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Abstract

Recently, Large Language Models (LLMs)
and Vision Language Models (VLMs) have
demonstrated aptitude as potential substitutes
for human participants in experiments testing
psycholinguistic phenomena. However, an
understudied question is to what extent models
that only have access to vision and text modalities
are able to implicitly understand sound-based
phenomena via abstract reasoning from orthog-
raphy and imagery alone. To investigate this,
we analyse the ability of VLMs and LLMs to
demonstrate sound symbolism (i.e., to recognise a
non-arbitrary link between sounds and concepts)
as well as their ability to “hear” via the interplay
of the language and vision modules of open and
closed-source multimodal models. We perform
multiple experiments, including replicating the
classic Kiki-Bouba and Mil-Mal shape and mag-
nitude symbolism tasks and comparing human
judgements of linguistic iconicity with that of
LLMs. Our results show that VLMs demonstrate
varying levels of agreement with human labels,
and more task information may be required
for VLMs versus their human counterparts for
in silico experimentation. We additionally see
through higher maximum agreement levels that
Magnitude Symbolism is an easier pattern for
VLMs to identify than Shape Symbolism, and
that an understanding of linguistic iconicity is
highly dependent on model size.

1 Introduction

Sound symbolism refers to a perceived similarity
between speech sounds and the conceptual meanings
of the words they comprise. Evidence of this can be
found in linguistic devices such as onomatopoeia (e.g.,
“bang”, “shriek”, and “bellow”), where a word imitates
the concept it describes via its phonetic form. The
ability of Large Language Models (LLMs) and Vision
Language Models (VLMs) to reflect a sense of sound
symbolism would therefore suggest that these models
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Figure 1: Illustration of the 3 main experiments we
perform. Firstly, Shape Symbolism is a binary choice
between two pseudowords to best describe an object that is
spiky or rounded. Magnitude Symbolism involves a binary
choice between two pseudowords to best describe an object
that is small or large. Finally, Iconicity involves rating
the perceived iconicity of words, or how much their writ-
ten/phonetic form is representative of what they describe.

are capable of acquiring “phonetic” knowledge
indirectly through only the written orthographic form
of a language via patterns of grapheme combinations
(Loakman et al., 2024, 2023) and meta-level textual
discussion of sound in training data, which has im-
plications for the potential future use of LLM/VLMs
in perceptual studies usually reserved for humans
(Jain et al., 2023; Dillion et al., 2023; Aher et al.,
2023). In this work, we further explore the capability
of LLMs/VLMs to demonstrate human-like char-
acteristics in a range of psycholinguistic perceptual
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tests investigating 3 main areas of sound symbolism:
(1) Shape Symbolism (i.e., the Kiki-Bouba effect,
Ramachandran and Hubbard, 2001), where a forced
choice must be made between two pseudowords as
to which is the most appropriate to describe shapes
and entities that are spiky or rounded; (2) Magnitude
Symbolism (i.e., the Mil-Mal Effect, Sapir, 1929), a
similar test to (1), but where the entities are small or
large (rather than spiky or rounded); and (3) Iconicity
Rating (Winter et al., 2023), where LLMs are asked
to rate a series of English words on their perceived
“iconicity” (i.e., to what extent a word’s form is
perceived to be analogous to the concept or entity it
describes). We illustrate these experiments in Figure 1.

By extending these experiments to LLMs/VLMs,
our study aims to shed light on the processes under-
lying multimodal perception in language models.1

Moreover, the presence of sound symbolism in such
models could inform the development of more effec-
tive natural language processing algorithms, aiding
tasks such as sentiment analysis, emotion recognition,
and content generation that take into account more ab-
stract layers of human reasoning and perception such
as abstract connotations between words rather than se-
mantics alone (Manzoor et al., 2023). An understand-
ing of sound symbolism also has the potential to have
a profound effect on creative generation, including lan-
guage forms such as poetry and narratives (and their
accompanying illustrations). Additionally, sound sym-
bolism is a prevalent strategy used in marketing prod-
ucts to create desirable associations in potential cus-
tomers, and LLMs capable of understanding this phe-
nomenon could be used as pilot testing before using fo-
cus groups to reduce time and monetary costs (Ketron
and Spears, 2021; Motoki et al., 2020; Spence, 2012).

We summarise our main contributions as follows:2

• We perform replications of the classic psy-
cholinguistic Kiki-Bouba Shape Symbolism and
Mil-Mal Magnitude Symbolism studies with
a range of open and closed-source VLMs to
investigate if they understand the association
between speech sounds/orthographic forms and
the characteristics of entities.

• We perform an in-depth analysis of the ability
of a range of closed and open-source LLMs
to demonstrate an understanding of linguistic

1Our paper title is inspired by the Sleeping With Sirens album
of the same name: https://en.wikipedia.org/wiki/With_
Ears_to_See_and_Eyes_to_Hear.

2We release our code and resources on GitHub:
https://github.com/tylerL404/WETSAETH/.

iconicity by comparing judgements to an
existing large-scale dataset of human ratings.

• We provide a discussion of the potential sources
of sound symbolism abilities in LLM/VLMs
and potential future approaches to bolstering
these abilities, in addition to the implications of
doing so in §6.

2 Related Works

The work of early linguists, such as Saussure, touched
upon the topic of whether or not the link between
the "sign" (i.e., a word) and the "signified" (i.e., the
entity/concept to which the sign relates) is arbitrary,
with there being nothing more “boat”-esque about
the word “boat” than any other combination of
phonotactically legal sounds (de Saussure and Baskin,
2011). However, there are many types of language
where this association is seen to be non-arbitrary such
as in the onomatopoeia commonly used in literary
works (e.g., “bang” for a loud noise, or “shriek” for
a high-pitched wail), where the phonetic realisation
mirrors the concept it describes. These phenomena
as a whole are known as sound symbolism, where
there is thought to be a non-arbitrary link between
the sign and the signified, in contrast with the popular
stance of early linguistics.

Outside of onomatopoeia, sound symbolism is be-
lieved to have a range of effects on human perception,
including applying to nonsense pseudowords. For
example, even if a word was not created to explicitly
denote a known concept or entity (and therefore has
no true denotative meaning), it is nevertheless able
to manifest a connotative meaning in the mind of the
reader based on its phonological representation and/or
phonetic realisation. The first identification of these
patterns is frequently attributed to Usnadze (1924),
who gave 10 participants a series of pseudowords
alongside drawings and found a higher-than-chance
level of agreement between evaluators for which
nonsense word best described which drawing.
Perhaps the most famous example of this is in the
Kiki-Bouba effect (Sidhu et al., 2021; Ramachandran
and Hubbard, 2001; Köhler, 1929) which concerns
the allocation of the name “Kiki” to sharp, hard-edged
entities, and “Bouba” to more soft and round-edged
entities (which in the original works consisted
exclusively of 2D shapes). A similar relationship has
also been noted between the words “Mil” and “Mal”,
where the changing vowel in the phonological min-
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imal pairs3 has a relationship to perceived size, in a
phenomenon known as magnitude symbolism (where
vowels with higher frequency content are associated
with smaller entities due to the relationship between
vocal tract length and vocal productions) (Sapir,
1929). Extensive research has been performed in the
area of sound symbolism, demonstrating interesting
findings such as these patterns being largely language
agnostic (Ćwiek et al., 2022) as well as being weaker
in neurodivergent individuals (Occelli et al., 2013)
and not being yet developed in very early childhood
(Sidhu et al., 2023). Other research has also investi-
gated the exact requirements and limits of the effects
(Sidhu and Vigliocco, 2023; Passi and Arun, 2022;
Styles and Gawne, 2017; Nielsen and Rendall, 2013).

Recently, Alper and Averbuch-Elor (2023) have
investigated the ability of language models to
exhibit the Kiki/Bouba effect using CLIP and Stable
Diffusion by generating images from sound-symbolic
prompts and provide positive evidence for this
association to be present. We build upon this work in
§3 by introducing a wider range of VLMs in a forced
naming task for “real” entities as opposed to abstract
shapes, and additionally extend this to magnitude
symbolism via the Mil-Mal test in §4. We further
differentiate our work by focussing on the task of
assigning pseudowords to provided visual stimuli,
in contrast to Alper and Averbuch-Elor (2023) who
investigate the effects of different pseudowords on
the outputs of image generation models.

Additionally, in recent times, large-scale efforts
have been made to collect ratings of linguistic iconic-
ity (i.e., the level of symbolism a particular word has),
with Winter et al. (2023) collecting ratings of over 14k
English words. Some effort has been made to analyse
whether or not similar ratings would be assigned by
an LLM, where Trott (2024) used GPT-4 and reports a
moderate positive correlation across ratings. We build
upon this work in §5 by introducing a wider range of
VLMs, including open-source alternatives. Numerous
computational works in NLP have investigated other
aspects of iconicity and sound symbolism, with
Abramova and Fernández (2016) investigating the
word embeddings of different aspects of morphology
in relation to symbolism (see also Yamshchikov
et al., 2019; Liu et al., 2018). Additionally, Sabbatino
et al. (2022) investigated the emotional intensity of
nonsense words using NLP methods to determine
which phoneme combinations were most responsible.

3A Minimal Pair refers to a pair of words that differ only in
one phonological segment, such as “cat” /kat/ versus “bat” /bat/.

Figure 2: Examples of “Kiki”-style (spiky) and “Bouba”-
style (rounded) generations with DALL-E 3. In total, 50
images were generated, with 25 per condition (the entities
remaining constant). The ground truth is taken as the
majority human vote.

Several works in similar areas have also exemplified
the ability of LLMs to demonstrate perceptual
behaviour akin to humans and the potential for these
models to replace human participants in pilot studies,
as well as facilitating the scaling of evaluation in-silico
(Jain et al., 2023; Aher et al., 2023; Dillion et al., 2023;
Ramezani and Xu, 2023; Coda-Forno et al., 2023).

3 Shape Symbolism

In this section, we perform a replication of the classic
Kiki-Bouba Effect experiment (Ramachandran and
Hubbard, 2001) using a range of multi-modal LLMs.
Within the traditional set-up for the Kiki/Bouba
test, human participants are presented with either a
rounded soft-edged shape or a spiky sharp-edged
shape and asked to assign one of two pseudowords to
either. In numerous experiments (Sidhu et al., 2021;
Ramachandran and Hubbard, 2001; Köhler, 1929),
words such as “Bouba” and “Maluma” are preferred
for the latter rounded shapes, whilst “Kiki” and
“Takete” are preferred for the spiked shapes. These
findings are thought to demonstrate a non-arbitrary
link between particular speech sounds and the physical
characteristics of the shapes to which they refer.
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3.1 Methodology

Image Dataset We prompt DALL-E 3 (Betker
et al., 2023) to generate a series of images pertaining
to entities that are either “spiky” or “rounded”.
Example generations can be seen in Figure 2. We use
DALL-E 3 to generate examples rather than taking
existing images such as the traditional representation
of Kiki-Bouba in order to reduce the effects of
memorisation and exhibit finer control of the physical
characteristics of the presented entities. Furthermore,
this allows us to further investigate the extent to
which human perception of this phenomenon extends
from geometric shapes to entities in the “real” world,
therefore increasing ecological validity and more
closely representing how LLM/VLMs may be tasked
with demonstrating sound symbolism in the real
world (e.g., when naming new products for marketing
or new characters in a narrative). We use the prompt
"Generate an image from the following description:
[spiky/rounded + noun]", where we generate 25 spiky
examples, and 25 round examples (each noun is used
once per shape condition). The full list of entities can
be seen in Appendix A.1.

Pseudowords Similar to our need to generate novel
imagery to better ensure the non-memorisation of our
chosen VLMs, we must avoid bias from the epony-
mous pseudowords (i.e., “Kiki” or “Takete” for spiked
concepts, or “Bouba” and “Maluma” for round con-
cepts). As a result of this, we consult existing sound
symbolism research papers and select the following
pseudowords that are legal in English phonotactics
and imitate the same phonetic relationship that the
original terms were meant to elicit. Borrowing from
Occelli et al. (2013) we take: Kalika–Mabobe, Zaki-
Umbu, and Tiki-Giba. From Alper and Averbuch-Elor
(2023) we additionally take Kitaki-Gugagu, Hatiha-
Bodubo and Penape-Gunogu. Finally, we use the
original Kiki-Bouba names as a point of reference for
a best-case scenario where the link is explicitly learnt
from mentions within the training data.

Task Setting We imitate the standard human setup
for the Kiki/Bouba experiment (Ramachandran and
Hubbard, 2001) and present our VLMs with the
following zero-shot prompt – "Look at the [ENTITY]
in the provided image. Out of the following two op-
tions, which name would you most likely assign to the
[ENTITY]: "[KIKI-WORD]" or "[BOUBA-WORD]".
Respond with only your decision". One candidate
from either name category (i.e., Kiki or Bouba) is
presented as outlined previously, and [ENTITY]

refers to a noun used to describe the entity we wish
to be named in order to direct the LLM’s attention to
the correct element (i.e., the noun from the DALL-E
prompt). For this experiment, we set max_tokens
to 10 for the VLM responses and leave all other
hyperparameters at default. We additionally provide
an extended prompt we call informed, which prepends
"This task is related to the phenomenon of Sound
Symbolism, which is a non-arbitrary relationship
between the sound of a word and associations with its
physical attributes" to give the VLMs additional task
knowledge. This secondary prompt scenario is used
to investigate whether human-like preferences can be
encouraged from the model with additional awareness
of which elements of the image to focus on. We
present each prompt twice, placing each pseudoword
in the first or second position and then averaging the
results, to mitigate positional biases in selections.

Models We use a selection of open- and closed-
source VLMs, including multimodal GPT-4 (Ope-
nAI et al., 2023), Gemini Pro (Reid et al., 2024),
and LLaVA (Liu et al., 2023). For our open-source
LLaVA model, we investigate whether sound symbol-
ism effects arise as a direct factor of model size by in-
cluding the 7-, 13-, and 34-billion parameter versions.
Implementation details are given in Appendix A.1.

Evaluation As our human point of comparison, we
recruited 10 human evaluators with native-level En-
glish proficiency4 via internal methods (i.e., email lists
at the primary author’s institution and word-of-mouth)
and presented an analogous task to that which we
present to the VLMs. The order of image presentation
to participants is randomised to avoid order effects.

3.2 Results
Overall, in Figure 3 we see mixed results as to which
model performs best, with GPT-4 showing the highest
levels of agreement for the original Kiki-Bouba and
the added Kalika-Mabobe, Gemini performing the
best for Zaki-Umbu and Hatiha-Bodubo, and LLaVA
performing the best for the remaining conditions.
However, across all models, we see a general trend of
low agreement with human ratings, with only a few
condition/model combinations resulting in agreement
above chance (50%). Regarding the introduction of
the "informed" prompt (containing additional task
information), we see a general increase in agreement
over the Standard condition or no change in results,

4Evaluators were recruited in different waves following
revisions. All evaluators were paid above the current UK Living
Wage per hour.
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Figure 3: Results of the Shape Symbolism experiments per pseudoword pair. Fleiss’ κ (Fleiss, 1971) for inter-annotator
agreement between humans is presented next to each pseudoword pair. Arrows indicate the direction of agreement
change from the standard prompt to the informed prompt. The dashed line represents 50%, akin to chance-level agreement.
Full results in table form are presented in Table 2 within Appendix A.2. In all cases, we are comparing with the human
majority vote.

indicating that once the VLMs are aware of the
characteristic of interest (i.e., the shape of the entity),
the VLMs are more likely to agree with human
perception. However, we do see a few cases (e.g.,
Zaki/Umbu with LLaVA 7/13b, Kitaki/Gugagu with
GPT-4, and Penape/Gugagu with Gemini, GPT-4,
and LLaVA 13b) where performance decreases in the
informed condition, but these are usually only minor
decreases except for cases where there is already
very low agreement with humans. We see varying
performance across open and closed-source models.
Whilst LLaVA outperforms GPT-4 and Gemini in
many conditions, this is often close to chance-level
agreement and may be the result of label bias, versus
the closed models’ systematic disagreement.5 Finally,
regarding our open-source LLaVA models at different
sizes, we interestingly see that the 13B model
outperforms the 7B and 34B models at times, most
noticeably in Tiki-Giba. However, the largest 34b

5We see LLaVA variants demonstrate a clear preference for
whatever pseudoword is presented in the first position.

model performs best overall, in line with expectation
(though by a small margin). Additionally, the Penape-
Gunogu pair presents difficulty for our tested models,
with systematic disagreement with humans by Gemini
and GPT-4, suggesting the influence of additional
information contained within the models’ training
data as to the connotations of these pseudowords.

4 Magnitude Symbolism

Whilst the Kiki-Bouba effect demonstrates sound sym-
bolism in relation to the perceived spikiness/roundness
of an object, magnitude symbolism refers to the
non-arbitrary relationship between certain vowels and
the perceived physical size of the entity they refer to
and is commonly demonstrated through the names
“Mil” and “Mal”, where the high front vowel in “Mil”
is associated with small entities, and the low back
vowel of “Mal” is associated with larger entities.
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Figure 4: Examples of “Mil”-style (tiny) and “Mal”-style
(huge) generations with DALL-E 3. In total, 50 images
were generated, with 25 per condition (the entities
remaining constant). The ground truth is taken as the
majority human vote.

4.1 Methodology
Image Dataset We follow the same process as §3.1,
but use the characteristics of “tiny” and “huge” with
the following prompt: "Generate an image of a/an
[ENTITY] in isolation, with something else to help
judge scale/perspective". We use the same noun en-
tities as in §3.1. Example generations are in Figure 4.

Pseudowords As in the Shape Symbolism experi-
ment (§3), we wish to mitigate potential bias from the
memorisation capability of the VLMs. To this end, we
use the “Mil” and “Mal” often associated with this test
(Sapir, 1929) in addition to other phonetically similar
pseudowords. Additionally, to avoid gross extraneous
factors arising from using words that are meaningful
in English (such as “mil” referring to millilitres, and
“mal” being associated with badness, i.e., malprac-
tice/malnourishment), we create the minimal pairs
Dil/Dal, Zil/Zal, Geel/Gaal, Beel/Baal, Weel/Waal,
and Leel/Laal. The former three exploit the contrast
between /I/ and /a/, whilst the latter exploit /i/ and
/A/, with a range of consonants for variation.

Task Setting We use the same setup as in §3.1 but
present the models with one candidate from either

Magnitude-based name category (i.e. “Mil”-esque or
“Mal”-esque pseudowords), rather than Kiki/Bouba
related pseudowords. We additionally provide an
extended prompt we call informed, which prepends
"This task is related to the phenomenon of Magnitude
Symbolism, which is a non-arbitrary relationship
between the sound of a word and its association with
size and scale" to give additional task knowledge.

Models & Evaluation We use the same models
and evaluation protocols as in §3.1.

4.2 Results

Overall, similar to §3 we see mixed results in
Figure 5 as to which model performs best, but GPT-4
demonstrates higher levels of agreement across most
conditions in a clearer pattern than what was seen in
the Shape Symbolism experiment. In several cases,
we see agreement that is significantly in line with
human perception, with 90+% agreement (e.g., GPT-4
in the Zil-Zal and Weel-Waal conditions). When
comparing the standard and informed prompts, we
see a much more substantial increase in performance,
indicating that the VLMs fundamentally understand
the relationship between sound and perceived size,
but were focused on other aspects of the provided
imagery when not explicitly directed towards size in
the standard condition. Regarding the LLaVA models,
we see the mid-sized 13B variant outperforming the
7B and 34B models in most conditions (rather than
performance increasing alongside parameter count).

5 Iconicity Ratings

In this section we investigate whether LLMs demon-
strate human-like associations between word forms
and the entities/concepts they symbolise.6 Winter et al.
(2023) present a dataset of 14k+ human judgements
of iconicity to which we compare our LLM ratings
(where, on a 7-point scale, “how” scored 1.3, whilst
“woof” scored 6.8 due to being onomatopoeic).

5.1 Methodology

Models We use a range of modern LLMs for this
task. Specifically, GPT-4 (OpenAI et al., 2023),
GPT-3.5-Turbo (Ouyang et al., 2022), LLaMA-2
(7B, 13B and 70B) (Touvron et al., 2023), FLAN-T5
(base and XL) (Raffel et al., 2023; Chung et al., 2022),
and Mistral-7B (Jiang et al., 2023). Implementation
details are presented in Appendix A.1.

6We treat this as VLMs “imitating” an understanding of
sound symbolism, as they of course cannot actually hear.
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Figure 5: Results of the Magnitude Symbolism experiments per pseudoword pair. Fleiss’ κ (Fleiss, 1971) for
inter-annotator agreement between humans is presented next to each pseudoword pair. Arrows indicate the direction of
agreement change from the standard prompt to the informed prompt. The dashed line represents 50%, akin to chance-level
agreement. Full results in table form are presented in Table 3 within Appendix A.2. In all cases, we are comparing with
the human majority vote.

Existing work by Trott (2024) has investigated
whether or not GPT-4 is able to reflect human judge-
ments and reported a Spearman correlation of 0.59.
However, in trying to verify these findings, we see that
our ratings differ quite strongly. For this reason, we
re-run this experiment on the first 7k entries of Winter
et al. (2023) and compare GPT-4 ratings as of late
November 2023 with the human judgements in Win-
ter et al. (2023) as well as the GPT-4 judgements from
Trott (2024) that use an earlier version of GPT-4.7 In
the other cases, we use the entire 14,772 entry dataset,
except for GPT-3.5-Turbo, where we remove 209
words that triggered OpenAI’s safeguarding filters.

Prompting We adopt the same prompting strategy
as Trott (2024). In doing so, we use a modified
version of what was presented to human participants
in Winter et al. (2023). In summary, we request

7We test only on the first 7k entries due to cost. Whilst GPT-4-
Turbo is markedly cheaper, this would not be a true reproduction.
Please note that GPT-4o was not released at the time.

ratings of iconicity on a 1-7 scale, where 1 is not at
all iconic, and 7 is highly iconic. The full prompt
presented to the models is available in Appendix C.2.

5.2 Results

Correlations between each LLM and human judge-
ments are presented in Table 1. We observe that the
ability of LLMs to rate the iconicity of English words
appears to be dependent on model size. For instance,
we see no true correlation with any of our FLAN
T5 models (base = 250M, XL = 3B) or our smallest
LLaMA-2 variant (7B), but we begin to see significant
correlations with another 7B parameter model, that
being instruction-tuned Mistral-7B. When investi-
gating our larger models, we see the 13B LLaMA-2
variant demonstrate Spearman/Pearson correlations
of .379 and .381, respectively. Interestingly, however,
our largest LLaMA-2 model with 70B parameters per-
forms worse at this task than the 13B variant as seen
previously, with correlations of .304/.332. Regarding
OpenAI models, GPT-3.5-Turbo demonstrates a
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moderate correlation with humans at .420/.439.
Finally, GPT-4 presents the strongest correlations.
However, we observe that (on the first 7k entries),
the version of GPT-4 we use (late November 2023)
performs worse than the earlier version presented by
Trott (2024), further demonstrating how continuously
updated models also require continuous evaluation
due to receiving additional training data (Spearman
correlations of 0.537 vs 0.575, respectively).

Spearman Pearson

Model Corr. p Corr. p

FLAN-T5 Base -.035 <.001 -.037 <.001
FLAN-T5 XL .000 .991 -.002 .824
Mistral-7B-Instruct .382 <.001 .377 <.001
LLaMA-2 7B -.003 .687 .005 .544
LLaMA-2 13B .379 <.001 .381 <.001
LLaMA-2 70B .304 <.001 .332 <.001
GPT-3.5-Turbo .420 <.001 .439 <.001
GPT-4 (Trott, 2024) .575 <.001 .615 <.001
GPT-4 (Ours, Nov. ’23) .537 <.001 .594 <.001

Table 1: Correlations between human ratings from Winter
et al. (2023) and LLMs. GPT-4 ratings were only collected
for the first 7k examples due to cost. Trott (2024) report
a Spearman correlation of .590 across the entire dataset.
p refers to p-value.

6 Discussion

The Source of Sound Symbolism Across our
experiments, we see evidence that LLM/VLMs are
capable of making decisions that are similar to those
of humans in sound symbolism tasks, whilst only
having access to textual and visual modalities, while
human decisions are believed to be grounded in sound.
We hypothesise several reasons for the emergence of
sound symbolism in LLM/VLMs.

Firstly, due to human languages exhibiting
mostly regular orthography, auditory information
in speech is moderately reflected in the spellings of
words via grapheme sequences (a characteristic that
grapheme-to-phoneme conversion models have long
exploited). Through this, text-based models are able
to learn associations between grapheme sequences
and semantics, based on more abstract characteristics
than morpheme combinations alone, such as phonaes-
themes (Kaushal and Mahowald, 2022). Whilst such
models have no embodied understanding of sound,
such statistical patterns pose a viable signal for the
implicit learning of sound-based phenomena.

Secondly, such associations between sounds (or
grapheme combinations) and physical characteristics
are naturally present in language, such as in poetry,

narratives, or descriptions of entities that are cute,
scary, small, or large, and are consequently paired
with relevant visual stimuli in image captions when
training vision modules for multimodal systems.
However, such associations are subtle and not entirely
ubiquitous. For example, whilst the high front vowel
/I/ typically associated with small entities is present
in "tiny" and "mini", the word "small" itself possesses
a low back vowel /O:/.

As a result, the relatively weak performance of our
tested models could also be explained by the relative
lack of sound-symbolism-heavy language in the
models’ training data which is overshadowed by more
prosaic language forms that do not exploit these phe-
nomena as readily. This in turn would explain why the
closed-source models we tested (e.g. GPT-4/Gemini)
outperform open-source models due to the significant
(assumed) differences in parameter size, allowing
the larger closed models to retain more information
regarding sound symbolism within the weights, in
addition to being continuously updated with RLHF.

The results of our multimodal experiments addition-
ally demonstrate that under certain conditions, VLMs
show systematic disagreement with human labels,
indicating the potential interference of additional
knowledge contained within language model training
data that influences the associations made between
pseudowords and images that are not present in
humans. However, it is important to note that in our
experiments we compare language model selections
against the majority vote or mean scores assigned by
humans. Consequently, this results in a comparison
to an "ideal" human by necessity, overlooking
individual differences in perception across humans
(where for a decision to be "human-like", it has to
match a choice made by any human, rather than the
majority). Consequently, higher agreement levels
can be observed when compared to the choices of
individual humans, as inter-human agreement is not
perfectly aligned in these tests.

Future Directions As a result of LLM/VLMs not
being able to fully reflect human preferences in tasks
regarding sound symbolism, it remains a promising
future direction to explicitly pre-train language
models on more sound-symbolism heavy datasets
or explicitly include sound-symbolism-related tasks
into the training or finetuning of these models for
use on related downstream tasks (such as creative
writing and marketing). Additionally, investigating
the reason behind model predictions is a promising
direction, such as through additional prompting to
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generate textual justifications, or investigating the
visual attention of VLMs to investigate whether they
are attending to characteristics closely associated with
the concepts being tested (e.g., spikes).

7 Conclusion

We have shed light on the processes underlying multi-
modal perception and understanding in language mod-
els. To do so, we performed a series of tests on modern
VLM/LLMs regarding their ability to exhibit an under-
standing of sound symbolism. Through comparison
with human judgements, we see that VLMs are able to
approximate human perception in sound symbolism
tests under certain conditions, such as when informed
of the nature of the study (via the informed prompts),
but struggle overall. We additionally see that magni-
tude symbolism potentially presents an easier pattern
for VLMs to recognise than shape symbolism, with
selections having a higher agreement with humans on
Magnitude Symbolism tests than Shape Symbolism.
We also see that the ability of LLMs to emulate
human judgements of iconicity scales more linearly
with model size. These findings indicate room for
future research on more explicit inclusion of abstract
perceptual properties into language model training
in order to facilitate better in silico experimentation
and improve performance on other downstream tasks.

Limitations

Owing to the relatively small sample sizes (i.e., the
number of pseudoword pairs in the VLM-related
tasks), we treat this work as a proof-of-concept
as to the ability of LLMs to perform well in the
tasks we present and encourage other parties to
engage in similar research at scale if their situation
permits. Additionally, whilst sound symbolism is
believed to be largely language agnostic, we only use
native English speakers and pseudowords that are
phonotactically legal in English in the present work.
Additionally, some of our chosen pseudowords are
taken from existing literature. Whilst we investigated
the prevalence of these words in the context of sound
symbolism within internet resources in order to
mitigate memorisation from training data, it remains
possible that some level of data contamination may
be present (although the overall low performance
casts doubt on this). Furthermore, we present only
the orthographic forms of the pseudowords to human
participants, resulting in potential variation between
speakers regarding phonetic realisation.

Ethics Statement

We believe in and firmly adhere to the Code of Con-
duct in the performance of this work and the methods
involved. All of our imagery generations were pro-
vided via accessing the respective OpenAI APIs, and
in discovering imagery that triggered OpenAI’s built-
in guardrails, we replaced these images with other
options. All human evaluation was performed by con-
senting adult participants who were provided with a
participant information sheet and subsequently signed
a consent form in line with the Ethics procedures of the
primary author’s institution (who approved the ethical
validity of the study performed herein). Additionally,
we present this work as a demonstration of interesting
behaviours within (very) large LLMs, but do not con-
done the wholesale replacement of human participants
in related psycholinguistic/cognitive/psychological
experimentation, but rather view in silico experimen-
tation as a useful tool primarily for prototyping.
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A Appendix

A.1 Implementation Details
Kiki-Bouba & Mil-Mal For the Kiki-Bouba
and Mil-Mal sound symbolism experiments, we
access gemini-pro-vision via the Google Gemini
API. For GPT-4, we use gpt-4-vision-preview via the
OpenAI Chat Completions API. For our open-source
LLaVA models at various sizes, we specifically use
llava-v1.6-vicuna-7b-hf, LLaVA-v1.6-vicuna-13b-hf
and LLaVA-v1.6-vicuna-34b-hf from publicly
available checkpoints on Hugging Face. We use
default hyperparameters for all models to test
their “off-the-shelf” capability. Human participants
were shown generated imagery with the binary
pseudo-word options via Google Forms. The order
of image presentation was randomised, whilst the
order of the pseudowords was kept static. Separate
Google Forms were used for each pseudoword pair.
Participants were able to complete the forms at their
own pace within a period of approximately 2 weeks.

Iconicity Ratings For our iconicity rating ex-
periments, we use the following models from
Hugging Face: FLAN-T5 Base (google/flan-t5-
base), FLAN-T5 XL (google/flan-t5-xl) Mistral-7B
(mistralai/Mistral-7B-Instruct-v0.2), LLaMA-2 (meta-
llama/Llama-2-7b-hf, meta-llama/Llama-2-13b-hf,
meta-llama/Llama-2-70b-hf ). We access GPT-3.5-
Turbo and GPT-4 via the OpenAI Chat Completions
API. We also keep all model hyperparameters at
default settings. For the LLaVA models, we modify
the prompt slightly by adding choice labels (A/B)
rather than requesting the pseudoword itself to be
returned in order to directly access single-token
output probabilities.

Entities Within our DALL-E 3 generations in the
aforementioned experiments, we select the following
list of entities in order to have a range of characteristics
(including animate and inanimate entities): alien, bed,
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Figure 6: Examples of ImageNet and DALL-E 3
image pairings for both the soundscape description and
backtranslation experiments. Here, the GPT-4 description
of the ImageNet image has been used in a prompt to
generate the novel DALL-E 3 image.

bird, bottle, cat, chair, desk, dog, door, fish, flower,
fruit, ghost, house, insect, lizard, machine, person,
plane, planet, snake, toy, tree, vegetable, and vehicle.

A.2 Full Results

Shape Symbolism (Kiki/Bouba) Table 2 presents
the full unabridged results for the Sound Symbolism
experiments presented in §3.

Magnitude Symbolism (Mil/Mal) Table 3 presents
the full unabridged results for the Magnitude
Symbolism experiments presented in §4.

B Soundscape Description

We additionally ask to what extent a VLM (specif-
ically GPT-4) is able to demonstrate a sense of
“hearing” via being tasked with describing a perceived
soundscape (including the use of onomatopoeia) from
an image. We use images from 2 different sources
for the following experiments.

B.1 Methodology

Real-World Firstly, due to requiring high-quality
publicly available images to represent the real-life

condition, we utilise a subset of ImageNet.8 To select
our candidate images, 2 authors of this work selected
a list of images that are believed to represent a wide
range of soundscapes (e.g. a peaceful beach, violent
waves, a desert, a car, a plane, etc.), These 50 were se-
lected from a unique set of images that all represented
different classes under the ImageNet taxonomy. Im-
portantly, some of the chosen images were not usable
with GPT-4 due to containing entities that trigger
OpenAI’s safeguarding restrictions (such as an image
of a baby in a cot, or a couple of hunters with rifles).
In such cases, we replace these images with alternative
selections that the 2 authors agree are high quality. 9

Generative AI For our GenAI-based imagery,
we use scene descriptions from GPT-4 (which are
generated as part of the output for this task) of the
ImageNet imagery and prompt DALL-E 3 to generate
images from these descriptions via the OpenAI
API. In doing so, we then create a parallel dataset
of 25 real-world images, 25 LLM descriptions of
said images, 25 DALL-E 3 generations using the
aforementioned LLM descriptions, and finally, 25
LLM descriptions of the DALL-E 3 generations.
This therefore allows us to ensure that our testing is
robust to novel images, as ImageNet imagery is likely
to have been a part of the training set for GPT-4’s
vision module. Additionally, this also facilitates an
investigation as to how consistent GPT-4 is at scene
description and generation (analogous to testing
Neural Machine Translation via back-translation).

Task Setting We perform this task in the following
way. For each condition (ImageNet/DALL-E), we
present GPT-4 with the following prompt: "Imagine
that the provided image is a window to another world.
Describe the scene in 3 paragraphs discussing the
following aspects: Paragraph 1: Describe what
you see in the image, including the entities and the
perceived environment. Paragraph 2: Describe what
you hear in the image (i.e. the soundscape), including
sounds from the identified entities, as well as the
perceived environment. Paragraph 3: In reference to
the sounds mentioned in Paragraph 2, describe these
sounds using onomatopoeia (i.e. words that sound like
the sounds you are trying to describe). Provide your
answer to Paragraph 3 as a series of bulletpoints.".

8Specifically imagenet-1k, available at https:
//huggingface.co/datasets/imagenet-1k

9For example, some ImageNet images are hard to decipher as
they are intended to test the capabilities of computer vision models.
We opt to avoid such instances and show preference towards
images that present a full scene, as opposed to a single object.
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Prompt Kiki/Bouba (κ .731)

Gemini ↑ GPT-4 ↑ LLaVA-7b LLaVA-13b ↑ LLaVA-34b ↑
Standard 60% (κ .200) 86% (κ .720) 50% (κ .000) 44% (κ -.120) 50% (κ .000)
Informed 63% (κ .260) 88% (κ .760) 50% (κ .000) 46% (κ -.080) 53% (κ .060)

Prompt Kalika/Mabobe (κ .716)

Gemini ↑ GPT-4 ↑ LLaVA-7b LLaVA-13b ↑ LLaVA-34b ↑
Standard 43% (κ -.140) 58% (κ .160) 50% (κ .000) 52% (κ .040) 50% (κ .000)
Informed 63% (κ .260) 66% (κ .320) 50% (κ .000) 55% (κ .100) 51% (κ .020)

Prompt Zaki/Umbu (κ .753)

Gemini ↑ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b ↓ LLaVA-34b ↑
Standard 64% (κ .277) 58% (κ .152) 50% (κ .002) 54% (κ .103) 50% (κ .000)
Informed 73% (κ .464) 70% (κ .402) 48% (κ .000) 52% (κ .065) 51% (κ .019)

Prompt Tiki/Giba (κ .655)

Gemini ↓ GPT-4 ↓ LLaVA-7b LLaVA-13b ↑ LLaVA-34b ↑
Standard 49% (κ -.020) 43% (κ -.140) 50% (κ .000) 58% (κ .160) 50% (κ .000)
Informed 50% (κ .000) 36% (κ -.280) 50% (κ .000) 63% (κ .260) 51% (κ .020)

Prompt Kitaki/Gugagu (κ .670)

Gemini ↑ GPT-4 ↓ LLaVA-7b ↑ LLaVA-13b ↑ LLaVA-34b ↑
Standard 41% (κ -.180) 47% (κ -.060) 48% (κ -.040) 47% (κ -.060) 50% (κ .000)
Informed 54% (κ .080) 43% (κ -.140) 51% (κ .020) 50% (κ .000) 57% (κ .140)

Prompt Hatiha/Bodubo (κ .706)

Gemini ↑ GPT-4 ↑ LLaVA-7b LLaVA-13b ↑ LLaVA-34b ↑
Standard 61% (κ .220) 47% (κ -.060) 50% (κ .000) 46% (κ -.080) 50% (κ .000)
Informed 78% (κ .560) 52% (κ .040) 50% (κ .000) 54% (κ .080) 51% (κ .020)

Prompt Penape/Gunogu (κ .627)

Gemini ↓ GPT-4 ↓ LLaVA-7b ↑ LLaVA-13b ↓ LLaVA-34b
Standard 38% (κ -.240) 29% (κ -.420) 47% (κ -.060) 38% (κ -.240) 50% (κ .000)
Informed 26% (κ -.480) 22% (κ -.560) 50% (κ .000) 35% (κ -.300) 50% (κ .000)

Prompt ALL (excl. Kiki/Bouba)

Gemini ↑ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b ↑ LLaVA-34b ↑
Standard 49.33% (κ -.014) 47.83% (κ -.045) 49.17% (κ -.016) 49.71% (κ -.013) 50.40% (κ .012)
Informed 57.33% (κ .147) 48.17% (κ -.036) 50.17% (κ .003) 51.50% (κ .034) 51.83% (κ .037)

Table 2: Results of the Shape Symbolism experiments per pseudoword pair. Fleiss’ κ (Fleiss, 1971) for inter-annotator
agreement between humans is presented next to each pseudoword pair. For each VLM and word pair, we present Cohen’s
κ for agreement between the models and the human majority vote (Cohen, 1960). The model with the highest agreement
per prompt is in bold, and the best performing open-source model (i.e., LLaVA variant) is underlined. Arrows next to
model names indicate the direction of agreement change from the standard prompt to the informed prompt.

Following this, we ask 5 human evaluators (a
subset from the main experiments), to evaluate the 3
paragraphs on a 1-5 scale, where 1 = very bad, and 5
= excellent (i.e., one rating for the visual description,
one for the soundscape description, and one for the
assignment of onomatopoeia to the soundscape). The
instructions presented to human participants for this
task are presented in Appendix C.3.10 The order of
image presentation to participants is randomised to
avoid order effects.

10We present detailed instructions in order to moderate the
understanding of what we would consider the different ratings
to be indicative of in order to minimise individual perceptions
of the instructions.

B.2 Results

The results of the soundscape description task can be
seen in Table 4 and an example generation is presented
in Figure 7. Overall, it can be seen that human evalua-
tors thought positively of all 3 elements asked for from
GPT-4, including the visual description (which would
explain performance in the following section), sound-
scape description and onomatopoeia, with all criteria
averaging at least 4. This therefore demonstrates
that GPT-4 is able to provide convincing descriptions
of auditory experiences when provided with a valid
image. One key thing to note is that whilst the stan-
dard deviations are consistently low, onomatopoeia
demonstrates the lowest consistently. This is to be ex-
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Prompt Mil/Mal (κ .529)

Gemini ↑ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b ↑ LLaVA-34b ↓
Standard 58% (κ .152) 50% (κ .031) 51% (κ .018) 50% (κ .000) 50% (κ .000)
Informed 75% (κ .512) 76% (κ .529) 50% (κ .000) 52% (κ .043) 44% (κ -.109)

Prompt Dil/Dal (κ .331)

Gemini ↓ GPT-4 ↓ LLaVA-7b ↓ LLaVA-13b ↑ LLaVA-34b
Standard 42% (κ -.168) 55% (κ .098) 58% (κ .149) 50% (κ .000) 50% (κ .000)
Informed 43% (κ -.128) 51% (κ .010) 50% (κ .000) 55% (κ .122) 50% (κ .000)

Prompt Zil/Zal (κ .245)

Gemini ↓ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b LLaVA-34b ↑
Standard 48% (κ -.003) 58% (κ .149) 51% (κ .022) 61% (κ .222) 50% (κ .000)
Informed 47% (κ -.031) 93% (κ .860) 50% (κ .000) 61% (κ .207) 54% (κ .083)

Prompt Geel/Gaal (κ .577)

Gemini ↑ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b ↑ LLaVA-34b
Standard 56% (κ .120) 54% (κ .080) 49% (κ -.020) 58% (κ .160) 50% (κ .000)
Informed 66% (κ .320) 72% (κ .440) 50% (κ .000) 65% (κ .300) 50% (κ .000)

Prompt Beel/Baal (κ .560)

Gemini ↑ GPT-4 LLaVA-7b LLaVA-13b ↓ LLaVA-34b
Standard 59% (κ .180) 82% (κ .640) 48% (κ -.040) 57% (κ .140) 50% (κ .000)
Informed 73% (κ .460) 82% (κ .640) 50% (κ .000) 63% (κ .260) 51% (κ .020)

Prompt Weel/Waal (κ .541)

Gemini ↑ GPT-4 ↑ LLaVA-7b LLaVA-13b ↓ LLaVA-34b ↑
Standard 55% (κ .100) 60% (κ .200) 50% (κ .000) 58% (κ .160) 50% (κ .000)
Informed 75% (κ .500) 90% (κ .800) 50% (κ .000) 55% (κ .100) 51% (κ .020)

Prompt Leel/Laal (κ .580)

Gemini ↑ GPT-4 ↑ LLaVA-7b LLaVA-13b ↓ LLaVA-34b ↑
Standard 53% (κ .060) 53% (κ .060) 50% (κ .000) 53% (κ .060) 50% (κ .000)
Informed 67% (κ .340) 71% (κ .420) 50% (κ .000) 51% (κ .020) 55% (κ .100)

Prompt ALL (excl. Mil-Mal)

Gemini ↑ GPT-4 ↑ LLaVA-7b ↓ LLaVA-13b ↑ LLaVA-34b ↑
Standard 52.17% (κ .048) 58.50% (κ .169) 51.00% (κ .019) 56.17% (κ .127) 50.00% (κ .000)
Informed 61.83% (κ .243) 76.50% (κ .528) 50.00% (κ .000) 58.33% (κ .168) 51.83% (κ .037)

Table 3: Results of the Magnitude Symbolism experiments per pseudoword pair. Fleiss’ κ (Fleiss, 1971) for inter-annotator
agreement between humans is presented next to each pseudoword pair. For each VLM, we present Cohen’s κ for
agreement between the models and the human majority vote (Cohen, 1960). The model with the highest agreement per
prompt is in bold, and the best performing open-source model (i.e., LLaVA variant) is underlined. Arrows next to model
names indicate the direction of agreement change from the standard prompt to the informed prompt.

pected when evaluating a literary device, as different
people may have different preferences regarding ono-
matopoeia they would use for certain circumstances.
Additionally, there may be cases where GPT-4 has
described something such as a stream and assigned
the onomatopoeia “whoosh”, which to one individual
may sound too aggressive and resemble fast-moving
water, when their own interpretation of a stream is
more gentle (perhaps better suiting “lap lap”).

C GPT-4 Image “Backtranslation”

We use the images and descriptions we collected to
test the internal consistency of the OpenAI pipeline.11

11As of late November 2023.

Soundscape Descriptions

Mean SD

IN Visual 4.19 0.46
IN Soundscape 4.42 0.33
IN Onomatopoeia 4.24 0.47

D3 Visual 4.59 0.39
D3 Soundscape 4.55 0.36
D3 Onomatopoeia 4.24 0.46

Table 4: Average ratings given to the visual, soundscape,
and onomatopoeia descriptions given by GPT-4 across 2
conditions. IN refers to images from ImageNet, and D3
refers to DALL-E 3 generations.
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Figure 7: An example output from GPT-4 when asked to describe the visuals, soundscape, and perceived onomatopoeia
of an image. In this case, the image is the ImageNet generation of a teddy solving a crossword seen in Figure 6. ono
refers to onomatopoeia.

In effect, our newly generated images demonstrate
a process analogous to the back-translation used in
Neural Machine Translation. To test the consistency
of this process, we ask our evaluators to rate the
generations on the following criteria: To what extent
does the DALL-E 3 generated image present the
same visual scene as the original ImageNet source
image (on a scale of 1 to 5, where 1 = barely related,
and 5 = all the main elements are captured).12

12We specify to evaluators that this task is indifferent to
changes in art style, as we have not specified to DALL-E 3 that
its generations should be photorealistic.

C.1 Results

Table 5 presents the results of our human evaluation.
As we can see, the consistency of the pipeline
is viewed favourably, with a mean rating of 4.18
across the 25 image pairings and a low standard
deviation of 0.49. Importantly, no comparison was
rated lower than 3 by any evaluator. This result is
quite surprising given the 1̃00-word descriptions
provided by GPT-4, indicating that GPT-4-vision is
highly capable of noticing the most salient aspects
of any image for recreation. The result of automatic
evaluation comparing the descriptions from ImageNet
and DALL-E 3 images are presented in Table 6,
echoing a similar pattern to the human evaluation.
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Ratings

Mean SD
4.18 0.49

Table 5: Average human ratings given to the consistency
of the generation pipeline when using GPT-4 descriptions
of an ImageNet image to prompt DALL-E 3 to replicate.
We refer to DALL-E 3 as D3 and ImageNet as IN.

Automatic Evaluation

BS-P BS-R BS-F R-L BLEU

0.84 0.80 0.82 0.13 0.04

Table 6: Comparison across the visual, soundscape, and
onomatopoeia descriptions from GPT-4 with the ImageNet
condition as the reference and the DALL-E 3 condition
as the prediction. BS-P/R/F stands for BERTScore
Precision/Recall/F1, respectively. R-L is ROUGE Longest
Common Subsequence. Hugging Face implementations
were used for all metrics.

C.2 Full Iconicity Prompt
The full prompt provided to LLMs in the iconicity
rating experiment is presented in Figure 8.

C.3 Materials Provided to Participants
Figure 9 presents the instructions given to partici-
pants when rating the consistency of the OpenAI
GPT-4/DALL-E 3 pipeline, whilst Figure 10 presents
the instructions presented to participants in the
soundscape rating experiment. For Kiki-Bouba
and Mil-Mal, the setup was straightforward, and
participants were simply asked to select the name
they believed to be the most appropriate.
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Figure 8: The prompt provided to our LLMs in the iconicity judgement experiment.
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Figure 9: Instructions provided to participants when asking to rate the consistency between ImageNet and DALL-E 3.
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Figure 10: Instructions provided to participants when asking to rate the quality of the descriptions provided by GPT-4.
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