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Abstract

Aspect Sentiment Triplet Extraction (ASTE)
aims to co-extract the sentiment triplets in a
given corpus. Existing approaches within the
pretraining-finetuning paradigm tend to either
meticulously craft complex tagging schemes
and classification heads, or incorporate exter-
nal semantic augmentation to enhance perfor-
mance. In this study, we, for the first time,
re-evaluate the redundancy in tagging schemes
and the internal enhancement in pretrained rep-
resentations. We propose a method to improve
and utilize pretrained representations by in-
tegrating a minimalist tagging scheme and a
novel token-level contrastive learning strategy.
The proposed approach demonstrates compara-
ble or superior performance compared to state-
of-the-art techniques while featuring a more
compact design and reduced computational
overhead. Additionally, we are the first to for-
mally evaluate GPT-4’s performance in few-
shot learning and Chain-of-Thought scenarios
for this task. The results demonstrate that
the pretraining-finetuning paradigm remains
highly effective even in the era of large lan-
guage models. The codebase is available at
https://github.com/qiaosun22/MiniConGTS.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) aims
to jointly extract opinion terms, aspect terms (tar-
gets of the corresponding opinions), and their spe-
cific sentiment polarities in a given corpus. In
the milestone research by Peng et al. (2020), the
compound ABSA subtasks were consolidated into
the Aspect Sentiment Triplet Extraction (ASTE)
task framework. For each input corpus, ASTE
outputs triplets in the form (Aspect, Opinion,
Polarity), where the Aspect term is the target or
entity being discussed, the Opinion term is the sen-
timent or opinion expressed about the aspect, and
Polarity indicates whether the opinion is positive,
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negative, or neutral. Figure 1 illustrates the ASTE
task.

Input:

(Bob Dylan, great, Positive);
(rocker, great, Positive);
(CDs, broken, Negative).

Output:

brokengreat CDsBob Dylan

POS. POS. NEG.

is a rocker , despite the .

Aspect Term
Positive Opinion Term
Negative Opinion Term

Figure 1: An illustration for ASTE, given the sentence
"Bob Dylan is a great rocker, despite the broken CDs.",
there are three triplets to be extracted: (Bob Dylan,
great, positive), (rocker, great, positive),
(CDs, broken, negative).

As an emerging fine-grained sentiment analysis
initiative, ASTE offers a more detailed and nuanced
understanding of sentiments in text compared to
traditional methods that provide only an overall sen-
timent score (Peng et al., 2020). This aspect-level
structured approach is inherently more challenging.

Previous approaches to ASTE have generally fol-
lowed two paradigms: Pipeline methods and Joint
Tagging methods (Zhang et al., 2022a). Pipeline
methods decompose the ASTE task into multi-
ple sequential subtasks, often suffering from er-
ror propagation (Xu et al., 2020). Recent progress
in Machine Reading Comprehension (MRC) also
contributes to this paradigm (Zhai et al., 2022;
Mao et al., 2021; Zou et al., 2024; Chen et al.,
2021b). Joint tagging methods adopt a unified tag-
ging scheme to extract all triplet elements in one
stage (Xu et al., 2020). The key idea is to design a
tagging scheme (Zheng et al., 2017) that simulta-
neously predicts aspect terms, opinion terms, and
sentiment polarities. Further developments have
introduced a Grid Tagging Scheme (GTS) to rep-
resent the triplets on a unique 2D table(Wu et al.,
2020a; Zhang et al., 2022b; Chen et al., 2021b,
2022; Fei et al., 2022).

Recent advances in these approaches have been
focusing on the classification head design (Chen
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et al., 2022; Zhang et al., 2022b) and external se-
mantic information enhancing (Chen et al., 2021b,
2022; Fei et al., 2022; Jiang et al., 2023; Iswari
et al., 2024). However, existing research has ne-
glected the synergistic optimization within the joint
tagging scheme and the integration of contextual
word representations. In this research, we propose
a method to effectively improve and utilize the rep-
resentation capabilities of pretrained encoders in
ABSA by integrating a minimalist tagging scheme
and a novel token-level contrastive learning ap-
proach.

The proposed approach demonstrates compara-
ble or superior performance in comparison to state-
of-the-art techniques, while featuring a more com-
pact design and reduced computational overhead.
Notably, even in the era of Large Language Models
(LLMs), our method exhibits superior effectiveness
compared to GPT 3.5 and GPT 4 in both few-shot
and Chain-of-Thought (Wei et al., 2022) learning
scenarios. This study provides valuable insights for
the advancement of ASTE techniques within the
paradigm of LLMs. Overall, our contributions are
summarized as follows:

1. Minimalist Grid Tagging Scheme: We pro-
pose a novel minimalist joint tagging scheme
that uses the fewest label classes to date.

2. Token-level Contrastive Learning Strategy:
We introduce a token-level contrastive learn-
ing framework that enhances the contextual
embeddings produced by the pretrained model.
This framework is seamlessly geared towards
our minimalist Grid Tagging Scheme (GTS)
to effectively address the ASTE task.

3. Comprehensive Evaluation: We conduct ex-
tensive experiments and evaluations on mul-
tiple benchmark datasets, demonstrating the
effectiveness and superiority of our proposed
methods over existing approaches. Notably,
we are the first to reveal GPT-4’s performance
on this task, showcasing our method’s supe-
rior efficiency and effectiveness in the era of
large language models.

2 Literature Review

2.1 ASTE Paradigms

Peng et al. (2020) proposed a pipeline method
that divides ASTE tasks into two stages: initially
extracting (Aspect, Opinion) pairs and subse-
quently predicting sentiment polarity. However,

pipeline methods typically suffer from error prop-
agation issues (Xu et al., 2020). Recent pipeline
methods treat ASTE as a Machine Reading Com-
prehension problem, and develops seq2seq meth-
ods such as machine reading comprehension (Zhai
et al., 2022; Mao et al., 2021; Zou et al., 2024;
Chen et al., 2021b). Joint Tagging strategies are
remarked by certain Unified Tagging Scheme de-
signs, where elements of a triplet can be extracted
simultaneously. ET (Xu et al., 2020) introduced a
position-aware tagging scheme with a conditional
random field module, effectively addressing span
overlapping issues. Recent joint paradigm methods
have refined the ASTE task with the development
of proficient Grid Tagging Schemes (GTS).

2.2 Grid Tagging Scheme

Wu et al. (2020a) pioneered the adoption of a
grid tagging scheme (GTS) for ASTE, yielding
substantial performance gains. Subsequent re-
search refined and enhanced GTS. BDTF (Zhang
et al., 2022b) designed a boundary-driven tagging
scheme, effectively reducing boundary prediction
errors. Alternative research augmented GTS by
integrating external semantic information as struc-
tured knowledge into their models. S3E2 (Chen
et al., 2021b) retained the GTS tagging scheme
while introducing novel semantic and syntactic
enhancement modules between word embedding
outputs and the tagging scheme. EMGCN (Chen
et al., 2022) incorporated external knowledge from
four areas—Part-of-Speech Combination, Syntac-
tic Dependency Type, Tree-based Distance, and
Relative Position Distance—through an exogenous
hard-encoding strategy. SyMux (Fei et al., 2022)
contributed a unified tagging scheme capable of
handling all ABSA subtasks by integrating insights
from GCN, syntax encoders, and representation
multiplexing.

2.3 Contrastive Learning

While contrastive learning has gained popularity
in diverse NLP domains (Wu et al., 2020b; Giorgi
et al., 2021; Gao et al., 2021; Zhang et al., 2021),
its application to ASTE remains relatively unex-
plored. Ye et al. (2021) adopts contrastive learning
into triplet extraction in a generative fashion. Wang
et al. (2022) takes contrastive learning as a data
augmentation approach. Yang et al. (2023) pro-
posed an enhancement approach in pairing with
two separate encoders.
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3 Method

3.1 Overall Framework

An overall description of the training process can
be found in Figure 2. Basically our design can
be break down into the Minimalist Grid Tagging
Scheme (GTS) and the Token-level Contrastive
Learning Strategy.

Tokenize the input sequence S using the Tok-
enizer Tk and pass the tokenized sequence through
the Pretrained Language Model PLM (such as
BERT) to obtain contextualized representations h:

h = PLM(Tk (S)) . (1)
Then, the inference phase involves with forming

the Minimalist GTS and predicting the correspond-
ing class for each cell. Once the GTS is predicted, it
can be decoded by the GTS decoder into the triplets
in natural language form. The training phase ad-
ditionally introduces a novel contrastive learning
strategy, where similar and dissimilar pairs of con-
textual representations are distinguished. The con-
trastive loss is then weighted and summed with
the tagging loss, which is the classification loss
between the predicted and ground truth tagging
schemes.

Our research benefits from the following two
closely intertwined aspects: 1) The use of the Min-
imalist GTS simplifies the learning process by re-
ducing the number of labels, facilitating faster con-
vergence and seamlessly gearing the contrastive
learning. 2) The token-level contrastive learning
enhances the model’s ability to distinguish between
related and unrelated elements within the input se-
quence, thereby improving the overall accuracy of
the tagging system. For a more detailed description
for our algorithm pipeline, see the pseudo code in
Appendix A.1.

3.2 Minimalist Grid Tagging Scheme

3.2.1 Tagging Scheme Design
As defined by Section 3.1, once an input sentence
is encoded into a sequence of contextual represen-
tations h = {h1, h2, ..., h|h|}, we form a |h| × |h|
matrix, that is, our tagging scheme tag|h|×|h|. As
shown in Figure 3, on the rows we mark Aspect
tokens by yellow and the columns we mark Opin-
ion tokens by green (positive) and blue (negative).
Then the each intersection of these marked rows
and columns can uniquely represent an identical
sentiment triplet. Thus, each such triplet can be
noted by a 2-D area (submatirx) in the matrix,
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Output triplets:Loss function:

Minimalist GTSCosine Similarity

Contrastive Mask

Figure 2: An overview of the proposed method, where
the “Encoder” denotes for the sequential combination of
a Tokenizer and a Pretrained Language Model (PLM).

where Sentiment Polarity is indicated with POS.
(positive), NEU. (neutral), or NEG. (negative) in the
top-left corner cell of the area, while CTD. indicates
the continuation of the pairing relationship within
the same region. MSK. (mask) on the diagonal rep-
resents masked cells that are not involved in the
computation. In Figure 3, an example sentence is
tokenized and tagged.

By defining our grid tagging scheme, we frame
the triplet extraction problem as a 5-class classi-
fication task, using the fewest number of labels
known to date. In Appendices A.3 - A.5, we pro-
vide rigorous proof and heuristic insights to justify
our design and ensure its rationality.

3.2.2 Tagging Loss

We adopt a tagging loss to guide neural network
learning.

We concatenate the representation with its trans-
posed form to construct a matrix. Then, we ap-
ply the classification head Cls to the embeddings,
followed by the softmax function, to obtain the
predicted classification probabilities for each cell:

ˆtagi,j = softmax(Cls(hi;hT
j )), i, j = 1, ..., |h|.

(2)

The focal loss (Lin et al., 2017) is employed to
mitigate class imbalance by placing greater em-
phasis on examples that are difficult to classify
correctly. This is achieved by down-weighting the
loss for well-classified instances and focusing more
on misclassified instances. The formula for focal

2819



Bob Dylan is great rock #er but brok #en CD #s

Bob MSK. POS.

Dylan MSK. CTD.

is MSK.

great MSK.

rock POS. MSK.

#er CTD MSK.

but MSK.

brok MSK.

#en MSK.

CD NEG. CTD MSK.

#s CTD CTD MSK.

Figure 3: The grid tagging scheme employs the fewest
classes of labels while completely handle all the triplet
cases without conflict, overlap or omission. Each area
circled in red dashed lines corresponds to a triplets. For
example, intersection area between columns of "broken"
and rows of "CDs" is marked as negative, with NEG. on
its top-left cell and CTD. for others. It is worth mention-
ing that the blank cells in the matrix are labeled as an
additional class but are omitted for visual simplicity.

loss L is as follows:

Ltag = − 1

|h|2
|h|∑

i,j=1

αtagi,j (1− tagt)
γ log(tagt),

(3)
where α is a weighting factor for balancing the
importance of tags, γ is a focusing parameter that
increases the weight of hard-to-predict tags, and
tagi,j and tagt represent the ground truth label and
the predicted probability for the true label at posi-
tion (i, j), respectively:

tagt = ˆtagi,j;tagi,j (4)

3.3 Contrastive Learning Strategy

3.3.1 Contrastive Learning Label Matrix

Contrastive learning is an unsupervised learning
method that aims to learn effective feature embed-
dings by pulling together similar pairs of samples
and pushing apart dissimilar pairs. In our design,
we construct a label matrix where each cell is an-
notated by either PULL or PUSH, which means
making the representations closer among tokens
within the same class and farther between those of
different classes. See an illustration of this strategy
in Figure 4.

Bob Dylan is great rock #er but brok #en CD #s

Bob MSK. PULL PUSH PUSH PULL PULL PUSH PUSH PUSH PULL PULL

Dylan MSK. MSK. PUSH PUSH PULL PULL PUSH PUSH PUSH PULL PULL

is MSK. MSK. MSK. PUSH PUSH PUSH PULL PUSH PUSH PUSH PUSH

great MSK. MSK. MSK. MSK. PUSH PUSH PUSH PUSH PUSH PUSH PUSH

rock MSK. MSK. MSK. MSK. MSK. PULL PUSH PUSH PUSH PULL PULL

#er MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH PUSH PULL PULL

but MSK. MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH PUSH PUSH

brok MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PULL PUSH PUSH

#en MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PUSH PUSH

CD MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. PULL

#s MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK. MSK.

Figure 4: An illustration for the “Contrastive Mask”.
Each token is paired with every other token, where PULL
denotes positive sample pairs, indicating that the tokens
belong to the same category and should be pulled closer
together, while PUSH denotes negative sample pairs, in-
dicating that the tokens belong to different categories
and should be pushed apart. The lower triangular part
of the matrix, marked by MSK. are masked cells that are
not involved in the computation. For example, "Bob"
and "Dylan" are marked as a positive sample pair with
PULL, indicating similarity, while "Bob" and "is" are
marked as a negative sample pair with PUSH, indicating
dissimilarity.

3.3.2 Objective Function
The commonly used InfoNCE (Information Noise-
Contrastive Estimation) loss function (van den
Oord et al., 2019) is employed:

Lcontrast

= −
N∑

i=1

log
exp(sim(hi,h+

i ))

exp(sim(hi,h+
i )) +

M∑

j=1

exp(sim(hi,h−
i ))

,

(5)

where h+
i / h−

j represents the positive / negative
sample embedding with the anchor respectively.
sim(·, ·) denotes the similarity function, which is
calculated by the cosine similarity:

sim(hi,hi) =
hi · hi

∥hi∥∥hi∥
(6)

3.4 Overall Loss Function
The overall loss L can be formulated as a weighted
sum of two individual loss functions: the tagging
loss Ltag and the contrastive loss Lcontrast:

L = Ltag + βLcontrast, (7)
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where β is a coefficient for balancing the differ-
ent parts of the loss. This combination allows for
balancing the influence of each component in the
training process.

4 Experiments

4.1 Implementation Details

All experiments were performed on a single RTX
2080 Ti. The best model weight on the devel-
opment set is saved and then evaluated on the
test set. For the PLM encoder, the pretrained
weights bert_base_uncased and roberta_base
are downloaded from (Wolf et al., 2020). GPT 3.5-
Turbo and GPT 4 are implemented using OpenAI
API (OpenAI, 2024). The learning rate is 1× 10−5

for the PLM encoder, and 1× 10−3 for the classifi-
cation head.

4.2 Datasets

We evaluate our method on two canonical ASTE
datasets derived from the SemEval Challenges
(Pontiki et al., 2014, 2015, 2016). These datasets
serve as benchmarks in most aspects-based senti-
ment analysis (ABSA) research. The first dataset,
denoted as D1, is the Aspect-oriented Fine-grained
Opinion Extraction (AFOE) dataset introduced by
(Wu et al., 2020a). The second dataset, denoted as
D2, is a refined version by (Xu et al., 2020), build-
ing upon the work of (Peng et al., 2020). More
details are provided in Appendix A.2.

4.3 Baselines

We evaluate our method against various techniques
including pipeline, sequence-labeling, seq2seq,
table-filling and LLM-based approaches. Detailed
descriptions for each method can be found in the
Appendix A.6.

4.4 ASTE Performance

4.4.1 Comparison to Existing Methods
We evaluate ASTE performance using the widely
accepted (Precision, Recall, F1) metrics. Re-
sults of the dataset D2 are shown in Table 1, while
the results of D1 are presented in Appendix Table
8. The best results are highlighted in bold, and the
second-best results are underscored. Our proposed
method consistently achieves state-of-the-art per-
formance or ranks second in most evaluated cases.

Notably, on dataset D1, the proposed method
achieves a substantial 3.08% improvement in F1
score on the 14Lap subset. This improvement is

particularly significant given that the highest score
on this subset is the lowest among all datasets,
showcasing our method’s effectiveness in handling
challenging instances. Moreover, on the 14Res sub-
set, our F1 score exceeds 76.00, which, to the best
of our knowledge, is the highest reported perfor-
mance. For dataset D2, our method outperforms
all state-of-the-art approaches by over 1 percent-
age point on the 14Res, 14Lap, and 16Res subsets.
Only on the 16Res subset does the BDTF method
(Zhang et al., 2022b) achieve a slightly better per-
formance.

4.4.2 Comparison to GPT

Our proposed method is based on the Pretrain-
Finetuning paradigm, which is increasingly chal-
lenged by large language models (LLMs) (Kojima
et al., 2022; Wei et al., 2021). It is concerned about
how the advancing capabilities of LLMs might im-
pact the ASTE task.

When compared to advanced LLMs, the perfor-
mance and computational efficiency of our method
stand out. As shown in Tables 8, 1, and 9, even the
state-of-the-art LLM, GPT-4, with its staggering
number of parameters, does not achieve satisfac-
tory results for ASTE, even with few-shot learning
and Chain-of-Thought (CoT) (Wei et al., 2022) en-
hancement. Additionally, using LLMs introduces
significant computational overhead. For more in-
formation on experiment setting see Appendix A.9.
For detailed results see Table 1, 12, Appendix A.8
and Appendix A.10. Note that, fine-tuning LLMs
may offer some improvements, but it also risks
catastrophic forgetting (Shi et al., 2024) and is left
for future work.

To our knowledge, this is the first formal study
to evaluate GPT-4’s performance on these ASTE
datasets, providing valuable insights for future re-
search.

4.5 Performance on Other ABSA Tasks

Our method can also effectively handle other
ABSA subtasks, including Aspect Extraction (AE),
Opinion Extraction (OE), and Aspect Opinion
Pair Extraction (AOPE). AE aims to extract all
the (Aspect) terms, OE aims to extract all the
Opinion terms, and AOPE aims to extract all the
(Aspect, Opinion) pairs from raw text. The re-
sults for these tasks are presented in Appendix A.7,
where our method consistently achieves best F1-
scores across nearly all tasks.
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Methods
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

Pipeline
Two-stage♮ (Peng et al., 2020) 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21

Li-unified-R+PD♯ (Peng et al., 2020) 40.56 44.28 42.34 41.04 67.35 51.00 44.72 51.39 47.82 37.33 54.51 44.31

Sequence-tagging
Span-BART (Yan et al., 2021) 65.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62

JET (Xu et al., 2020) 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83

Seq2seq
Dual-MRC (Mao et al., 2021) 71.55 69.14 70.32 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40
BMRC† (Chen et al., 2021a) 72.17 65.43 68.64 65.91 52.15 58.18 62.48 55.55 58.79 69.87 65.68 67.35

COM-MRC (Zhai et al., 2022) 75.46 68.91 72.01 62.35 58.16 60.17 68.35 61.24 64.53 71.55 71.59 71.57
Triple-MRC (Zou et al., 2024) - - 72.45 - - 60.72 - - 62.86 - - 68.65

Table-filling
GTS (Wu et al., 2020a) 67.76 67.29 67.50 57.82 51.32 54.36 62.59 57.94 60.15 66.08 66.91 67.93

Double-encoder (Jing et al., 2021) 67.95 71.23 69.55 62.12 56.38 59.11 58.55 60.00 59.27 70.65 70.23 70.44
EMC-GCN (Chen et al., 2022) 71.21 72.39 71.78 61.70 56.26 58.81 61.54 62.47 61.93 65.62 71.30 68.33

BDTF (Zhang et al., 2022b) 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 71.44 73.13 72.27
STAGE-1D (Liang et al., 2023) 79.54 68.47 73.58 71.48 53.97 61.49 72.05 58.23 64.37 78.38 69.10 73.45
STAGE-2D (Liang et al., 2023) 78.51 69.3 73.61 70.56 55.16 61.88 72.33 58.93 64.94 77.67 68.44 72.75
STAGE-3D (Liang et al., 2023) 78.58 69.58 73.76 71.98 53.86 61.58 73.63 57.9 64.79 76.67 70.12 73.24

DGCNAP (Li et al., 2023) 72.90 68.69 70.72 62.02 53.79 57.57 62.23 60.21 61.19 69.75 69.44 69.58

LLM-based
GPT-3.5-turbo zero-shot 44.88 55.13 49.48 30.04 41.04 34.69 36.02 53.40 43.02 39.92 57.78 47.22
GPT-3.5-turbo few-shot 51.51 65.19 57.55 39.79 50.09 44.35 43.34 63.09 51.39 51.12 71.01 59.45

GPT-3.5-turbo CoT 48.47 59.05 53.24 30.48 40.30 34.71 39.51 56.70 46.57 44.03 63.81 52.10
GPT-3.5-turbo CoT+few-shot 49.41 59.15 53.85 33.78 42.33 37.57 39.02 56.08 46.02 46.49 66.93 54.86

GPT-4o zero-shot 32.99 38.13 35.37 17.81 22.55 19.90 27.85 37.73 32.05 32.17 43.00 36.80
GPT-4o few-shot 54.11 66.20 59.55 38.23 48.61 42.80 45.57 60.41 51.95 52.90 71.01 60.63

GPT-4o CoT 41.21 53.32 46.49 26.98 37.71 31.46 33.07 50.93 40.10 39.14 58.17 46.79
GPT-4o CoT+few-shot 46.81 59.86 52.54 29.71 40.85 34.40 35.08 53.81 42.47 41.53 61.09 49.45

Ours
MiniConGTS 76.1 75.08 75.59 66.82 60.68 63.61 66.50 63.86 65.15 75.52 74.14 74.83

Table 1: Experimental results on D2 (Xu et al., 2020). The best results are highlighted in bold, while the second
best results are underscored. The results with † are retrieved from (Yu Bai Jian et al., 2021). The results with ♮ are
retrieved from (Xu et al., 2020). The results with ♯ are retrieved from (Peng et al., 2020). The results with ‡ are
retrieved from (Mao et al., 2021).

Models
D1 D2

14Res 14Lap 15Res 16Res 14Res 14Lap 15Res 16Res

MiniConGTS 76.00 64.07 65.43 71.80 75.59 63.61 65.15 74.83

w/o. RoBERTa 74.12 63.18 62.95 69.41 72.66 62.15 63.25 70.71
∆F_1 -1.88 -0.89 -2.48 -2.39 -2.93 -1.46 -1.90 -4.12

w/o. contr 72.61 61.94 58.14 68.16 71.72 61.49 58.11 68.03
∆F_1 -3.39 -2.13 -7.29 -3.64 -3.87 -2.12 -7.04 -6.80

w/o. tag 67.78 54.98 60.75 62.62 65.83 54.98 58.73 67.63
∆F_1 -8.22 -9.09 -4.68 -9.18 -9.76 -8.63 -6.42 -7.20

Table 2: Ablation study on F1, where “w/o. RoBERTa”
denotes “Replace RoBERTa with bert-base-uncased”,
“w/o. contr” denotes without the contrastive learning
mechanism, and “w/o. tag” denotes “replace our tagging
scheme with a baseline”.

Method Num Tags Features Enhancing

GTS (Wu et al., 2020a) 6 None
Double-encoder (Jing et al., 2021) 9 None

EMC-GCN (Chen et al., 2022) 10 4 Groups
BDTF (Zhang et al., 2022b) 2× 2× 3 None
STAGE (Liang et al., 2023) 2× 2× 4 None
DGCNAP (Li et al., 2023) 6 POS-tagging

Ours 5 None

Table 3: Tagging Scheme Comparison.

5 Analysis

5.1 Ablation Study

In this section, we conduct a series of ablation
experiments to demonstrate the superiority of our
method and eliminate potential confounding fac-
tors. Experiments were conducted on the D1 and
D2 datasets, using F1 scores as the comparison
metric.
Encoder. We replaced the RoBERTa encoder with
BERT, resulting in a slight decrease in F1 scores
on both datasets, although our method still outper-
formed most other approaches.
Contrastive Learning. We deactivated the con-
trastive mechanism in our method (denoted as “w/o.
contr”) by setting the coefficient of the contrastive
loss to 0. The results in Table 2 illustrate a signif-
icant F1-score decrease of 2.12 ∼ 7.29% in both
datasets.
Tagging Scheme. We substituted our proposed
scheme with the conventional GTS tagging scheme
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(Wu et al., 2020a), resulting in a substantial perfor-
mance decline (Table 2) of 4.68 ∼ 9.18%. This
indicates that the contrastive learning methods,
within our framework, is of strong reliance on an
appropriate tagging scheme. This reinforces the
effectiveness of our compact yet impactful tagging
scheme.

5.2 Effect of Contrastive Learning
In Figure 5, an example is shown illustrating
how contrastive learning improves representation.
The right upper-row subplots show the represen-
tation outputs with contrastive learning, while the
lower row subplots display that without contrastive
learning. Principal Component Analysis (PCA)
(Maćkiewicz and Ratajczak, 1993) is used to re-
duce the vector dimensions to three for visualiza-
tion purposes. The distributions indicate that con-
trastive learning significantly enhances the repre-
sentations, with similar classes of hidden word rep-
resentations becoming more tightly clustered and
dissimilar classes more distinct.

5.3 Efficiency Comparison
We compared the computational efficiency of Mini-
ConGTS with other approaches, including baseline
ASTE methods and LLMs, on an ASTE task. Eval-
uation metrics such as memory usage, number of
parameters, epoch/inference time, and F1 scores
are recorded in Table 4. Our approach not only re-
quires less memory usage for higher performance
compared to traditional ASTE methods but also
offers much faster runtime even using a relatively
lower-cost GPU.

Table 3 provides another comparative analysis
of tagging schemes. Our method has a compact
design with the fewest classes of labels. What’s
more, compared with other SOTA baselines, our
method does not rely on any additional linguistic
information enhancement.

5.4 Case Study
A case analysis is presented in Table 12, where the
proposed method demonstrates solid performance.
Despite minor faults in missing the full terms, it
exhibits a profound understanding of the case.

It is quite interesting to investigate the GPT’s er-
ror cases. The findings reveal that the performance
of the GPT model is mixed - while it is able to
identify more aspect-opinion (A-O) pairs than the
ground truth annotations in some cases, this comes
at the cost of a decreased precision. This suggests

that the GPT model may be “over-interpreting” the
input, making inferences that go beyond what is
strictly supported by the text. Furthermore, the
GPT model appears to be overly sensitive to the
presence of adverbs (such as “very”, “a bit”, etc.)
in the input. This sensitivity manifests in the model
frequently adding or removing adverbs when ex-
tracting the Opinion components, which further
contributes to a decrease in the overall accuracy of
the ABSA task.

These findings highlight the importance of de-
veloping ABSA models that can strike the right bal-
ance between extracting all relevant aspect-opinion
pairs, while still maintaining a high degree of pre-
cision. The effective use of encoding appears to
be a promising direction for achieving this balance
and advancing the state-of-the-art in Aspect-Based
Sentiment Analysis.

6 Conclusion

In this work, we have introduced an elegant and
efficient framework for ASTE, achieving SOTA
performance. Our approach is built upon two ef-
fective components: a new tagging scheme and a
novel token-level contrastive learning implementa-
tion. The ablation study demonstrates the synergy
between these components, reducing the need for
complex model designs and external information
enhancements.

7 Limitations

Our method is based on a 2D-matrix tagging
scheme, where the time complexity for decod-
ing, given the input corpus length N , is O(N2).
This may be unacceptable when N is too large.
Additionally, although we have demonstrated our
method on commonly used classic English datasets,
it should be tested on more natural corpora and for
its cross-language capability.

8 Ethics & Potential Risks Statement

In our experiments, we used widely accepted
datasets focused on e-commerce reviews, which
have a lower risk of offensive content. We scruti-
nized the data for biases against gender, race, and
marginalized groups. Despite these precautions,
our model might still generate potentially offen-
sive sentiment assessments if used inappropriately,
such as evaluating ethical or moral statements. We
reserve the right to limit or modify the use of our
technology to prevent misuse.
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Pretrained Ft. + cl epoch 50 Ft. + cl epoch 100 Ft. + cl epoch 200

Ft. w/o. cl epoch 50 Ft. w/o. cl epoch 100 Ft. w/o. cl epoch 200

Notation

“Ft.” = Finetune

“+” = with

“w/o.” = without

“cl” = contrastive learning

Figure 5: A plot of the hidden word representation based on the D1 14Res dataset, where the dimension is reduced
to 3. “Pretrained” refers to the representation output by official released model. We finetune the pretrained model
with and without contrastive learning strategy respectively.

Model Memory Num Params Epoch Time♯ Inf Time F1(%) Device

Span-ASTE (Xu et al., 2021) 3.173 GB♭ - 108s - 71.62 Tesla v100 32GB
BDTF (Zhang et al., 2022b) 8.103 GB♭ >0.18B♭ 135s - 74.73 Tesla v100 32GB

GPT 3.5-Turbo (OpenAI, 2024) >80 GB♮ 175B† - 0.83s 49.48 OpenAI API
GPT 4 (OpenAI, 2024) >80 GB♮ 1760B‡ - 1.56s 35.37 OpenAI API

Ours 7.11GB 0.12B 10s 0.01s 76.00 2080 Ti 11GB

Table 4: An efficiency comparison, where † is evaluated by (Gao, 2021) and later confirmed by OpenAI (Wikipedia,
2024), ‡ is estimated by (Schreiner, 2023), ♭ is cited from (Zhang et al., 2022b), and ♮ is reported by (Wikipedia,
2024). ♯ Epoch Time refers to the training time per epoch on the training set.
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See Algorithm 1.

A.2 Descriptive Statistics of The Datasets
See Table 5.
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Algorithm 1 .
Modules:
Input:

Raw sentences: S|S|;
Ground truth triplets: T gt

|T | , where
Tk = (Ak, Ok, Sk), k ∈ {1, 2, ..., |T |};

classes of contrasted labels: C.
Output:

Predicted Triplets: T pred
|T | ;

Metric: Precision,Recall ,F1 .
Algorithm:
Repeat for N epochs:
1: Hidden word representation:

H|H| = PLMsEncoder(S|S|);
2: Tensor Operations:

H|H|×|H| = expand(H|H|),
HT

|H|×|H| = H|H|×|H|.transpose();
3: Similarity matrix:

Sim|H|×|H| =

−(H|H|×|H| −HT
|H|×|H|) ◦ (H|H|×|H| −HT

|H|×|H|)
where

Simi,j = −∥Hi −Hj∥2

and ◦ denotes the Hadamard product.
4: Contrastive Mask matrix: M|H|×|H|, where Mi,j = 1

if Hi,mathcalHj ∈ Cp, p ∈ 1, 2, 3 else −1;
5: Contrastive loss:

Lcontrastive =∑|H|
i=1

∑|H|
j=1

(
Sim|H|×|H| ◦M|H|×|H|

)
i,j
;

6: Predicted tagging matrix:
Tagpred

|H|×|H| = ClsHead(H|H|×|H|,HT
|H|×|H|);

7: Focal loss:
Lfocal = FocalLoss(Tagpred

|H|×|H|,Tag
gt
|H|×|H|);

8: Weighted Loss: L = Lfocal + αLcontrastive.
9: Backward propagation.

Predicted triplets:
T pred
|T | = TaggingDecoder(Tagpred

|H|×|H|)
Metric:
Precision,Recall ,F1 = Metric(T pred

|T | , T gt
|T |)

A.3 Rethinking the GTS

Rethinking the 2D tagging scheme:
Lemma 1. Specific to the ASTE task, when we
take it as a 2D-labeling problem, we are to 1) find
a set of tagging strategies to establish a 1-1 map
between each triplet and its corresponding tagging
matrix. See the proof in Appendix Proof 1.
Lemma 2. In a 2D-tagging for ASTE, at least three
basic goals must be met: 1) correctly identifying
the (Aspect, Opinion) pairs, 2) correctly classi-
fying the sentiment polarity of the pair based on
the context, and 3) avoiding boundary errors, such
as overlapping*, confusion†, and conflict‡. See the

*It occurs when one single word belongs to multiple
classes in different triplets.

†It occurs when there is a lack of location restrictions
so that multiple neighbored candidates can not be uniquely
distinguished.

‡It occurs when one single word is composed of multiple
tokens, and the predict gives predictions that are not aligned

Datasets #S #A #O #S1 #S2 #S3 #T

14Res

D1

Train 1259 1008 849 1456 164 446 2066
Dev 315 358 321 352 44 93 489
Test 493 591 433 651 59 141 851

D2

Train 1266 986 844 1692 166 480 2338
Dev 310 396 307 404 54 119 577
Test 492 579 437 773 66 155 994

14Lap

D1

Train 899 731 693 691 107 466 1264
Dev 225 303 237 173 42 118 333
Test 332 411 330 305 62 101 468

D2

Train 906 733 695 817 126 517 1460
Dev 219 268 237 169 36 141 346
Test 328 400 329 364 63 116 543

15Res

D1

Train 603 585 485 668 24 179 871
Dev 151 182 161 156 8 41 205
Test 325 353 307 293 19 124 436

D2

Train 605 582 462 783 25 205 1013
Dev 148 191 183 185 11 53 249
Test 322 347 310 317 25 143 485

16Res

D1

Train 863 775 602 890 43 280 1213
Dev 216 270 237 224 8 66 298
Test 328 342 282 360 25 72 457

D2

Train 857 759 623 1015 50 329 1394
Dev 210 251 221 252 11 76 339
Test 326 338 282 407 29 78 514

Table 5: Statistic information of our two experiment
datasets: “#S”, “#T”, “#A”, and “#O” denote the num-
bers of “Sentences”, “Triplets”, “Aspects”, and “Opin-
ions”; “#S1”, “#S2”, #S3” denote the numbers of sen-
timents “Positive”, “Neutral” and “Negative”, respec-
tively.

proof in Appendix Proof 2.
Theorem 1. From insight of the above lemmas, it
can be concluded that using enough (that is, follow-
ing the 1-1 map properties in Lemma 1, as well as
avoiding the issues in Lemma 2) labels will make
it a theoretically ensured tagging scheme.
Assumption 1. Ceteris paribus, for a specific clas-
sification neural network, the fewer the number of
target categories, the easier it is for the network to
learn. This is a empirical and heuristic assumption,
for the reasonable consideration of Simplification
of Decision Boundaries (Hinton and Salakhutdinov,
2006) and Enhancement of Training Efficiency (less
parameters).

Combining Theorem 1 and Assumption 1, fewer
yet enough labels can be heuristically better solu-
tion with theoretical guarantee.

With the above knowledge, our tagging scheme
employs a full matrix (illustrated as Figure 6) so
that rectangular occupations in its cells indicate
respective triplets, where each of the rectangles’
row indices correspond to the relative Aspect term
and the column indices correspond to the Opinion.
Hereafter, this kind of labels can be taken as a set

with the word span.
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of “place holder”, which is obviously a 1-1 map
meeting Lemma 1.

To further satisfy Lemma 2, we introduce an-
other kind of labels, “sentiment & beginning tag”.
This set of labels specializes in recognizing the
top-left corner of a “shadowed” area. Meanwhile,
it takes a value from the sentiment polarity, i.e.
Positive, Neutral, Negative. This tagging is
crucial to both identify the beginning of an triplet
and label the sentiment polarity.

Figure 6 shows a comprehensive case of our tag-
ging scheme, in which the left matrix is an appear-
ance of our tagging scheme, and it can be decom-
posed into two separate components. The middle
matrix is the first component, which takes only
one tag to locate the up-left beginning of an area,
and the second component simply predicts a binary
classification to figure out the full area.

Note that, this design benefits the tagging
scheme’s decode process. By scanning across the
matrix, we only start an examination function when
triggered by a beginning label like this, and then
search by row and column until it meets any la-
bel except a “continued” (“CTD”), which satisfies
Lemma 2.

A.4 Proof 1:

Let:

• S be a sentence with n tokens.
• M be an n×n tagging matrix for S, where

each entry M [i][j] can hold a label.
• Tk = (Ak, Ok, Sk) be a sentiment triplet

consisting of an aspect term Ak, an opinion
term Ok, and a sentiment Sk.

Tagging Strategy If Ak starts at position i and
Ok starts at position j, then M [i][j] is tagged
with a unique label Lk that encodes Sk. This la-
bel Lk uniquely identifies the triplet Tk, ensuring
that no other entry M [i′][j′] with (i′, j′) ̸= (i, j)
carries the same label unless it refers to the same
sentiment context.

Define Lk = "start of triplet"Tk with sentiment Sk

Proof of One-to-One Mapping
• Injectivity: Each Lk uniquely identifies a

triplet Tk. If M [i][j] = M [i′][j′] = Lk,
then by definition, (i, j) = (i′, j′) and Tk is
the same.

• Surjectivity: Each triplet Tk can be
uniquely located and identified by its la-
bel Lk in matrix M , where no two distinct
triplets have the same label at the same ma-
trix position.

Conclusion The tagging scheme ensures that
each sentiment triplet Tk is uniquely mapped to
a specific label in the matrix M , and each label
in M uniquely refers back to a specific triplet Tk.
This guarantees a one-to-one correspondence be-
tween the triplets and their tagging matrix repre-
sentations, fulfilling the conditions required by
Lemma 1 for an effective and efficient ASTE
process.

A.5 Proof 2:
For the ASTE task, considered as a 2D-labeling
problem, it is necessary to ensure three funda-
mental goals are met:

Definitions
• S be a sentence with n tokens.
• M be an n×n tagging matrix for S, where

each entry M [i][j] can hold a label indicat-
ing a component of a sentiment triplet.

• Tk = (Ak, Ok, Sk) be a sentiment triplet
consisting of an aspect term Ak, an opinion
term Ok, and a sentiment Sk.

Goals
1. Correct Identification of Pairs: Ensure

that each (Aspect, Opinion) pair is correctly
identified in the tagging matrix M .

2. Classification of Sentiment Polarity: Ac-
curately classify the sentiment polarity Sk

for each (Aspect, Opinion) pair.
3. Avoidance of Boundary Errors: Prevent

boundary errors such as overlapping and
confusion in the tagging matrix M .

Proof Using Contraposition
1. Assuming Incorrect Identification: As-

sume that some (Aspect, Opinion) pairs are
incorrectly identified in M . This would
mean that there exists at least one pair (i, j)
where M [i][j] does not represent the actual
(Aspect, Opinion) relationship in S. This
misrepresentation leads to incorrect senti-
ment analysis results, which contradicts the
requirement of the task to provide accurate
sentiment analysis, thereby proving that our
identification must be correct.
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Figure 6: Decomposition of the tagging scheme into two components: 1) a beginning mark matrix with sentiment
labels; and 2) a placeholder matrix denoting regions of triplets with “1”s and default regions with “0”s. Remember
that each row is taken as candidates for an Aspect and each column is taken as candidates for an Opinion. Naturally,
each cell in the square matrix can be seen as an ordered pair for a unique candidate of <Aspect, Opinion>. When
we simply sum the two components up, we have the left-hand tagging scheme in Figure 6, where the “Sentiment &
Beginning Tag” is like a trigger (just like you click your mouse), and the “Place Holder” is like a “continued shift”
(continue to hold and drag the mouse to the downright).

2. Assuming Incorrect Classification: As-
sume the sentiment polarity Sk is incor-
rectly classified in M . This would imply
that the sentiment associated with an (As-
pect, Opinion) pair is wrong, leading to a
sentiment analysis that does not reflect the
true sentiment of the text. Given that the
primary goal of ASTE is to accurately iden-
tify sentiments, this assumption leads to a
contradiction, thereby establishing that our
classification must be accurate.

3. Assuming Existence of Boundary Errors:
Assume boundary errors such as overlaps or
confusion occur in M . Such errors would
prevent the clear identification and classi-
fication of sentiment triplets, leading to in-
correct or ambiguous extraction outcomes.
This would undermine the integrity and us-
ability of the ASTE process, contradicting
the task’s need for precise extraction mech-
anisms. Hence, we prove that boundary
errors must be effectively managed.

Conclusion The contraposition approach so-
lidifies that the tagging strategy for ASTE in a
2D labeling framework successfully achieves the
correct identification of pairs, accurate classifi-
cation of sentiment, and effective management
of boundary errors, as any failure in these as-
pects leads to contradictions with the task re-
quirements.

A.6 Baselines
See Table 6.

A.7 Performance on Other ABSA Tasks
See Table 7.

A.8 ASTE Performance on (D1)
See Table 8.

A.9 Details Settings of GPT Experients
See Table 9.

A.10 Detailed Results of GPT Experiments
See Table 11.

A.11 Case Study
See Table 12.
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Methods Brief Introduction

Pipeline
OTE-MTL (Zhang et al., 2020) It proposes a multi-task learning framework including two parts: aspect and opinion tagging, along

with word-level sentiment dependency parsing. This approach simultaneously extracts aspect and
opinion terms while parsing sentiment dependencies using a biaffine scorer. Additionally, it employs
triplet decoding based on the aforementioned outputs during inference to facilitate triplet extraction.

Li-unified-R+PD (Peng et al., 2020) It proposes an unified tagging scheme, Li-unified-R, to assist target boundary detection. Two stacked
LSTMs are employed to complete aspect-based sentiment prediction and the sequence labeling.

CMLA+C-GCN (Wang et al., 2017) It facilitates triplet extraction by modelling the interaction between the aspects and opinions.
Two-satge (Peng et al., 2020) It decomposes triplet extraction to two stages: 1) predicting unified aspect-sentiment and opinion tags;

and 2) pairing the two results from stage one.
RI-NANTE+ (Dai and Song, 2019) It adopts the same sentiment triplets extracting method as that of CMLA+, but it incorporates a novel

LSTM-CRF mechanism and fusion rules to capture word dependencies within sentences.

Sequence-tagging
Span-BART (Yan et al., 2021) It redefines triplet extraction within an end-to-end framework by utilizing a sequence composed

of pointer and sentiment class indexes. This is achieved by leveraging the pretrained sequence-to-
sequence model BART to address ASTE.

JET (Xu et al., 2020) It extracts triplets jointly by designing a position-aware sequence-tagging scheme to extract the triplets
and capturing the rich interactions among the elements.

Seq2seq
Dual-MRC (Mao et al., 2021) It proposes a solution for ASTE by jointly training two BERT-MRC models with parameters sharing.
BMRC (Chen et al., 2021a) It introduces a bidirectional MRC (BMRC) framework for ASTE, employing three query types:

non-restrictive extraction queries, restrictive extraction queries, and sentiment classification queries.
The framework synergistically leverages two directions, one for sequential recognition of aspect-
opinion-sentiment and the other for sequential recognition of opinion-aspects-sentiment expressions.

Table-filling
GTS (Wu et al., 2020a) It proposes a novel 2D tagging scheme to address ASTE in an end-to-end fashion only with one

unified grid tagging task. It also devises an effective inference strategy on GTS that utilizes mutual
indication between different opinion factors to achieve more accurate extraction.

Double-encoder (Jing et al., 2021) It proposes a dual-encoder model that capitalizes on encoder sharing while emphasizing differences to
enhance effectiveness. One of the encoders, referred to as the pair encoder, specifically concentrates
on candidate aspect-opinion pair classification, while the original encoder retains its focus on sequence
labeling.

S3E2 (Chen et al., 2021b) It represents the semantic and syntactic relationships between word pairs, employs GNNs for encoding,
and applies a more efficient inference strategy.

EMC-GCN (Chen et al., 2022) It employs a biaffine attention module to embed ten types of relations within sentences, transforming
the sentence into a multi-channel graph while incorporating various enhanced linguistic features to
enhance performance. Additionally, the method introduces an effective strategy for refining word-pair
representations, aiding in the determination of whether word pairs are a match or not.

LLM-based
zero-shot Performing aspect-based sentiment analysis using an LLM. The specific method involves inputting a

prompted sentence and directly outputting the corresponding [A, O, S] triplets. An example of the text
given to the LLM, with the prompt added, is as follows: "Perform aspect-based sentiment analysis on
the provided text and return triplets as [Aspect, Opinion, Sentiment]. You only need to provide the
triplets, no additional explanations are required. The provided text: {sentence}"

few-shot Building upon the zero-shot method, a small number of examples from the training set are added to the
prompted sentence: "Perform aspect-based sentiment analysis on the provided text and return triplets
as [Aspect, Opinion, Sentiment]. For example: input: {train sentence} output: {train triplets}, ...
(some other examples). You only need to provide the triplets, no additional explanations are required.
The provided text: {sentence}". We utilized 5-shot, 10-shot, and 20-shot methods, all randomly
sampled from the training set. The results indicate that the 5-shot method performed the best, while
the performances of the 10-shot and 20-shot methods showed a decline. The tables presents the output
results for the 5-shot method.

Table 6: Baseline methods with brief introduction.

Methods
14Res 14Lap 15Res 16Res

AE OE AOPE AE OE AOPE AE OE AOPE AE OE AOPE

CMLA 81.22 83.07 48.95 78.68 77.95 44.10 76.03 74.67 44.60 74.20 72.20 50.00
RINANTE 81.34 83.33 46.29 77.13 75.34 29.70 73.38 75.40 35.40 72.82 70.45 30.70
Li-unified 81.62 85.26 55.34 78.54 77.55 52.56 74.65 74.25 56.85 73.36 73.87 53.75

GTS 83.82 85.04 75.53 79.52 78.61 65.67 78.22 79.31 67.53 75.80 76.38 74.62
Dual-MRC 86.60 86.22 77.68 80.44 79.90 63.37 75.08 77.52 64.97 76.87 77.90 75.71

MiniConGTS (Ours) 86.55 87.04 79.60 82.62 83.41 73.23 86.53 83.05 73.87 85.48 87.06 76.29
∆F1 -0.05 0.82 1.92 2.18 3.51 7.56 8.31 3.74 6.34 8.61 9.16 0.58

Table 7: F1-score performance on other ABSA tasks: AE, OE, and AOPE. The test is implemented on D1. Results
of other models are retrieved from (Fei et al., 2022).
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Methods
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

Pipeline
OTE-MTL (Zhang et al., 2020) - - 45.05 - - 59.67 - - 48.97 - - 55.83

Li-unified-R+PD♯ (Peng et al., 2020) 41.44 68.79 51.68 42.25 42.78 42.47 43.34 50.73 46.69 38.19 53.47 44.51
RI-NANTE+ (Dai and Song, 2019) 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87

CMLA+C-GCN♭ (Wang et al., 2017) 72.22 56.35 63.17 60.69 47.25 53.03 64.31 49.41 55.76 66.61 59.23 62.70
Two-satge♮ (Peng et al., 2020) 58.89 60.41 59.64 48.62 45.52 47.02 51.7 46.04 48.71 59.25 58.09 59.67

Sequence-tagging
Span-BART (Yan et al., 2021) - - 72.46 - - 57.59 - - 60.10 - - 69.98

JET (Xu et al., 2020) 67.97 60.32 63.92 58.47 43.67 50.00 58.35 51.43 54.67 64.77 61.29 62.98

MRC based
BMRC† (Chen et al., 2021a) 71.32 70.09 70.69 65.12 54.41 59.27 63.71 58.63 61.05 67.74 68.56 68.13

COM-MRC (Zhai et al., 2022) 76.45 69.67 72.89 64.73 56.09 60.09 68.50 59.74 63.65 72.80 70.85 71.79

Table-filling
S3E2 (Chen et al., 2021b) 69.08 64.55 66.74 59.43 46.23 52.01 61.06 56.44 58.66 71.08 63.13 66.87
GTS (Wu et al., 2020a) 70.92 69.49 70.20 57.52 51.92 54.58 59.29 58.07 58.67 68.58 66.60 67.58

EMC-GCN (Chen et al., 2022) 71.85 72.12 71.78 61.46 55.56 58.32 59.89 61.05 60.38 65.08 71.66 68.18
BDTF (Zhang et al., 2022b) 76.71 74.01 75.33 68.30 55.10 60.99 66.95 65.05 65.97 73.43 73.64 73.51
DGCNAP (Li et al., 2023) 71.83 68.77 70.26 66.46 54.34 58.74 62.03 57.18 59.49 69.39 72.20 70.77

LLM-based
GPT-3.5-turbo zero-shot 39.21 56.17 46.18 26.21 40.69 31.88 31.21 52.75 39.21 35.28 59.64 44.34
GPT-3.5-turbo few-shot 50.32 64.75 56.63 29.67 43.90 35.41 36.94 61.01 46.02 44.80 69.96 54.62

GPT-3.5-turbo CoT 40.78 57.93 47.86 28.37 43.25 34.27 35.17 57.11 43.53 40.32 65.79 50.00
GPT-3.5-turbo CoT+few-shot 44.97 57.81 50.59 28.31 43.04 34.15 35.71 58.49 44.35 43.72 66.45 52.74

Ours
MiniConGTS 75.87 76.12 76.00 67.45 61.01 64.07 66.84 64.08 65.43 69.38 74.40 71.80

Table 8: Experimental results on D1 (Wu et al., 2020a). The best results are highlighted in bold, while the second
best results are underscored. The results with † are retrieved from (Yu Bai Jian et al., 2021). The results with ♮ are
retrieved from (Xu et al., 2020). The results with ♭ are retrieved from (Wu et al., 2020a). The results with ♯ are
retrieved from (Peng et al., 2020).
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Methods Prompts

zero-shot Suppose you are an expert of aspect-based sentiment analysis. Perform aspect-based sentiment
analysis on the provided text and return triplets as [Aspect, Opinion, Sentiment]. You only need to
provide the triplets, no additional explanations are required. The provided text: {sentence}

few-shot Suppose you are an expert of aspect-based sentiment analysis. Perform aspect-based sentiment
analysis on the provided text and return triplets as [Aspect, Opinion, Sentiment]. For example:
input: The food is uniformly exceptional , with a very capable kitchen which will proudly whip up
whatever you feel like eating , whether it ’s on the menu or not .
output: [’food’, ’exceptional’, ’positive’], [’kitchen’, ’capable’, ’positive’]
...
(generated from training set)
Now I will provide a new sentence, and you only need to provide the triplets [Aspect, Opinion,
Sentiment] without any additional explanations. The provided sentence: {sentence}

CoT Suppose you are an expert of aspect-based sentiment analysis. Please analyze the given text for
aspect-based sentiment analysis using the following steps:
Definitions:
- Aspect: An aspect is a specific part or feature of the entity being discussed. It is usually a noun or a
noun phrase.
- Opinion: An opinion is a descriptive term or phrase that expresses a sentiment towards the aspect. It
is usually an adjective or a descriptive phrase.
- Sentiment: The sentiment is the overall feeling expressed towards the aspect, categorized as positive,
negative, or neutral.
Instructions:
1. Read the text and identify all aspects mentioned.
2. For each identified aspect, determine the opinion expressed and the sentiment (positive, negative,
neutral).
3. Summarize the findings in the format [Aspect, Opinion, Sentiment]. Each triplet must contain an
aspect, an opinion, and a sentiment.
4. If there is a one-to-many relationship between aspects and opinions, list multiple triplets.
5. Use all words from the original text to answer without any changes.
Example: (automatically generated by ChatGPT-4o)
Text: "The restaurant has a great ambiance, but the service is poor and the food is average."
Steps:
1. Identify aspects: ambiance, service, food.
2. Evaluate opinions and sentiments:
- ambiance: Opinion - great, Sentiment - positive
- service: Opinion - poor, Sentiment - negative
- food: Opinion - average, Sentiment - neutral
3. Summarize:
- [ambiance, great, positive]
- [service, poor, negative]
- [food, average, neutral]
Please analyze the following text: {sentence}

CoT+few-shot Suppose you are an expert of aspect-based sentiment analysis. Please analyze the given text for
aspect-based sentiment analysis using the following steps:
Definitions:
- Aspect: An aspect is a specific part or feature of the entity being discussed. It is usually a noun or a
noun phrase.
- Opinion: An opinion is a descriptive term or phrase that expresses a sentiment towards the aspect. It
is usually an adjective or a descriptive phrase.
- Sentiment: The sentiment is the overall feeling expressed towards the aspect, categorized as positive,
negative, or neutral.
Instructions:
1. Read the text and identify all aspects mentioned.
2. For each identified aspect, determine the opinion expressed and the sentiment (positive, negative,
neutral).
3. Summarize the findings in the format [Aspect, Opinion, Sentiment]. Each triplet must contain an
aspect, an opinion, and a sentiment.
4. If there is a one-to-many relationship between aspects and opinions, list multiple triplets.
5. Use all words from the original text to answer without any changes.
Example: (generated from training set)
Text: ...
Steps:
1. Identify aspects: ...
2. Evaluate opinions and sentiments:
- ...
3. Summarize:
- [..., ..., ...]
...
Please analyze the following text: {sentence}

Table 10: LLM prompts in different methods.
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Method Combination
14Res 14Lap 15Res 16Res

P R F1 P R F1 P R F1 P R F1

A-O-S 0.5151 0.6519 0.5755 0.3979 0.5009 0.4435 0.4334 0.6309 0.5139 0.5112 0.7101 0.5945
A-O 0.5429 0.6871 0.6066 0.4479 0.5638 0.4992 0.4788 0.6969 0.5676 0.5420 0.7529 0.6303
A-S 0.6234 0.7983 0.7001 0.4955 0.7149 0.5853 0.5539 0.7731 0.6454 0.5853 0.8274 0.6856

GPT-3.5-turbo O-S 0.5790 0.7438 0.6512 0.5016 0.6653 0.5719 0.5228 0.7281 0.6086 0.6020 0.7851 0.6814
few-shot A 0.6758 0.8455 0.7512 0.5805 0.8337 0.6844 0.6220 0.838 0.7140 0.6361 0.8739 0.7363

O 0.6138 0.7938 0.6923 0.5587 0.7505 0.6406 0.5780 0.8048 0.6728 0.6444 0.8404 0.7295
S 0.8251 0.9222 0.8710 0.7907 0.8844 0.8349 0.8286 0.9337 0.878 0.8179 0.9466 0.8776

A-O-S 0.4847 0.5905 0.5324 0.3048 0.4030 0.3471 0.3951 0.5670 0.4657 0.4403 0.6381 0.5210
A-O 0.5178 0.6308 0.5687 0.3566 0.4713 0.4061 0.4368 0.6268 0.5148 0.4711 0.6829 0.5576
A-S 0.5991 0.7807 0.6779 0.4088 0.6199 0.4927 0.5123 0.7685 0.6148 0.5199 0.8075 0.6326

GPT-3.5-turbo O-S 0.5708 0.7143 0.6345 0.4288 0.5768 0.4919 0.4834 0.6711 0.5620 0.5481 0.7511 0.6338
CoT A 0.6594 0.8538 0.7441 0.5142 0.7797 0.6197 0.5901 0.8796 0.7063 0.5702 0.8805 0.6922

O 0.6119 0.7723 0.6828 0.4930 0.6716 0.5686 0.5403 0.7500 0.6281 0.5932 0.8128 0.6858
S 0.7942 0.9374 0.8599 0.7229 0.9046 0.8036 0.7477 0.9222 0.8258 0.7494 0.9585 0.8411

A-O-S 0.4941 0.5915 0.5385 0.3378 0.4233 0.3757 0.3902 0.5608 0.4602 0.4649 0.6693 0.5486
A-O 0.5294 0.6338 0.5769 0.3968 0.4972 0.4413 0.4333 0.6227 0.5110 0.4932 0.7101 0.5821
A-S 0.6257 0.7925 0.6993 0.4518 0.6479 0.5324 0.5306 0.7824 0.6324 0.5451 0.8296 0.6579

GPT-3.5-turbo O-S 0.5735 0.7048 0.6324 0.4681 0.6168 0.5322 0.4936 0.6776 0.5712 0.5769 0.7745 0.6612
CoT+few-shot A 0.6907 0.8691 0.7697 0.5572 0.7991 0.6566 0.6026 0.8704 0.7121 0.5873 0.8783 0.7039

O 0.6186 0.7676 0.6851 0.5319 0.7100 0.6082 0.5479 0.7522 0.6340 0.6149 0.8255 0.7048
S 0.8119 0.9336 0.8685 0.7470 0.8960 0.8147 0.7775 0.9366 0.8497 0.7923 0.9733 0.8735

A-O-S 0.5411 0.6620 0.5955 0.3823 0.4861 0.4280 0.4557 0.6041 0.5195 0.5290 0.7101 0.6063
A-O 0.5757 0.7042 0.6335 0.439 0.5582 0.4915 0.5023 0.6660 0.5727 0.5551 0.7451 0.6362
A-S 0.6777 0.8208 0.7424 0.4962 0.7084 0.5836 0.5872 0.7639 0.6640 0.6019 0.8296 0.6977

GPT-4o O-S 0.6047 0.7532 0.6709 0.4863 0.6337 0.5503 0.5613 0.7325 0.6356 0.6318 0.8106 0.7102
few-shot A 0.7367 0.8679 0.7970 0.5951 0.8445 0.6982 0.6611 0.8218 0.7327 0.6471 0.8761 0.7444

O 0.6389 0.8033 0.7117 0.5517 0.7271 0.6274 0.6185 0.8070 0.7003 0.6667 0.8553 0.7493
S 0.8353 0.9336 0.8817 0.7758 0.8699 0.8202 0.8376 0.9366 0.8844 0.8346 0.9585 0.8923

A-O-S 0.4121 0.5332 0.4649 0.2698 0.3771 0.3146 0.3307 0.5093 0.4010 0.3914 0.5817 0.4679
A-O 0.4331 0.5604 0.4886 0.3122 0.4362 0.3639 0.3614 0.5567 0.4383 0.4162 0.6187 0.4977
A-S 0.6163 0.8278 0.7066 0.4486 0.6976 0.5461 0.5200 0.8125 0.6341 0.5374 0.8429 0.6563

GPT-4o O-S 0.4711 0.6246 0.5371 0.3439 0.4779 0.4000 0.4093 0.5987 0.4862 0.4752 0.6532 0.5502
CoT A 0.6667 0.8703 0.7550 0.5280 0.8143 0.6406 0.5762 0.8750 0.6949 0.5799 0.8916 0.7027

O 0.5004 0.6687 0.5724 0.3951 0.5544 0.4614 0.4558 0.6667 0.5414 0.5077 0.6979 0.5878
S 0.7859 0.9545 0.8620 0.7651 0.9133 0.8327 0.7744 0.9597 0.8571 0.7725 0.9674 0.8590

A-O-S 0.4681 0.5986 0.5254 0.2971 0.4085 0.3440 0.3508 0.5381 0.4247 0.4153 0.6109 0.4945
A-O 0.4965 0.6348 0.5572 0.3454 0.4750 0.4000 0.3911 0.6000 0.4736 0.4437 0.6518 0.5280
A-S 0.6295 0.8314 0.7165 0.4718 0.7235 0.5712 0.5262 0.8125 0.6388 0.5458 0.8429 0.6626

GPT-4o O-S 0.5255 0.6824 0.5937 0.3890 0.5347 0.4504 0.4527 0.6513 0.5342 0.5102 0.6894 0.5864
CoT+few-shot A 0.6795 0.8774 0.7658 0.5467 0.8337 0.6604 0.5898 0.8819 0.7069 0.5858 0.8916 0.7070

O 0.5610 0.7342 0.6360 0.4395 0.6119 0.5116 0.5023 0.7215 0.5923 0.5465 0.7383 0.6281
S 0.7927 0.9431 0.8614 0.7705 0.9220 0.8395 0.7890 0.9481 0.8613 0.7976 0.9703 0.8755

Table 11: Performance of different types of element combinations in ABSA tasks using LLM.

Sentence Ground Truth GPT results Ours Precision Recall

Creamy appetizers–
taramasalata, eggplant
salad, and Greek yo-
gurt(with cuccumber,
dill, and garlic) taste
excellent when on warm
pitas.

[’creamy appetizers’, ’creamy’, ’positive’],
[’creamy appetizers’, ’excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’],
[’taramasalata’, ’creamy’, ’positive’],
[’eggplant salad’, ’excellent’, ’positive’],
[’greek yogurt ( with cuccumber , dill , and garlic
)’, ’excellent’,’positive’]

[’appetizers’, ’creamy’, ’neutral’],
[’taramasalata’, ’taste excellent’, ’positive’],
[’eggplant salad’, ’taste excellent’, ’positive’],
[’greek yogurt’, ’taste excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’]

[’creamy appetizers’, ’creamy’, ’positive’],
[’creamy appetizers’, ’excellent’, ’positive’],
[’warm pitas’, ’warm’, ’neutral’],
[’eggplant salad’, ’excellent’, ’positive’],
[’greek yogurt , ’excellent’,’positive’

GPT: 1/5
Ours: 4/5

GPT: 1/6
Ours: 4/6

We left without ever get-
ting service.

[’service’, ’without ever’, ’negative’] [’service’, ’without ever getting’, ’negative’] [’service’, ’without ever’, ’negative’] GPT: 0/1
Ours: 1/1

GPT: 0/1
Ours: 1/1

I go out to eat and like
my courses, servers are
patient and never rush
courses or force another
drink.’

[’servers’, ’patient’, ’positive’] [’courses’, ’like’, ’positive’],
[’servers’, ’patient’, ’positive’],
[’servers’, ’never rush courses’, ’positive’],
[’servers’, ’never force another drink’, ’posi-
tive’]

[’servers’, ’patient’, ’positive’], GPT: 1/5
Ours: 1/1

GPT: 1/1
Ours: 1/1

Table 12: Case study
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