62 22.37 70.66 31.73 15.24 22.80 85.20 29.31
MoDULA w/o. Res 37.85 20.40 61.82 30.45 16.46 22.80 79.00 34.01

Yi-6B MoDULA-Res 48.61 34.50 92.72 36.29 16.46 24.40 85.80 50.12
MoDULA w/o. Res 45.60 34.87 90.01 35.94 14.24 15.80 77.60 50.74

Table 6: Experimental results of MoDULA-Res and MoDULA w/o. Res on domain-specific benchmarks.
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