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Abstract

Large Language Models (LLMs) undergo ex-
tensive evaluation against various benchmarks
collected in established leaderboards to assess
their performance across multiple tasks. How-
ever, to the best of our knowledge, there is a
lack of comprehensive studies evaluating these
models’ linguistic abilities independent of spe-
cific tasks. In this paper, we introduce a novel
evaluation methodology designed to test LLMs’
sentence generation abilities under specific lin-
guistic constraints. Drawing on the ‘linguis-
tic profiling’ approach, we rigorously investi-
gate the extent to which five LLMs of varying
sizes, tested in both zero- and few-shot sce-
narios, effectively adhere to (morpho)syntactic
constraints. Our findings shed light on the lin-
guistic proficiency of LLMs, revealing both
their capabilities and limitations in generating
linguistically-constrained sentences1.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) have been significantly shaped by
the emergence and refinement of Large-scale Lan-
guage Models (LLMs) (Achiam et al., 2023; Tou-
vron et al., 2023; Jiang et al., 2023). These models
demonstrated remarkable capabilities in solving
multiple tasks and in generating coherent and con-
textually relevant texts, underscoring their poten-
tial for capturing complex linguistic structures with
high precision and accuracy (Contreras Kallens
et al., 2023). Such capabilities have been exten-
sively evaluated against several benchmarks, as
evidenced by the success of platforms such as the
OpenLLM Leaderboard (Beeching et al., 2023), in
a task-oriented scenario covering a wide range of
NLP tasks such as commonsense reasoning (Zellers
et al., 2019; Hendrycks et al., 2021a), mathemat-
ical problem-solving (Hendrycks et al., 2021b),

1Data is available at the following repository: https://
github.com/alemiaschi/LLM_profiling.

Input
Generate a sentence with 3 
verbs.

LLM

Output
The sun rises, bird sings, and 
the wind scatter leaves.

Input
Generate a sentence with 1 
subordinate proposition.

LLM

Output
Although it was raining, 
John decided to go to work.

LLM

Figure 1: Illustrated examples of the evaluation method-
ology. An LLM is prompted to generate a sentence
while adhering to a targeted linguistic constraint (e.g.
use of verbs and subordinate propositions).

etc. Nevertheless, to the best of our knowledge,
a comprehensive evaluation of LLMs’ linguistic
abilities, independent of specific tasks and possibly
cross-cutting across them, is still missing. From a
different perspective, studies on Controllable Text
Generation (CTG) indirectly tested these abilities
by evaluating LLMs in the resolution of specific
generative tasks, such as text simplification (Li and
Shardlow, 2024) or paraphrase generation (Sun
et al., 2021), when conditioned for targeted linguis-
tic constraints. Our hypothesis is that, while earlier
investigations have demonstrated the implicit en-
coding of many linguistic phenomena within the
representations of smaller models (Jawahar et al.,
2019; Tenney et al., 2019; Rogers et al., 2020; Et-
tinger, 2020; Ramnath et al., 2020), there is no
guarantee that generative LLMs can comply with
such properties in generating texts.

Building upon these premises, in this work we
present the results of an extensive evaluation de-
signed to test LLMs’ linguistic abilities to generate
sentences while adhering to targeted linguistic con-
straints representative of various morpho-syntactic
and syntactic phenomena. For this purpose, we de-
vised a methodology inspired by the ‘linguistic pro-
filing’ approach proposed by van Halteren (2004),
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“in which large numbers of counts of linguistic fea-
tures are used as a text profile”. Thus, it allows
computing the distribution of constrained linguistic
properties within generated sentences (see Figure
1). The approach was tested on the English lan-
guage and against five LLMs of different sizes,
both in zero- and few-shot scenarios. The approach
we devised aims to provide several insights into the
linguistic proficiency of LLMs, shedding light on
their capabilities and limitations in producing text
that adheres to targeted linguistic constraints.

Contributions Our main contributions are:

• We propose a new evaluation framework for
assessing the linguistic abilities of LLMs in
sentence generation based on the ‘linguistic
profiling’ approach;

• We perform an extensive evaluation of the
abilities of the models to generate sentences
adhering to specific linguistic constraints;

• We investigate how models, when linguisti-
cally constrained for increasing values of a
given linguistic property, shape all other prop-
erties of the generated sentences accordingly.

2 Related Work

The remarkable and unprecedented performance
of LLMs across diverse tasks has significantly in-
creased awareness regarding the importance of eval-
uating these models. This awareness has prompted
a comprehensive reflection on the multifaceted na-
ture of evaluation protocols (Chang et al., 2024).
Additionally, the rapid emergence of open leader-
boards has become pivotal for comparatively as-
sessing the capabilities and limitations of various
models. A well-known example is the OpenLLM
Leaderboard platform2, which provides official
rankings for evaluating the performance of mod-
els, or the Italian LLM-Leaderboard (Bacciu et al.,
2024), specifically developed to evaluate Italian
models. Existing leaderboards report LLMs’ per-
formance across a spectrum of text-understanding
and generation tasks. However, to the best of our
knowledge, evaluation methodologies specifically
designed to quantitatively assess the multilevel lin-
guistic abilities of LLMs in text generation, inde-
pendent of specific tasks, are lacking.

2https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard.

Insights in this direction have emerged from the
definition of prompting methodologies that have
been used to assess the linguistic competence of
the models in the resolution of diverse NLP tasks.
Li et al. (2022) proposed for the first time a study
devoted to evaluating GPT-2 (Radford et al., 2019)
in the resolution of 5 tasks, e.g. Part-Of-Speech
tagging, showing that the tested properties are in-
deed encoded in the pre-trained model. Follow-
ing a similar approach, Blevins et al. (2023) pro-
posed a structured prompting to evaluate the abil-
ities of GPT-neo (Black et al., 2021) and GPT-3
(Brown et al., 2020) models in the resolution of
sequence tagging tasks, e.g. Named Entity Recog-
nition. Di Marco et al. (2023) tested multilingual
BERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) in encoding morphologi-
cal (e.g. the number of nouns) and syntactic (e.g.
distinction between subject and object) properties.

On a different side, studies focused on CTG as-
sessed the linguistic capabilities of LLMs through
direct examinations of their adherence to linguistic
constraints following an instructional tuning phase
(Zhou et al., 2023) or indirectly through the anal-
ysis of their performance in diverse tasks. An ex-
ample of the latter is the study by Sun et al. (2023),
which examined the controllability of LLMs across
5 generation tasks. Specifically, they showed that
in the syntactically-controlled paraphrase genera-
tion task, ChatGPT is good at mimicking syntactic
structures from sentences, but it struggles when
the syntactic parses are directly incorporated into
the prompt. Alhafni et al. (2024), instead, investi-
gated the abilities of LLMs in adhering to lexical
and morpho-syntactic constraints, for the task of
personalized text generation.

3 Approach

We systematically evaluate the ability of several
LLMs to generate sentences with targeted linguis-
tic constraints corresponding to a set of morpho-
syntactic and syntactic properties of a sentence,
denoted as P = {p1, p2, ..., pn}. Specifically, we
prompted the models to generate sentences contain-
ing these properties within a fixed prompt structure.
In particular, for each property pi, we asked the
models to generate a fixed number of sentences
having a precise value vpi , as drawn from a set of
possible values V p = {vp1 , vp2 , ..., vpn}. For in-
stance, a prompt asking the model to generate a
sentence with two verbs will have the following
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structure: “Generate a sentence with 2 verbs”3.
Given the well-known difficulty of LLMs in

producing texts with precise numerical constraints
(Sun et al., 2023), we decided to constrain the mod-
els on increasing values of linguistic properties
V pi, in order to evaluate their ability also to gen-
erate sentences following incremental constraints.
Our premise lies in the fact that while an LLM may
struggle to precisely generate a sentence with an
exact value of a particular linguistic property, it is
likely to be sensitive to incremental values, i.e. it
can generate a sentence characterized by either the
absence or the frequent occurrence of a linguistic
property.

We tested our approach across both zero- and
few-shot scenarios. Specifically, for the few-shot
evaluation, we augmented each prompt with five
exemplar sentences for each linguistic constraint.

3.1 Linguistic Properties
The set of linguistic properties P we used as con-
straints during the generation process encompasses
diverse morpho-syntactic and syntactic phenom-
ena of a sentence. They have been shown to play
a highly predictive role when leveraged by tradi-
tional learning models on various classification
problems and can also be effectively used to profile
the knowledge encoded in the internal represen-
tations of a pre-trained Transformer-based model
(Miaschi et al., 2020; Sarti et al., 2021).
Morpho-syntactic properties. They include the
set of Part-Of-Speech (POS) defined by the Univer-
sal Dependency project (de Marneffe et al., 2021)
and can be grouped into two main subsets: con-
tent (PROPN, NOUN, VERB, ADJ, ADV, PRON)
and functional (NUM, CCONJ, AUX, ADP, DET,
SCONJ, PUNCT).
Syntactic properties. They include three sub-sets
encompassing a range of linguistic phenomena,
specifically chosen to test the diverse syntactic abil-
ities of linguistically constrained LLMs. Namely,
they are meant to profile the generated sentences
according to: i) the global and local syntactic tree
structure, including the depth of the syntactic tree
(hereafter referred to as max_depth) and length of
the longest dependency link (max_link); ii) word
order phenomena, circumscribed to the distribu-
tion of the English canonical order of the two main
elements of the sentence, i.e. pre-verbal subjects
(subj_pre) and post-verbal objects (obj_post); iii)

3The list of the prompts used for the experiments is avail-
able in the Appendix A.

use of subordination, including the proportion of
subordinative clauses in a sentence (subord_prop)
and their relative order with respect to the principal
clause, i.e. in pre- (subord_pre) and post-verbal
(subord_post) position.

3.2 Values Selection

To ensure the selection of authentic values of lin-
guistic properties, we relied on the largest En-
glish Universal Dependency (UD) treebank, i.e.
English Universal Dependency (EWT) (Silveira
et al., 2014), version 2.5 (Zeman et al., 2019). To
avoid dealing with excessively short or long sen-
tences, possibly containing non-standard values,
we filtered the treebank to retain only sentences
containing a minimum of 5 and a maximum of
40 tokens. The resulting dataset contains 19,282
sentences.

The values were extracted from EWT sentences
with ProfilingUD tool (Brunato et al., 2020), which
allows the extraction of more than 130 properties
representative of the linguistic structure underlying
a sentence and derived from raw, morpho-syntactic
and syntactic levels of annotation based on the UD
formalism.

In the few-shot configuration, we used 5 exem-
plar sentences extracted from EWT. This was done
to guarantee the comparability across the experi-
ments, since, for certain values of properties vpi ,
EWT contains no more than 5 sentences.

Sets of values. As outlined in Sec. 3, we asked
each model to generate a fixed number of sen-
tences following a set of increasing values V p =
{vp1 , vp2 , ..., vpn} for each linguistic property. In
particular, we selected five increasing values for
each linguistic property4. Specifically, we asked
each model to generate 50 sentences for every value
vpi within the set of five values Vp, thus obtaining
a total of 250 sentences per property.

3.3 Models

We tested the abilities of LLMs of different sizes,
ranging from 2 to 13 billion parameters. We opted
to leverage the instruction-tuned variants of these
models since our aim was to assess the abilities of
LLMs specifically tailored to adhere more closely
to prompts with detailed instructions. In particular,
we utilized Gemma in both 2B and 7B parameters
variants (Team et al., 2024), LLaMA-2 (7B and

4The set of properties values are reported in Appendix A.
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13B parameters) (Touvron et al., 2023) and Mistral
(7B parameters) (Jiang et al., 2023)5.

3.4 Evaluation

The constrained generation abilities of the mod-
els were evaluated according to two metrics. First,
we computed the Success Rate (SR) for each of
the five values vpi in the set of values Vp. This
was measured by the fraction of times the model
generated a sentence whose property value exactly
corresponds to the one provided. Moreover, for
monitoring the ability of the model to adhere to the
constraints in terms of increasing property values in
the set Vp, we computed the Spearman correlation
coefficients (ρ) between the increasing property
values extracted from EWT and those extracted
from the sentences generated by the models. This
metric offers an overview of how well the models
are capable of following the constraints at a macro-
level, whether increasing, decreasing, or removing
a specific property when asked. Given the acknowl-
edged complexity of evaluating LLMs, we opted
for two different evaluation metrics, since they of-
fer two distinct perspectives on models’ behavior.
To extract the set of linguistic properties P from
the models’ outputs we utilized ProfilingUD.

4 Results

In the following sections, first we present the results
obtained by the models in following the linguistic
constraints (Sec. 4.1 and 4.2). Subsequently, we an-
alyze how increasing the linguistic property values
shapes all the other sentence properties accordingly
(Sec. 4.3). Table 1 reports the results in terms of
SR and Spearman correlation (ρ) between the lin-
guistic properties extracted from the EWT treebank
and the generated sentences.

4.1 How Precisely do LLMs Follow
Constraints?

As expected, and in line with our initial hypothesis,
we generally obtained lower SR values compared
with ρ scores (see column Success Rate in Table 1).
By examining the average scores (Avg row), it is ev-
ident that Mistral is the most accurate model, both
in a zero- and few-shot scenario. This suggests
that it is the most proficient model in mastering
the (morpho)syntactic knowledge we considered.
Conversely, Gemma2 exhibits on average the poor-

5For details about compute parameters and computational
budget see Appendix B.

est accuracy. As expected, the larger model vari-
ants (Gemma-7 and LLaMA-13) outperform the
smaller variants (Gemma-2 and LLaMA-7), with a
more notable difference between the two Gemma
models. However, it appears that the type of mod-
els’ architecture also plays a main role. In fact,
Mistral, despite having fewer parameters, outper-
forms a model with almost double of its parameters
(LLaMA-13). As expected, all models tend to be-
come more accurate after the few-shot learning,
particularly the two versions of Gemma, which be-
come even more accurate than Mistral, which tends
to lose accuracy. This result is quite surprising,
given that the examples provided in this experimen-
tal scenario are the same for all models. However,
Sun et al. (2023) found a similar trend when testing
the numerical planning abilities of LLMs, showing
deteriorated performances after a few-shot phase.

Morpho-syntactic constraints. First, we ob-
served that, on average, all models tend to adhere
slightly more accurately to these constraints
rather than syntactic ones. Focusing on the differ-
ences between content and functional POS, we did
not observe notable differences among the models
in the zero-shot scenario. However, diverse trends
emerge in the few-shot scenario: the majority of
models (except the two versions of LLaMA) are
more accurate in generating sentences with an
exact number of functional words. This is es-
pecially the case of Gemma7, which becomes the
most accurate model for the majority of POS. On
the contrary, Mistral’s ability to generate sentences
with a precise number of functional words, particu-
larly adpositions (ADP) and subordinate conjunc-
tions (SCONJ), deteriorates.

Syntactic constraints. For all models, the con-
straints most challenging to adhere to in the zero-
shot scenario are the depth of the syntactic tree
of the sentence (max_depth) and the length of the
longest dependency link (max_link), both assuming
the knowledge of either global or local structure of
the sentence. Quite interestingly, the SR for these
two properties remains quite low also after the few-
shot learning, even with some differences among
the models. Specifically, Gemma-2 becomes the
most accurate model in generating sentences with
a precise max_depth and Gemma-7 the most ac-
curate one in generating sentences with a precise
max_link. On the contrary, in the few-shot scenario,
Mistral’s SR remains on average stable, but it dete-
riorates significantly in generating sentences with a
controlled number of pre-verbal subjects (subj_pre)
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Ling. properties Gemma2 Gemma7 LLaMA7 LLaMA13 Mistral Gemma2 Gemma7 LLaMA7 LLaMA13 Mistral
Success Rate Spearman

Morphosyntax 0-shot
ADJ 25.2 36.8 33.6 42 50 0.59 0.73 0.74 0.79 0.92
ADV 28.8 70.8 34.4 38.8 74 ## 0.88 0.52 0.65 0.95
NOUN 8.8 26 23.2 29.6 12.4 0.63 0.72 0.62 0.66 0.93
PRON 19.6 22.8 36.4 34 41.6 0.26 0.35 0.58 0.80 0.91
PROPN 25.6 29.2 28 22 22 ## 0.66 0.60 0.67 0.88
VERB 25.2 50.8 46.8 37.2 57.6 0.56 0.83 0.78 0.71 0.76
ADP 23.6 54.4 31.2 31.6 64.4 0.55 0.89 0.48 0.64 0.96
AUX 21.6 23.6 35.2 37.2 29.2 ## 0.29 0.32 0.56 0.96
CCONJ 24 33.2 35.6 35.2 33.2 0.27 0.33 0.35 0.33 0.42
DET 14.8 15.6 14.8 25.6 32 0.28 0.36 ## 0.28 0.79
NUM 37.6 48 43.2 40.8 65.2 0.49 0.74 0.60 0.62 0.94
PUNCT 14.8 19.2 26 23.6 29.2 0.24 0.54 0.63 0.61 0.78
SCONJ 23.2 27.6 27.6 42.4 68.8 ## 0.44 0.40 0.62 0.92
Avg 22.52 35.23 32 33.85 44.58 0.30 0.60 0.51 0.61 0.86
Syntax 0-shot
max_depth 13.6 17.6 16.4 20.4 29.2 ## 0.18 ## ## 0.76
max_link 9.2 7.2 5.2 6.8 3.6 ## 0.44 0.57 0.43 0.75
obj_post 25.2 36.4 35.2 36.4 40.8 0.21 0.47 0.37 0.38 0.59
subj_pre 20.4 21.2 22.8 26.4 63.6 ## ## 0.37 0.13 0.84
subord_post 20 36.8 29.2 29.6 32.8 0.13 0.65 0.44 0.58 0.59
subord_pre 22 23.2 24 32.8 48.8 ## 0.33 0.13 0.34 0.72
subord_prop 23.6 37.6 33.2 37.2 41.6 0.28 0.60 0.45 0.67 0.83
Avg 19.14 25.71 23.71 27.09 37.2 0.08 0.38 0.33 0.36 0.73

Morphosyntax 5-shot
ADJ 28 47.6 34.4 42.8 45.6 0.19 0.78 0.76 0.79 0.86
ADV 33.2 47.2 34.8 41.2 51.6 0.43 0.62 0.52 0.71 0.80
NOUN 43.6 20.4 34.4 28.4 18.8 0.87 0.76 0.77 0.75 0.90
PRON 38.4 45.6 34 39.2 39.6 0.63 0.65 0.78 0.85 0.81
PROPN 30.4 40.4 28.4 29.6 29.2 0.25 0.87 0.76 0.81 0.81
VERB 29.2 51.6 38.4 37.6 52 0.42 0.77 0.77 0.72 0.87
ADP 44.8 47.2 28.8 26 42 0.46 0.81 0.53 0.61 0.77
AUX 31.6 45.6 27.6 38.4 35.6 0.37 0.70 0.53 0.59 0.60
CCONJ 38 63.6 34 33.2 34.4 0.53 0.56 0.52 0.52 0.60
DET 41.2 37.6 31.6 30 28.4 0.49 0.77 0.65 0.65 0.65
NUM 34 71.6 44.8 43.2 57.6 ## 0.63 0.72 0.74 0.77
PUNCT 42 40 34 34.8 31.6 0.60 0.70 0.73 0.79 0.69
SCONJ 30.8 43.2 31.2 40.8 50.4 0.26 0.66 0.62 0.71 0.74
Avg 35.78 46.28 33.57 35.78 39.75 0.42 0.71 0.67 0.71 0.76
Syntax 5-shot
max_depth 52 24.4 30.4 22.4 38.8 0.80 0.56 0.39 0.40 0.78
max_link 22.8 47.2 10 10.8 15.6 0.40 0.86 0.64 0.52 0.70
obj_post 31.6 67.6 32 43.6 44.8 0.42 0.84 0.51 0.62 0.72
subj_pre 51.2 42.4 41.6 36.8 50 0.59 0.52 0.55 0.47 0.74
subord_post 33.2 34 26.4 27.6 34 0.58 0.59 0.53 0.54 0.77
subord_pre 47.6 33.6 34 31.6 45.6 0.12 0.24 0.33 0.35 0.56
subord_prop 33.6 50.4 34.8 32.8 34 0.39 0.79 0.68 0.66 0.74
Avg 38.86 42.8 29.89 29.37 37.54 0.47 0.63 0.52 0.51 0.71

Table 1: Success rate (%) and Spearman correlation coefficients between morpho-syntactic and syntactic properties
extracted from the gold and the generated sentences. The best and worst scores for each property and each metric
are highlighted in and respectively. Non-statistically significant correlation scores are reported with ##.

and subordinate clauses (subord_prop).
Sets of constraint values. Figure 2 illustrates,

for each model and each property, the SR scores
obtained in the generation of sentences with a value
vpi , reported on the x-axis. This analysis enables us
to identify linguistic control elements that models
can adhere to more accurately, thereby indicating
their proficiency in mastering specific property val-
ues within the spectrum of English language pos-
sibilities. Focusing on the 0-shot scenario, we can
notice that lower scores are generally associated
with the last set, which corresponds to the highest
value of each property. This suggests that models
generally encounter more difficulty in generat-
ing sentences with higher values (potentially less
frequent in the English language) of a property.
However, this trend does not hold for all features:

e.g. subj_pre exhibits increasing SR scores as the
value of the property increases from 2 to 4, and
all models struggle to generate sentences without
nouns. Conversely, scores tend to be higher when
the value is 0, which corresponds to generating a
sentence lacking a given property. These two op-
posite trends serve as evidence that, on average,
models are capable of distinguishing when they
are asked to generate a sentence with or without
a given feature. Focusing instead on the few-shot
scenario, we can observe a reverse trend: the SR
of the last group of values, slightly increases, al-
though remaining comparatively lower on average
than the others. This suggests that the models are
specializing their linguistic abilities according to
the characteristics of the provided EWT samples.
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Figure 2: Success rate (%) for each linguistic property and each model in the 0- and 5-shot scenarios. Scores are
reported for each group of feature values.

4.2 How Well Do LLMs Adhere to Increasing
Constraints?

As discussed previously, although a model may
have difficulty producing sentences with an exact
vpi , it may be able to understand the difference
between ranges of values. The Spearman column
in Table 1 shows the models’ abilities (in terms
of ρ scores) to generate sentences characterized
by a distribution of linguistic properties that vary
according to the relative increasing pvi . Although
there are general trends similar to those observed
earlier, we note some significant differences. First,
it is evident that the performance surpasses that of
the SR evaluation. This confirms our initial hypoth-
esis, indicating that while a model may struggle
in adhering to a specific value, it shows greater
sensitivity to the variations of values within the
provided prompts. Another notable difference is
that i) although Mistral’s scores tend to be on av-
erage lower in the few-shot scenarios compared to
the zero-shot ones, the model always remains the
best-performing one (Avg row of Table 1) and ii)
the difference between variants of the same model
(i.e. Gemma and LLaMA) is more pronounced than
in the previous evaluation. Additionally, the results
of this evaluation emphasize the models’ stronger
adherence to morpho-syntactic rather than syntac-
tic constraints. This suggests that the models are

better able to master categorical knowledge, which
is simpler compared to the relational competence
required to adhere to syntactic constraints.

Morpho-syntactic constraints. On average all
models demonstrate higher correlation scores when
constrained for content than for functional POS,
both in zero- and few-shot scenarios. This suggests
that for all models, it is easier to generate new
sentences containing an increasing number of
open word classes than closed ones. This result
indicates a further distinction compared to the pre-
vious evaluation method. In addition, similar to
what was previously observed, Mistral’s ability to
adhere to POS constraints appears to diminish in
the few-shot setting. An in-depth analysis reveals
that, according to the present evaluation scenario,
this is mostly due to a significant drop in its ability
to create sentences with an increasing number of
functional words.

Syntactic constraints. Differently to what was
observed in Section 4.1, in zero-shot not all models
show the lowest correlation scores for max_depth
and max_link, among all syntactic constraints.
Thus, even if all models consistently struggle to
adhere to specific values of these two syntactic
properties correctly, each model has a different
sensitivity to adhere to their incremental values.
However, similarly, after the few-shot learning, the
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Model Constraint n_tokens
0-shot 5-shot 0-shot 5-shot

Gemma2 3 10 13 0
Gemma7 3 10 10 4
LLaMA7 6 5 13 12
LLaMA13 7 10 8 6
Mistral 11 7 4 11

Table 2: Counts of how many times the ρ correlation
with the requested linguistic constraint or with sentence
length (n_tokens) is the highest w.r.t the correlations
with the other properties.

majority of the models (except Mistral) seem to
acquire this capacity and in particular, Gemma-2,
which became the most proficient model in generat-
ing sentences controlled for the depth of the syntac-
tic tree, even if we have obtained a non-significant
correlation in the zero-shot scenario. As observed
for the morpho-syntactic constraints, Mistral in the
few-shot diminishes its syntactic abilities. This is
mostly the case of the model’s capacity to generate
sentences with an increasing max_link value and
amount of subordinate clauses, specifically preced-
ing the main clause (subord_pre).

4.3 How Do Linguistic Constraints Shape
Sentence Properties?

In the previous sections, we analysed how well
LLMs can generate sentences following a linguistic
constraint. However, generating new sentences for
increasing values pvi of a given linguistic constraint
may lead to correlated changes in the distribution
of other linguistic characteristics of the sentence.
To explore this, for each controlled property we
computed the correlation between the increasing
property values in Vp (hereafter referred to as con-
trolled values) and the values of all the linguistic
properties as generated by the LLMs (referred to
as predicted values), including also the correlation
with the length of the sentence (n_tokens).

As can be seen in Figure 3, the correlation values
are mostly positive, confirming that constraining
the models to increase values of a specific linguis-
tic property implies a corresponding increase in
the others. However, some sparse cases of neg-
ative correlations can be observed, which signifi-
cantly grow overall across models in the few-shot
matrices. This is particularly evident in the case
of Mistral when constrained to generate sentences
with an increasing amount of numbers (NUM) and
proper nouns (PROPN), and Gemma-7 constrained
for determiners (DET). This suggests that the mod-
els tend to specialize according to the provided

samples, adjusting the (morpho)syntactic structure
of the generated sentences accordingly.

The diagonal scores of each matrix indicate the
correlation between the increase of the controlled
and predicted values of the same linguistic property.
Consequently, the scores tend to be higher for mod-
els with higher Spearman values, as shown in Table
1. However, upon examining how frequently the ρ
score between the same controlled/predicted con-
straint is the highest among all other correlations,
we note some notable results outlined in Table 2.
As indicated in the Constraint column, among the
20 constraints considered, such cases are relatively
infrequent, and their frequency increases from the
zero- to the few-shot scenario. This trend suggests
that constraining generation for a specific lin-
guistic element does not always primarily en-
hance that element; rather, numerous other ele-
ments are implicated. This is especially the case
of sentence length, a characteristic closely asso-
ciated with many other (morpho)syntactic proper-
ties of the sentence. This relationship is demon-
strated by the n_tokens column, which indicates
that in many cases, increasing the value of a lin-
guistic property results in longer sentences. This
holds particularly true for the zero-shot, while af-
ter the few-shot phase, the models tend to master
the ability to follow the linguistic constraints, sug-
gesting that they are not simply creating longer
sentences, but rather sentences with a varied
(morpho)syntactic structure. The only exception
is represented by Mistral. For instance, when the
models are constrained to increase the frequency of
subordinating conjunctions, there is a high correla-
tion with the distribution of subordinative clauses,
indicating the models’ proficiency in utilizing sub-
ordination. Interestingly, this holds already in the
zero-shot configuration. Differently, after the few-
shot learning phase, as the controlled values of pro-
nouns increase, the linguistic property of the gen-
erated sentence that exhibits the most significant
increase is the distribution of pre-verbal subjects.
This potentially indicates that the models (exclud-
ing Gemma2) are generating personal pronouns to
serve as subjects.

Our investigation into the (morpho)syntactic pro-
file of the generated sentences naturally leads us
to compare the combinatorial properties specific
to the English language with those specific to sen-
tences produced by the LLMs. Therefore, we con-
ducted a comparative analysis between the gener-
ated sentences and those from EWT, which are re-
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Figure 3: Correlations matrices between controlled and predicted values. The correlation with the length of
the generated sentences (n_tokens) is also reported. Gray cells ( ) correspond to non-statistically significant
correlations.

garded as representative of English language norms.
Our underlying assumption is that despite their in-
herently different content, the closer the similarities
in their (morpho)syntactic properties, the more re-
liably we can consider the generated sentences as
‘naturalistic’, i.e. as representative of English lan-
guage constructs. Thus, we computed the distance
between each matrix of Figure 3 and the matrix of
the Spearman correlation scores among the values
of the 20 considered linguistic properties in EWT
sentences6. We can consider this second matrix as
representative of the authentic combinatorial prop-
erties of English since it reports, for each property
P , the correlation among their increasing values
vpi with the same property and all the other sen-
tence properties. The average distances among all
properties are reported in Table 37. Notably, the
ranking of the models by cosine distance mostly
resemble the trends previously observed. Specifi-
cally, the distance is higher in the 0-shot, especially
for Gemma2, which exhibited the lowest correla-
tion score as shown in Table 1. This suggests that
all models instructed with only 5 exemplars EWT
sentences during the few-shot learning phase tend
to generate more naturalistic sentences.

6The matrix is reported in Appendix C.
7We report in Appendix C the row-wise cosine distances

computed per each linguistic property.

Model 0-shot 5-shot
Gemma2 0.38 0.31
Gemma7 0.28 0.20
LLaMA7 0.25 0.17
LLaMA13 0.27 0.15
Mistral 0.22 0.17

Table 3: Average cosine distances between the correla-
tion matrix of EWT and predicted correlation matrices
for each model. The lowest and highest cosine distances
are highlighted in and respectively.

5 Conclusion

In this paper, we presented the results of an eval-
uation methodology aimed at testing the linguis-
tic abilities of LLMs of different sizes to generate
English sentences according to multiple linguistic
constraints. Inspired by the ‘linguistic profiling’ ap-
proach, it is not intended to be a task-oriented evalu-
ation. Given the acknowledged multifaceted nature
of evaluating LLMs (Chang et al., 2024), it includes
two evaluation metrics showing that while models
may struggle in adhering to a specific constraint
value, they show greater sensitivity to the value
variations. The differences between the scores of
the two metrics seem to confirm that they offer two
distinct perspectives on models’ behaviour, sug-
gesting their suitability for different tasks. Namely,
for tasks requiring precise adherence to constraints,
e.g. Text Simplification or Question Answering, the
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Success Rate evaluation is preferred. Conversely,
for tasks that rely on the model’s ability to fol-
low incremental constraints, e.g. Style Transfer, an
evaluation based on Spearman correlation is more
appropriate. In addition, our results demonstrated
that linguistically-constrained models are capable
not only of generating longer sentences but also
sentences with varied (morpho)syntactic structures
that align with the EWT sentences, which are con-
sidered representative of the English language.

Limitations

In this section, we discuss the limitations of our
work. 1) Linguistic properties: Despite covering
multiple aspects of the (morpho)syntactic structure
of a sentence, the set of linguistic properties chosen
for our experiments are only a possible subset of
characteristics that can be used as a testbed in LLM
evaluation. Future work should aim to include a
broader range of linguistic properties to provide a
more comprehensive understanding of the multi-
level linguistic competence encoded in LLMs. 2)
Tested LLMs: Another limitation is the range of
LLMs we tested. Ideally, it would be beneficial to
include fully open LLMs, to avoid potential biases
associated with proprietary models. This would
also allow us to anchor the findings not only to the
size of the models (in terms of parameters) but also
to their pre-training datasets (e.g. textual genres,
linguistics characteristics), thereby offering a more
robust analysis. 3) Generated sentences: In our
experiments, we focused on the linguistic structure
of the generated sentences without assessing their
overall quality. Nevertheless, the quality check
of generated sentences is beyond the scope of our
study, as it is worth noting that different works
have specifically addressed the grammaticality and
fluency of LLMs generations (Zhang et al., 2023).
However, upon closer inspection, we observed that
the vast majority of the generated sentences were
fluent, highlighting the remarkable capabilities of
these models in producing coherent texts8. A fur-
ther research direction could concern a more com-
prehensive evaluation where the linguistic abilities
of LLMs will be compared with their fluency and
grammaticality. 4) Multilinguality: Our results
are limited to the English language, which con-
strains the generalizability of our findings to other
languages. Since our approach is based on the

8A sample of the generated sentences by the tested LLMs
is reported in Appendix D.

extraction of linguistic properties (and values) re-
lying on the UD formalism, which is inherently
multilingual, it would be relatively straightforward
to port this approach to other languages. There-
fore, in future work, it would be beneficial to test
the approach on a diverse set of languages to eval-
uate its generalizability and to explore potential
cross-linguistic differences in LLM performance.
This would provide valuable insights into how well
LLMs handle linguistic diversity and the extent to
which models trained on languages other than En-
glish exhibit different behaviours and capabilities.
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Features Prompt
POS Generate a sentence with vpi

<POS>
max_depth Generate a sentence with a tree

height of vpi in the syntactic tree
max_link Generate a sentence with the

longest dependency link of vpi
words

obj_post Generate a sentence with vpi
post-verbal objects

subj_pre Generate a sentence with vpi pre-
verbal subjects

subord_post Generate a sentence with vpi sub-
ordinate propositions following
the main clause

subord_pre Generate a sentence with vpi sub-
ordinate propositions preceding
the main clause

subord_prop Generate a sentence with vpi sub-
ordinate propositions

Table 4: Prompts used for the generation of the sentence
with the LLMs.

Features vp1 vp2 vp3 vp4 vp5
ADJ 0 1 2 4 6
ADV 0 1 2 4 6
NOUN 0 1 2 4 7
PRON 0 1 3 5 7
PROPN 0 3 6 8 11
VERB 0 1 3 5 7
ADP 0 1 2 4 6
AUX 0 1 2 4 6
CCONJ 0 1 2 3 4
DET 0 1 2 4 6
NUM 0 1 2 4 6
PUNCT 0 1 2 5 7
SCONJ 0 1 2 3 4
max_depth 2 3 4 6 7
max_link 2 6 9 12 16
obj_post 0 1 2 3 5
subj_pre 0 1 2 3 4
subord_post 0 1 2 4 6
subord_pre 0 1 2 3 4
subord_prop 0 1 2 4 6

Table 5: The sets of property values used for the experi-
ments.

A Prompts and Feature Values

As mentioned in Sec. 3, we define a set of fixed
prompts for each linguistic property out of the 20
tested in our experiments. Table 4 reports the tested
prompts. The values of the linguistic properties
V p = {vp1 , vp2 , ..., vpn} are instead reported in
Table 5.
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Figure 4: Correlation matrix of the EWT Treebank.
Each row in the matrix shows the Spearman correlation
scores between the increasing values of a linguistic prop-
erty vpi across all sentences in the treebank (y-axis) with
the same property and all the other sentence properties
(x-axis). Gray cells ( ) correspond to non-statistically
significant correlations.

B LLMs Inference Details

We generated the sentences prompting the models
using 8-bit floating points. We used two NVIDIA
GeForce RTX 4090 GPUs for the experiments.

C Relationship with EWT Treebank

This appendix contains additional materials useful
for deepening the understanding of the relation-
ship between the (morpho)syntactic profiles of sen-
tences generated by LLMs and those specific to the
English Treebank.

Specifically, Figure 4 presents the correlation
matrix among the values of each linguistic property
extracted from the selected sentences in the EWT.
This matrix is intended to provide an overview of
the combinatorial properties of the English lan-
guage as represented by the EWT. As expected, the
diagonal scores of the matrix are the highest, equal
to 1. It follows from the fact that they reflect the
correlation between the increasing value of a given
linguistic property and itself. Note that these scores
are higher than the diagonal scores of the matrices
that show the correlations between the controlled
and predicted values of the same linguistic property,
as illustrated in Figure 3. As discussed in Section
4.3, this indicates that constraining generation for
a specific linguistic property does not primarily en-
hance that property in the generated sentences, but
rather affects multiple sentence properties. As a
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Features Gemma2 Gemma7 LLaMA7 LLaMA13 Mistral
0-shot

ADJ 0.18 0.20 0.13 0.20 0.19
ADV 0.57 0.29 0.27 0.41 0.23
NOUN 0.06 0.09 0.08 0.10 0.17
PRON 0.41 0.43 0.25 0.16 0.16
PROPN 0.71 0.29 0.37 0.43 0.31
VERB 0.18 0.27 0.14 0.20 0.21
ADP 0.10 0.09 0.08 0.12 0.13
AUX 0.58 0.36 0.29 0.26 0.30
CCONJ 0.26 0.28 0.20 0.28 0.26
DET 0.18 0.21 0.34 0.27 0.21
NUM 0.10 0.42 0.21 0.15 0.47
PUNCT 0.29 0.21 0.14 0.20 0.18
SCONJ 0.43 0.24 0.21 0.14 0.14
max_depth 0.85 0.18 0.95 1.11 0.07
max_link 0.63 0.21 0.04 0.07 0.06
obj_post 0.42 0.43 0.29 0.32 0.26
subj_pre 0.54 0.80 0.29 0.38 0.42
subord_post 0.34 0.17 0.14 0.13 0.17
subord_pre 0.53 0.35 0.40 0.34 0.27
subord_prop 0.25 0.16 0.14 0.11 0.12
Avg 0.38 0.28 0.25 0.27 0.22

5-shot
ADJ 0.43 0.31 0.21 0.18 0.15
ADV 0.26 0.24 0.30 0.22 0.21
NOUN 0.09 0.09 0.08 0.09 0.13
PRON 0.26 0.14 0.08 0.13 0.09
PROPN 0.50 0.24 0.21 0.21 0.25
VERB 0.08 0.08 0.05 0.07 0.11
ADP 0.15 0.08 0.12 0.15 0.11
AUX 0.52 0.25 0.18 0.25 0.23
CCONJ 0.21 0.21 0.16 0.09 0.19
DET 0.32 0.57 0.14 0.13 0.12
NUM 1.12 0.26 0.57 0.17 0.28
PUNCT 0.22 0.18 0.12 0.12 0.16
SCONJ 0.49 0.24 0.13 0.15 0.18
max_depth 0.06 0.09 0.15 0.13 0.04
max_link 0.30 0.07 0.04 0.06 0.06
obj_post 0.32 0.15 0.17 0.19 0.19
subj_pre 0.11 0.21 0.12 0.14 0.31
subord_post 0.08 0.10 0.10 0.12 0.13
subord_pre 0.59 0.33 0.32 0.31 0.28
subord_prop 0.18 0.11 0.09 0.10 0.09
Avg 0.31 0.20 0.17 0.15 0.17

Table 6: Cosine distances between the correlation matrix
of EWT and the predicted correlation matrices for each
model. The lowest and highest cosine distances are
highlighted in and respectively.

consequence, the correlation between each prop-
erty’s increasing trend and the sentence’s length is
higher in the generated sentences (Figure 3) than in
the EWT sentences, as the length of the sentence is
highly related to the increase of any other linguistic
structures.

In Table 6 we report instead the cosine distances
between the correlation matrix of EWT and the
predicted correlation matrices (Figure 3) for each
model and each linguistic property. Unlike Table
3, which presents the average distances across all
properties, this table provides detailed distances
for each individual property. As the distance be-
tween the matrices varies significantly depending
on the linguistic characteristic considered. This
indicates that the ability of LLMs to generate sen-
tences with linguistic structures specific to the En-
glish language depends on the particular linguistic
phenomenon. Additionally, Mistral is not consis-

tently the model with the smallest distances, sug-
gesting that it is not always the most capable of
generating ’naturalistic’ sentences.

D Sample of Generated Sentences

Table 7 reports a sample of generated sentences
in the zero-shot configuration by Gemma2 and
Mistral when constrained on three linguistic prop-
erties: ADJ, NOUN and subord_prop. The full
list of the generated sentences, along with the val-
ues of their (morpho)syntactic properties, are avail-
able at the following link: https://github.com/
alemiaschi/LLM_profiling.
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Property C-value G-value LLM Sentence
ADJ 1 1 Gemma2 The beautiful moon shone brightly that night.
ADJ 4 3 Gemma2 The vibrant colors painted upon the ancient walls

whispered secrets to the curious visitor.
ADJ 6 5 Gemma2 The vast and colorful array of wildflowers presented

a delightful landscape of exquisite beauty and rare
wonder.

ADJ 0 0 Mistral John kicks the ball.
ADJ 2 2 Mistral Blue and elegant peacocks strut proudly on the lawn.
ADJ 6 6 Mistral The magnificent, radiant, enchanting, vibrant,

exquisite, breathtaking sunset left everyone in awe.
NOUN 1 2 Gemma2 There is only one thing in the world that can make

you forget how to breathe.
NOUN 4 4 Gemma2 The weary travellers traversed the desolate plains,

seeking respite from the scorching heat.
NOUN 7 7 Gemma2 A company that distributes solar panels across differ-

ent cities earned the admiration of the community
after their initiative to help the environment.

NOUN 0 0 Mistral It’s raining.
NOUN 1 1 Mistral The clock chimes.
NOUN 7 7 Mistral The monkey grabbed the red umbrella, the yellow

balloon, the wooden spoon, the green apple, the
blue bottle, and the white tablecloth.

subord_prop 0 0 Gemma2 She made a wise and insightful decision.
subord_prop 2 2 Gemma2 Despite the storm, the lighthouse remained steadfast,

projecting unwavering beams of hope that guided
sailors to safety.

subord_prop 4 3 Gemma2 The tiny spider, despite the large cage, managed to
weave a beautiful web that was admired by all who
saw it.

subord_prop 1 1 Mistral After finishing dinner, we’ll watch a movie.
subord_prop 1 2 Mistral Although it was raining, we decided to go for a

walk.

Table 7: Samples of sentences generated in the zero-shot configuration by two different LLMs, each constrained
for a subset of linguistic properties: adjectives (ADJ), nouns (NOUN) and subordinate clauses (subord_prop). The
controlled value (C-value) of each property in the prompt and the actual value (G-value) of the property in the
generated sentences are provided. Note that we reported samples where the models either correctly or incorrectly
follow the constraint. Instances of the controlled property are highlighted in bold within the generated sentences.
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