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Abstract

Program induction (PI) has become a promis-
ing paradigm for using knowledge bases (KBs)
to help large language models (LLMs) an-
swer complex knowledge-intensive questions.
Nonetheless, PI typically relies on a large num-
ber of parallel question-program pairs to make
the LLM aware of the schema of a given KB,
and is thus challenging for many low-resourced
KBs that lack annotated data. To this end, we
propose KB-Plugin, a plug-and-play frame-
work that enables LLMs to induce programs
over any low-resourced KB. Firstly, KB-Plugin
adopts self-supervised learning to encode the
detailed schema information of a given KB
into a pluggable module, namely schema plu-
gin. Secondly, KB-Plugin utilizes abundant
annotated data from a rich-resourced KB to
train another pluggable module, namely PI plu-
gin, which can help the LLM extract question-
relevant schema information from the schema
plugin of any KB and utilize the information
to induce programs over this KB. Experiments
show that KB-Plugin outperforms SoTA low-
resourced PI methods with 25× smaller back-
bone LLM on both large-scale and domain-
specific KBs, and even approaches the perfor-
mance of supervised methods.

1 Introduction

Recently, the usage of knowledge bases (KBs) as
external resources to assist large language models
(LLMs) (Brown et al., 2020; Zhao et al., 2023) in
answering complex knowledge-intensive questions
has gained increasing study (Pan et al., 2023; Li
et al., 2023b; Jiang et al., 2023). Among various
methods, program induction (PI) has emerged as a
promising paradigm due to its good interpretability
and capacity to support complex reasoning opera-
tions (Cao et al., 2022a; Gu et al., 2023; Li et al.,
2023b). Given a KB, PI methods employ LLMs to
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Figure 1: Illustration of KB-Plugin. By simply plugging
the schema plugin of a KB and the PI plugin, the LLM
is injected with the schema information of this KB and
the ability to induce programs over it.

convert a question into a multi-step program (e.g.,
KoPL (Cao et al., 2022a) and S-expression (Su
et al., 2016)), whose execution against the KB pro-
duces the answer. Despite strong capacity, most PI
methods rely on individual training for each KB us-
ing a large number of manually annotated question-
program pairs (Xie et al., 2022; Li et al., 2023b;
Luo et al., 2023). As for many low-resourced KBs
that lack program annotations, how to enable LLMs
to utilize their knowledge via PI remains a challeng-
ing problem.

Recent studies (Cao et al., 2022b; Li et al.,
2023a) have indicated that the mapping from ques-
tions to program sketches (i.e., composed func-
tions without arguments, such as Find→ Relate→
FilterConcept) primarily correlates with lan-
guage compositional structures and is thus transfer-
able across KBs. Hence the main challenge for PI
over low-resourced KBs is to determine the argu-
ment for each function (Gu and Su, 2022), which re-
quires LLMs to link natural language in a question
to corresponding schema items (i.e., pre-defined
relations and concepts) in the KB (e.g., in Fig 1,
the relation “part of network” and the concept

“rail network” are arguments of function Relate
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and FilterConcept, respectively), so it is impor-
tant to provide LLMs adequate information of each
schema item. A straightforward approach is to di-
rectly feed all the schema information to the LLM
via a prompt. However, the broad schema of KBs
and limited context windows of LLMs make this
infeasible (Li et al., 2023a).

Regarding the above challenges, we are inspired
by recent studies that claim the parameters of
LLMs can encode task-specific knowledge (Sax-
ena et al., 2022; Moiseev et al., 2022; Wang et al.,
2022). Our basic idea is to encode detailed schema
information of a KB into the parameters of a
pluggable module (e.g., LoRA (Hu et al., 2022)),
namely schema plugin, so as not to be hampered
by limited context windows like the prompt-based
approach. Then we use another pluggable mod-
ule, namely PI plugin, to help the LLM capture
question-relevant schema information from the
schema plugin and utilize this information to in-
duce programs. As illustrated in Fig. 1, by sim-
ply plugging the schema plugin of a KB and the
PI plugin, the LLM is injected with the schema
information of this KB and the ability to induce
programs over it. We name this framework KB-
Plugin. To implement KB-Plugin, there remain
two key problems: (1) By what task can sufficient
information about each schema item in a KB be
encoded into its schema plugin? (2) Without an-
notated data from the low-resource KBs, how can
the PI plugin learn to extract and utilize question-
relevant schema information from their schema
plugins to induce programs over these KBs?

To solve the above problems, we propose a novel
plugin learning and transfer framework. First, in-
spired by prior studies (Bordes et al., 2013; Lin
et al., 2015) which show that schema items in a
KB can be well represented by fact triples involv-
ing them, we propose to learn schema plugins via
a self-supervised triple completion task. Specifi-
cally, given a KB, we plug a schema plugin into
the LLM and tune the plugin to enable the LLM
to complete relevant triples for each schema item
in the KB. In this way, the detailed schema infor-
mation can be encoded into this schema plugin.
As for PI plugin learning, inspired by Cao et al.
(2022b), we utilize abundant program annotations
from a rich-resourced KB. Specifically, we use
this KB to generate multiple KBs with different
schemas via alias replacement and train a schema
plugin for each of them. Given a training ques-
tion, we plug these schema plugins alone with the

PI plugin into the LLM in turn and train the PI
plugin to make the LLM generate the correct pro-
gram whose arguments conform to the currently
plugged schema plugin. In this way, the PI plugin
is forced to learn the skills of extracting and utiliz-
ing question-relevant schema information from the
plugged schema plugin for PI over the correspond-
ing KB. Besides, since the PI plugin is trained to be
compatible with different schema plugins, it can be
directly transferred to other low-resourced KBs and
generalize well with their schema plugins, even if
most schema items in these KBs are unseen during
its training.

In experiments, we take Wikidata-based KQA
Pro as the rich-resourced KB to train the PI plu-
gin, and evaluate our framework on three large-
scale Freebase-based datasets (WebQSP, GraphQ,
and GrailQA) and two domain-specific datasets
(MetaQA for movie domain and SoAyBench for
academic domain). The results show that KB-
Plugin outperforms SoTA low-resourced PI meth-
ods with 25× smaller backbone LLM, demonstrat-
ing its scalability to extremely complex schemas
and adaptability to various domains. On GraphQ,
GrailQA, and MetaQA, KB-Plugin even surpasses
the performance of several supervised methods.

Our contributions include: (1) proposing KB-
Plugin, a novel plug-and-play framework that en-
ables LLMs to induce programs over any low-
resourced KB; (2) empirically validating the effi-
cacy of KB-Plugin for both large-scale and domain-
specific KBs through extensive experiments.

2 Related Work

Low-resourced Program Induction. Recently,
there have emerged three types of PI methods for
low-resourced KBs that lack program annotations,
but each of them has limitations: (1) Few-shot pro-
gram generation methods (Gu et al., 2023; Li et al.,
2023a) utilize in-context learning ability of LLMs
to induce programs with a handful of demonstra-
tions. However, they can only determine function
arguments based on the schema item names due to
limited context windows, so they face challenges
in distinguishing similar schema items. They also
suffer from long inference time due to excessive
LLM calls or executing a vast number of poten-
tial programs; (2) Few-shot data generation meth-
ods (Li et al., 2023c) also employ in-context learn-
ing with LLMs to convert automatically sampled
programs into questions, and train a smaller PI
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model using the generated question-program pairs.
Nonetheless, the generated questions may not align
with programs and often lack diversity due to the
limited number of program templates; (3) Simi-
lar to us, program transfer methods (Cao et al.,
2022b) also leverage program annotations from a
rich-resourced KB to aid PI for low-resourced KBs.
However, they mainly focus on program sketch
transfer and perform poorly without fine-tuning
using annotated question-answer pairs from low-
resourced KBs to adapt to their schemas. While
KB-plugin obviates the reliance on any annotated
data from low-resourced KBs, thereby enabling
LLMs to easily utilize their knowledge.
Plug-and-Play Modules for LLMs. In recent
years, various parameter-efficient modules have
been proposed to adapt LLMs to different down-
stream tasks (Lester et al., 2021; Hu et al., 2022;
Li and Liang, 2021; Pfeiffer et al., 2021) . These
modules show plug-and-play characteristics and
can inject task-specific knowledge and skills into
LLMs (Xiao et al., 2023; Zhang et al., 2023). Some
researchers also found that pluggable modules for
similar tasks encode knowledge and skills into the
parametric space in similar ways (Qin et al., 2021;
Su et al., 2022), providing basic rationality for the
transferability of our PI plugin.

3 Problem Formulation

In this section, we first provide some necessary
definitions and then formulate our task.
Knowledge Base. A knowledge base (KB) can
be formalized as KB = {C, E ,R, T }, where C, E ,
R and T represent the sets of concepts, entities,
relations and fact triples, respectively. Specifically,
R = {re, rc} ∪ Rl, where re is “instance of”, rc
is “subclass of”, and Rl is the set of other gen-
eral relations. Correspondingly, T can be divided
into there disjoint subsets: (1) “instance of” triples
Te = {(e, re, c)|e ∈ E , c ∈ C}; (2) “subclass of”
triples Tc = {(ci, rc, cj)|ci, cj ∈ C}; (3) relational
triples Tl = {(ei, r, ej)|ei, ej ∈ E , r ∈ Rl}. Ele-
ments in C and R are also called the schema items
of KB.
Program Induction. Given a KB KB and a nat-
ural language question x =

〈
w1, w2, · · · , w|x|

〉
,

program induction (PI) aims to convert x into a
program y, which would return the correct an-
swer when executed against KB. Formally, y
is composed of functions that take a specific
type of arguments, and can be serialized as y =

〈
f1(arg1), · · · , ft(argt), · · · , f|y|(arg|y|)

〉
, ft ∈

F , argt ∈ E ∪ C ∪ R ∪ {∅}. Here, F is a set of
pre-defined functions that cover basic reasoning op-
erations on KBs. In this work, we use KoPL (Cao
et al., 2022a) as our programming language.
Task Formulation. Suppose we have access
to (1) source KB KBS and source domain data
DS = {(xSi , ySi )}n

S

i=1, which are question-program
pairs for KBS ; (2) target KB KBT , which is low-
resourced and has no annotated data. The goal is to
learn a PI model MT

PI that can translate a question
xT for KBT into program yT , whose execution on
KBT produces the correct answer.

4 Methodology

As mentioned in the introduction, to enable a LLM
M to induce programs over low-resourced KBT ,
KB-Plugin learns two types of pluggable modules
for M : (1) KB-specific schema plugin msc, which
stores information of schema items of a given
KB within its parameters; (2) KB-transferable PI
plugin mPI , which encodes the skill of inducing
programs over any KB by extracting and utiliz-
ing question-relevant schema information from the
schema plugin of this KB. It is trained with KBS

and DS but can be directly transferred to KBT .
The final PI model for KBT can be formulated as

MT
PI = plug(M, {mT

sc,mPI}), (1)

where mT
sc is the schema plugin of KBT and

plug(M, {·}) means plugging the plugins in {·}
into M . In the following, we will first introduce the
architecture of two types of plugins, then present
our plugin learning and transfer framework.

4.1 Plugin Architecture

A host of studies have demonstrated that knowl-
edge and skills can be encapsulated within the pa-
rameters of LLMs (Saxena et al., 2022; Moiseev
et al., 2022; Wang et al., 2022). Inspired by this,
we implement both schema plugin and PI plugin
with LoRA (Hu et al., 2022), a popular type of
pluggable module for LLMs with a few trainable
parameters.

Specifically, let LM be the set of weight matrices
in the self-attention modules and MLP modules of
a LLM M . For each Wi ∈ Rd×k in LM , LoRA
modifies its forward pass from h = Wix to h =
(Wi + AiBi)x, where Ai ∈ Rd×r and Bi ∈ Rr×k

are two matrices with rank r ≪ min(d, k). A
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Figure 2: Overview of our plugin learning and transfer framework: (a) Generate multiple source KBs with different
schemas and augmented source domain data via alias replacement; (b) Learn an individual schema plugin for each
source KB and the target KB via self-supervised schema-relevant triple completion task; (c) Train the PI plugin
by inducing program for each source KB when plugging it into the LLM along with the corresponding schema
plugin. (d) Transfer the PI plugin by plugging it into the LLM with the schema plugin of the target KB and inducing
programs over the target KB with constrained decoding.

LoRA plugin mj is thus defined as

mj = {(Amj

i , B
mj

i )|Wi ∈ LM}, (2)

and plug(M, {m1, . . . ,mN}) means re-
placing all Wi ∈ LM with Wi +∑N

j=1A
mj

i B
mj

i . If we train M ′ =
plug(fz(M), {fz(m1), . . . , fz(mN−1),mN})
on a certain task, where fz(·) represents parameter
freezing, knowledge and skills related to this
task will be encoded within mN . Although other
parameter-efficient pluggable modules such as
prefix-tuning (Li and Liang, 2021) can also serve
as our plugin modules, the advantages of LoRA are
that it does not increase input length or inference
latency.

4.2 Plugin Learning and Transfer Framework

There are two primary challenges for learning
schema plugins and the PI plugin: (1) How to en-
code sufficient information about each schema item
of a KB into a schema plugin? (2) How to ensure
that the PI plugin can extract and utilize useful
schema information for program induction from
schema plugins of different KBs, instead of ignor-
ing the schema plugin entirely, directly learning to
induce program over source KB during training,
and consequently losing transferability?

To handle these challenges, we propose a
novel plugin learning and transfer framework,

which is illustrated in Fig. 2 and contains
four steps: (1) Generate multiple source KBs
KBS1 , . . . ,KBSN with different schemas and aug-
mented data DS

a = {(xSj , yS1
j , . . . , ySN

j )}nS

j=1

based on KBS and DS via alias replacement,
where ySi

j is the golden program for question
xSj on KBSi ; (2) Learn individual schema plugin
mSi

sc for each KBSi via self-supervised schema-
relevant triple-completion task; (3) Train PI plu-
gin mPI by requiring MS1

PI , . . . ,M
SN
PI to gener-

ate yS1
j , . . . , ySN

j given xSj , respectively, where
MSi

PI = Plug(fz(M), {fz(mSi
sc),mPI}), so that

mPI is forced to extract and utilize schema infor-
mation from each mSi

sc ; (4) Learn schema plugin
mT

sc for KBT using the same method in (2) and
take MT

PI = plug(M, {mT
sc,mPI}) as the final PI

model for KBT . We will introduce each step in
detail in the following.

4.2.1 KB Generation and Data Augmentation

We utilize the aliases of each schema item to gener-
ate multiple KBs with different schemas based on
KBS = {CS , ES ,RS , T S}. As shown in Fig. 2(a),
for each schema item v ∈ CS ∪RS , we replace v
with vi, a randomly chosen alias of v, and record
ai(v) = vi. For example, the concept “basketball
team” can be replaced with “basket club” and the
relation “member of sports team” can be replaced
with “plays for”. Relevant triples in T S are also
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modified with the same alias. In this way, KBSi

that has a different schema than KBS is created. In
practice, we let KBS1 = KBS and repeat above
process N −1 times to generate KBS2 , . . . ,KBSN .

Similarly, for each question-program
pair (xSj , y

S
j ) ∈ DS , suppose ySj =〈

f1(arg1), · · · , ft(argt), · · · , f|ySj |(arg|ySj |)
〉

,

we replace every argt ∈ CS ∪ RS with ai(argt)
to obtain ySi

j , which is the correct program for
xSj executable on KBSi . We repeat the process
for KBS1 , . . . ,KBSN to obtain augmented data
DS

a = {(xSj , yS1
j , . . . , ySN

j )}nS

j=1.

4.2.2 Learning of Schema Plugin
Many studies about knowledge graph embedding
show that the information of schema items in a KB
can be represented by not only their names but also
triples containing them (Bordes et al., 2013; Lv
et al., 2018). Inspired by this, we propose to en-
code schema information into schema plugins via
a self-supervised triple completion task. As illus-
trated in Fig. 2(b), to learn the schema plugin msc

for a given KB KB = {C, E ,R, T }, where T =
Te ∪ Tc ∪ Tl, we train Msc = Plug(fz(M),msc)
to complete relevant triples for each concept and
relation in KB in sequence-to-sequence form as
follows.

First, for each concept c ∈ C, we require
Msc to complete relevant “instance of” triples
to aggregate the semantic features of entities be-
longing to c. Specifically, we sample K triples
(ek, instance of, c) from Te (see Appendix B for de-
tailed sampling strategy), and use each sampled
triple to construct two pairs of verbalized queries
and answer as the inputs and expected outputs for
Msc:

• “⟨ek⟩ || instance of ” → “⟨c⟩”;
• “⟨c⟩ || contains instance” → “⟨ek⟩”.

Here, ⟨ek⟩ and ⟨c⟩ means filling in the names of ek
and c, respectively.

Besides, the information of a concept is also
related to its sub- and super-concepts. Therefore,
for each triple (ci, subclass of, cj) ∈ Tc, we also
construct two queries with answers for Msc:

• “⟨ci⟩ || subclass of ” → “⟨cj⟩”;
• “⟨cj⟩ || contains subclass” → “⟨ci⟩”.
Finally, the information of a relation can be

learned from its name and the elements connected
by it. Therefore, for each r ∈ Rl, we sample K
triples (ei, r, ej) from Tl, choose ci, cj such that

(ei, instance_of, ci), (ej , instance_of, cj) ∈ Te,
and use each (ei, ci, r, ej , cj) to construct three
queries with answers:

• “⟨ei⟩ | ⟨ci⟩ || ⟨r⟩ | forward” → “⟨cj⟩ | ⟨ej⟩”;
• “⟨ej⟩ | ⟨cj⟩ || ⟨r⟩ | backward” → “⟨ci⟩ | ⟨ei⟩”;
• “⟨ei⟩ | ⟨ci⟩ || what relation || ⟨cj⟩ | ⟨ej⟩” →

“⟨r⟩”.
We empirically find that including ci, cj benefits
the information encoding for both concepts and
relations.

Let the set of all generated queries and answers
be Dsc = {(qi, ai)}li=1, then msc is trained to min-
imize

Lsc = −
∑

(qi,ai)∈Dsc

logP (ai|qi), (3)

where P (ai|qi) is the likelihood of Msc generating
ai given qi, defined by token-level cross entropy.
Note that the learning of msc does not rely on any
additional data except the KB itself, so we can train
a schema plugin for any KB.

4.2.3 Learning of PI Plugin
As illustrated in Fig. 2(c), to learn the PI plu-
gin mPI , we first train individual schema plu-
gin mSi

sc for each KBSi . After that, given
(xSj , y

S1
j , . . . , ySN

j ) ∈ DS
a , where xSi is a ques-

tion and ySi
j is the golden program for xSj

on KBSi , we train mPI by feeding xSi to
MS1

PI , . . . ,M
SN
PI and requiring them to gener-

ate yS1
j , . . . , ySN

j , respectively. Here, MSi
PI =

Plug(fz(M), {fz(mSi
sc),mPI}). The overall objec-

tive can be formulated as:

LPI = −
∑

(xS
j ,y

S1
j ,...,y

SN
j )∈DS

a

N∑

i=1

logPi(y
Si
j |xSj ),

(4)
where Pi(y

Si
j |xSj ) is the likelihood of MSi

PI gener-
ating ySi

j given xSj , defined by token-level cross
entropy. To generate programs conforming to dif-
ferent schemas given the same question, mPI must
learn to (1) choose correct functions according to
the compositional structure of the question; (2)
extract and utilize question-relevant schema infor-
mation for argument determination from the cor-
responding schema plugin, because it is the only
difference among MS1

PI , . . . ,M
SN
PI .

4.2.4 Plugin Transfer
Once the PI plugin mPI is trained, we directly
transfer it to KBT as in Fig 2 (d), and let MT

PI =
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plug(M, {mT
sc,mPI}) be the PI model for KBT .

Here, mT
sc is the trained schema plugin for KBT

using the method in Sec. 4.2.2. Since mT
sc and mSi

sc

are trained with the same tasks, we expect that they
encode schema information into their parameters in
similar ways (Qin et al., 2021; Su et al., 2022), so
mPI can also extract schema information from mT

sc

to help PI over KBT . Besides, to guarantee MT
PI

generating valid programs which do not cause exe-
cution error or return an empty answer, we adopt
constrained decoding, i.e., after MT

PI generates
f1(arg1), . . . , ft(argt), we enumerate all the valid
ft+1(argt+1) following the method of Gu et al.
(2023) and restrict MT

PI to only generate one of
them. More details are in Appendix C. We also
use beam search to retain top-k programs during
decoding to provide MT

PI with a more global view.

5 Experiments

5.1 Datasets

Source Domain. We use KQA Pro (Cao et al.,
2022a) as the source domain dataset. It provides
117,970 question-program pairs with diverse com-
positional structures based on a small subset of
Wikidata (Vrandecic and Krötzsch, 2014).

Target Domain. We use WebQSP (Yih et al.,
2016), GraphQ (Su et al., 2016), GrailQA (Gu
et al., 2021), MetaQA (Zhang et al., 2018) and
SoAyBench (Wang et al., 2024) as the target do-
main datasets. Among them, WebQSP, GraphQ,
and GrailQA are based on Freebase (Bollacker
et al., 2008). Their KBs contain a large number
of schema items and cover various domains, thus
can evaluate the effectiveness of KB-Plugin for
large-scale KBs. MetaQA and SoAyBench are two
datasets in movie and academic domains, respec-
tively, and can evaluate the adaptability to specific
domains in detail. For MetaQA, since most of the
relations in its KB have been covered by KQA Pro,
we remove these relations and relevant question-
program pairs from KQA Pro to avoid data leakage.
For SoAyBench which is originally a tool-using
dataset based on Aminer (Tang et al., 2008) APIs,
we construct its KB by collecting relevant data
from these APIs. Table 1 shows the statistics of
these datasets and their overlap with source KBs
generated from KQA Pro. Most schema items in
the target KBs are unseen in source KBs and most
test cases also involve unseen schema items.

Dataset |DM| |R| |Ru| |C| |Cu| |Dtest| |Dtest
u |

KQA Pro - 1209 - 794 - - -
WebQSP 56 412 296 446 363 1639 1083
GraphQ 70 9569 8931 7298 7004 2395 2340
GrailQA(dev) 86 3938 3524 2018 1868 6763 6578
GrailQA(test) 86 3938 3524 2018 1868 13231 -
MetaQA 1 9 9 9 3 39093 39093
SoAyBench 1 17 11 5 3 792 756

Table 1: Statistics for source and target domain datasets
and their overlaps with 16 source KBs generated from
KQA Pro. |DM| / |R| / |C| denotes the number of
domains / relations / concepts in their KBs. |Ru| / |Cu|
denotes the number of relations / concepts unseen in
the source KBs. |Dtest| and |Dtest

u | denotes the numbers
of test cases and test cases that involve unseen schema
items, respectively.

5.2 Baselines

For WebQSP, GraphQ, GrailQA, and MetaQA, we
mainly compare KB-Plugin with low-resourced PI
methods including (1) few-shot program genera-
tion methods Pangu (Gu et al., 2023) and KB-
BINDER (Li et al., 2023a); (2) few-shot data gen-
eration method APS (Li et al., 2023c); (3) program
transfer method ProgramTrans (Cao et al., 2022b),
where we adopt its results without fine-tuning on
target KBs for fair comparison. In addition, we
also provide the results of several representative
supervised models for comparison.

For SoAyBench, we choose tool-using methods
that were evaluated on it as baselines, including
DFSDT (Qin et al., 2023) and SoAy (Wang et al.,
2024). These methods solve questions by prompt-
ing LLMs to call Aminer APIs in specific orders via
in-context learning. Their processes of determining
the composition of APIs and filling in arguments
for each API can also be viewed as program induc-
tion.

We provide detailed descriptions of all the base-
lines and our evaluation metrics in Appendix D.1.

5.3 Implementation Details

In experiments, we use Llama2-7B (Touvron et al.,
2023) as the backbone LLM of KB-Plugin and set
the rank r of LoRA to 16. The number of parame-
ters of each plugin is consequently 40M, which is
extremely lightweight. The aliases of schema items
in KQA Pro are directly obtained from Wikidata.
The number of generated source KBs is set to 16 to
balance performance and training efficiency. The
sampling number K in schema plugin learning is
set to be 500, 500, 50, 100, 3000, and 1000 for
KQA Pro, WebQSP, GraphQ, GrailQA, MetaQA,
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Method WebQSP GraphQ GrailQA
Test Dev

Supervised

QGG 74.0 - 36.7 -
BERT+Ranking - 25.0 58.0 -
ArcaneQA 75.6 31.8 73.7 76.8
RnG-KBQA 75.6 - 74.4 76.9

Low-resourced

ProgramTrans 53.8∗ - - -
APS 51.1 - 57.7 62.1
KB-BINDER 53.2 39.5 56.0 -
Pangu 54.5 43.3 62.7 -
KB-Plugin 57.2 / 61.1∗ 49.5 62.7 65.0

w/o schema plugin 41.0 42.8 - 57.5
w/ mS0

sc 48.0 37.9 - 51.0

Table 2: F1 results on WebQSP, GraphQ, and GrailQA.
∗ means using oracle topic entities.

Method 1-hop 2-hop 3-hop

Supervised

KV-Mem 96.2 82.7 48.9
PullNet 97.0 99.9 91.4
EmbedKGQA 97.5 98.8 94.8
TransferNet 97.5 100.0 100.0

Low-resourced

KB-BINDER 93.5 99.6 96.4
KB-Plugin 97.1 100.0 99.3

w/o schema plugin 92.6 99.0 98.9
w/ mS0

sc 90.4 93.6 88.6

Table 3: Hit@1 results on MetaQA.

and SoAyBench, respectively, to limit the size of
the constructed data for schema plugin learning.
We use beam size 5 for all experiments. More
details can be found in Appendix D.2.

5.4 Main Results
The results are presented in Table 2, 3 and 4. Com-
pared with Pangu, the SoTA PI method for low-
resourced KBs, KB-Plugin improves the F1 score
by 2.7% and 6.2% on WebQSP and GraphQ, re-
spectively, and achieves comparable performance
on GrailQA, despite Pangu using 25× larger model
(175B Codex) and 100 annotated examples from
each dataset. Moreover, Pangu needs to call Codex
hundreds of times for a question to score each can-
didate program, while our model selects the op-
timal program via beam search, which is signifi-
cantly faster and less costly. Besides, since Pro-
gramTrans, KB-BINDER, and Pangu all link ques-
tions to schema items according to their names only,
the superiority of KB-Plugin also demonstrates the
benefits of aggregating additional schema informa-

Method Acc

DFSDT (gpt-3.5-turbo) 45.7
DFSDT (gpt-4) 59.7
SoAy (gpt-3.5-turbo) 67.7
SoAy (gpt-4) 88.7
KB-Plugin 90.8

w/o schema plugin 70.8
w/ mS0

sc 64.0

Table 4: Accuracy results on SoAyBench.

Dataset Method Dtest
seen Dtest

unseen

WebQSP
KB-Plugin 64.9 53.3
w/o schema plugin 47.6 37.6
Gain +17.4 +15.7

GraphQ
KB-Plugin 40.0∗ 49.7
w/o schema plugin 70.9∗ 42.2
Gain -30.9∗ +7.5

GrailQA-dev
KB-Plugin 69.0 64.8
w/o schema plugin 64.9 57.3
Gain +4.1 +7.5

Table 5: F1 Results of KB-Plugin with and without
schema plugin. Dtest

unseen and Dtest
seen denote the sets of

test cases that involve and do not involve schema items
unseen in the source KBs, respectively. ∗ means the
results may not be indicative since there are only 55
cases in Dtest

seen of GraphQ.

tion from relevant triples via schema plugin learn-
ing. KB-Plugin even surpasses several supervised
models on GraphQ and GrailQA, which demand
training using thousands of annotated samples from
target KBs, showing the effectiveness of transfer-
ring prior knowledge from rich-resourced KBs.

On MetaQA and SoAyBench, KB-Plugin outper-
forms all the low-resourced baselines even though
they use more powerful LLMs (i.e., Codex, gpt-3.5-
turbo, and gpt-4), indicating that our framework
also performs well for domain-specific KBs. In
particular, KB-Plugin achieves strong performance
on par with supervised SoTAs on MetaQA even if
it does not see any target relations from the source
domain.

5.5 Ablation Study

To demonstrate the effect of schema plugins, we
remove them from our framework, i.e., we di-
rectly train a PI plugin using the source domain
data and transfer it to the target KBs without train-
ing any schema plugins. According to Table 2, 3,
4, and 5, the performance of KB-Plugin without
schema plugins is severely degraded, especially on
the test cases that involve schema items unseen in
the source KBs. The experimental results illustrate
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Question I Which airport to fly into Rome?

Pangu Find(Rome) Relate(tourist attractions) (%)
KB-Plugin w/o schema plugin Find(Rome) Relate(country) FilterConcept(sovereign state) (%)

KB-Plugin Find(Rome) Relate(transport terminus) FilterConcept(airport) (!)

Relevant Triples
(London, transport terminus, Luton airport), (London, instance of, citytown),

(Luton airport, instance of, airport)

Question II What role did Paul Mccartney play in the Beatles?

Pangu Find(Paul Mccartney) Relate(instruments played) (%)
KB-Plugin Find(Beatles) Relate(member) Find(Paul Mccartney) ReverseRelate(member) And() Relate(role) (!)

Source Domain Data Pair
What is Jane Lynch’s role in Glee?

Find(Glee) Relate(starring) Find(Jane Lynch) ReverseRelate(starring) And() Relate(character role)

Table 6: Two typical questions from the test set of WebQSP that KB-Plugin succeeds while Pangu fails. The
incorrect functions and arguments are marked as red, while the correct ones are marked as green.
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Figure 3: KB-Plugin performance with different num-
bers of generated source KBs.

that (1) direct PI transfer is difficult due to the sub-
stantial difference between the schemas of source
and target KBs; (2) schema plugins of target KBs
effectively encode adequate schema information
via the triple completion task, and the PI plugin
can extract and utilize question-relevant schema in-
formation from these schema plugins even though
it is never trained with them. In addition, if we
adopt the schema plugin of a source KB, e.g., mS0

sc ,
for the target KBs, the performance of KB-Plugin
also drops heavily, showing the necessity of using
matched schema plugin.

To show the rationality of our PI plugin learning
method, we evaluate the performance of PI plu-
gins trained with different numbers of generated
source KBs on WebQSP, GraphQ, and GrailQA,
and present the results in Fig. 3. The PI plugin
trained with only one source KB performs poorly,
implying that it ignores the schema plugin entirely
and directly learns PI over this source KB. Once
there emerges a new source KB with a different
schema, the performance of the trained PI plugin
increases substantially, and there is an apparent
trend that the performance will increase with more
generated source KBs. These results prove that
training the PI plugin over multiple source KBs

succeeds in forcing the PI plugin to learn to ex-
tract and utilize schema information from different
schema plugins, and the learned skill can be trans-
ferred to target KBs.

5.6 Case Study
To better showcase the advantages of KB-Plugin
over in-context learning PI methods, we present
a case comparison between KB-Plugin and Pangu
in Table 6. Question I shows the effect of schema
plugin learning and utilization. Both Pangu and
KB-Plugin without schema plugin struggle to pre-
dict the correct relation “transport terminus” be-
cause it is unseen in the demo examples or source
KBs. The complete KB-Plugin, however, effec-
tively encodes the information that “transport ter-
minus” is a possible relation between “citytown”
and “airport” into the schema plugin via complet-
ing relevant triples, and succeeds in predicting this
relation by utilizing above information. Question
II demonstrates the benefits of harnessing abun-
dant program annotations from the source domain,
where Pangu produces a program with incorrect
function composition because none of its demo ex-
amples has a similar compositional structure, while
KB-Plugin induces the correct program by utilizing
prior knowledge learned from the source domain.
Further analysis can be found in Appendix E and F.

6 Conclusion

We propose KB-Plugin, a plug-and-play framework
that enables LLMs to induce programs over any
low-resourced KBs by learning two types of plug-
gable modules: KB-specific schema plugin and
KB-transferable PI plugin. KB-Plugin achieves
better or comparable performance on five hetero-
geneous KBQA datasets with much smaller back-
bone LLMs compared to SoTA PI methods for low-

2875



resourced KBs, demonstrating its effectiveness for
both large-scale and domain-specific KBs. Abla-
tion study and case study also prove the rationality
and further showcase the advantage of KB-plugin.

7 Limitations

We discuss several limitations of KB-Plugin in this
section: (1) In the experiments, we only adopt
Llama2-7B as our backbone model due to lim-
ited computing resources. Actually, KB-Plugin
is model-agnostic and can also be applied to more
language models with various sizes and architec-
tures. (2) KB-Plugin requires that the source do-
main dataset covers questions with diverse vari-
ous compositional structures, and performs rela-
tively poorly for questions whose compositional
structures are unseen in the source domain dataset
though they are rare (see Appendix E for details).
Future research can focus on improving the trans-
ferability of KB-Plugin across compositional struc-
tures. In practice, we can also continue to train the
PI plugin using some self-training methods such as
EGST (Li et al., 2023c) to adapt to these questions.
(3) In this work, since both training and evaluation
of KB-Plugin require annotated KBQA datasets,
we can only take a single dataset KQA Pro as the
source dataset and take other datasets as the tar-
get datasets, which may limit the upper bounds of
KB-Plugin. In the realistic scenario where we need
to apply KB-Plugin for a new KB, we can take all
these KBQA datasets as the source domain datasets
so that the trained source schema plugins would be
more diverse and the trained PI plugin would also
have stronger transferability and generalizability.

8 Ethical Considerations

Though our framework (as well as other PI meth-
ods) can effectively reduce the probability of LLMs
generating inaccurate answers when faced with
questions involving uncommon knowledge, it may
still make mistakes if the induced programs are in-
correct. In addition, there is a risk of being hacked
through targeted means such as injecting harmful
or nonfactual knowledge into the KBs. Hence ad-
ditional care and protective measures should be
taken if our framework is deployed in user-facing
applications.

All the datasets and encyclopedias used in this
work are publicly published with permissible li-
censes.
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Function Input×Args → Output Description

Find E × ∅ → E find an entity from the KB
FindAll ∅ × ∅ → E′ return all entities in the KB
Relate (E ∪ E′)×R → E′ a single hop along a relation

ReverseRelate (E ∪ E′)×R → E′ a reverse hop along a relation
FilterConcept E′ × C → E′ return entities in a concept

And/Or (E′, E′)× ∅ → E′ intersection/union of two sets
Argmax/Argmin E′ ×R → E′ superlative aggregations
LT/LE/GT/GE E ×R → E′ < / ≤ / > / ≥

Count E′ × ∅ → N set cardinality

Table 7: KoPL functions used in this work. E: entity;
E′: a set of entities; R: relation; C: concept; N : integer.

A Details of KoPL Functions

We list KoPL functions used in this work in Table 7.
We make some modifications to the original (Cao
et al., 2022a) for conciseness. Except Find taking
topic entities as the argument, other functions ei-
ther have no arguments or take schema items (i.e.,
concepts or relations) as their arguments.

B Triple Sampling Strategy

For WebQSP, GraphQ, and GrailQA, since their
KBs are large-scale and relatively sparse, we adopt
a popularity-based strategy to sample representa-
tive triples for each schema item. Specifically,
let the given KB be KB = {C, E ,R, T }, where
T = Te ∪ Tc ∪ Tl. For each e ∈ E , let cnt(e) be
its popularity (i.e., the number of its occurrences
in KB). When sampling “instance of” triples for
a concept c ∈ C, we hope the sampled triples con-
tain representative entities belonging to c, so we
sort all (ek, instance of, c) ∈ Te in descending or-
der of cnt(ek) and select the first K triples. When
sampling relational triples for a relation r ∈ Rl,
we take both representativeness and diversity into
account. Therefore, we sort all (ei, r, ej) ∈ Tl

in descending order of min(cnt(ei), cnt(ej)) and
select the first K triples.

On the other hand, the KBs of KQA Pro,
MetaQA, and SoAyBench are dense, so we just
randomly sample triples for their schema items.

C Details of Constrained Decoding

In constrained decoding, after MT
PI generates t

function chunks f1(arg1), . . . , ft(argt), we enu-
merate all admissible ft+1(argt+1) as the candi-
date set Pt+1 following the definition of KoPL
functions in Table 7, and constrain MT

PI to continue
generating one of these candidate or generating the
⟨EOS⟩ token to end the decoding process.

Specifically, let Etopic be the set of topic
entities in the question obtained using off-the-

shelf entity linkers 1. At t = 0, we enumerate
Find(e) for each e ∈ Etopic as a candidate
in P1. Specially, around 5% of questions in
GraphQ and GrailQA do not have a topic entity
(e.g., “Who is the heaviest film director?" from
GrailQA, whose target program is FindAll()
FilterConcept(director)SelectAmong(weight
kg). For these questions, we follow Pangu (Gu
et al., 2023) to start constrained decoding from
FindAll()FilterConcept(c), where c is a topic
concept provided by Gu and Su (2022).

When t > 0, we execute the current program
pt = ⟨f1(arg1), . . . , ft(argt)⟩ to get its denota-
tion (i.e., a set of entities) and also the concepts,
forward relations, and backward relations that are
reachable from the denotation. For each concept
c, we enumerate FilterConcept(c) as a candidate
in Pt+1. For each forward relation r, we enumer-
ate Relate(r) as a candidate. For each backward
relation r, we enumerate ReverseRelate(r) as a
candidate, and also include LT(r), LE(r), GT(r), and
GE(r) in Pt+1 if the denotation of pt is a numeri-
cal value such as a quantity or a date. In addition,
candidates with superlatives can be enumerated as
Argmax(r) and Argmin(r). Also, Count() can al-
ways be included to Pt+1. If there are multiple
topic entities, we enumerate Find(e′) as a candi-
date to add a new branch, where e′ ∈ Etopic is a
topic entity not in pt. When pt contains multiple
branches, we enumerate Or() and And() as candi-
dates to merge the last two branches.

D Experimental Setup

D.1 Details of Baselines and Evaluation
Metrics

The details of our baselines are as follows:
Pangu (Gu et al., 2023) utilizes potent LLM
Codex (Chen et al., 2021) to produce programs
in a step-wise fashion via in-context learning. At
each step, it first extends existing programs into
new valid candidates by enumerating all possible
next functions with arguments, then scores each
candidate using Codex with several demonstrations
and retains the top-k candidates.
KB-BINDER (Li et al., 2023a) first lets Codex gen-
erate several "draft" programs for a given question
by imitating a few examples, then grounds the argu-
ments in the drafts to the target KB using similarity

1Entity linking is not a major challenge for PI, and exhaus-
tive fuzzy string matching (Yao, 2015) suffices to achieve a
reasonable performance.

2880



search to produce hundreds of refined programs.
The final answer is decided by the majority vote
after executing all these refined programs.
Automatic Program Sampling (APS) (Li et al.,
2023c) utilizes gpt-3.5-turbo2 to translate auto-
matically sampled programs based on a handful
of templates into corresponding questions via in-
context learning, and subsequently fine-tune a RnG-
KBQA (Ye et al., 2022) PI model using the gener-
ated question-program pairs.
ProgramTrans (Cao et al., 2022b) is a program
transfer method that first uses a seq2seq sketch
parser to translate the question into a program
sketch, then uses an argument parser to search suit-
able argument from the KB for each function. We
adopt its results without fine-tuning on the target
KBs for fair comparison.
DFSDT (Qin et al., 2023) is the SoTA method for
general tool using. To solve a question, it employs
an LLM to call suitable tool APIs in depth-first
order. At each step, the LLM can either (1) call
the next API to proceed along a promising path or
(2) undo the current call and call another API to
expand a new path.
SoAy (Wang et al., 2024) is the SoTA method on
SoAyBench. Given a question, it employs LLM to
first select the most suitable plan (i.e., API combi-
nation) from a candidate pool, then write a Python
program with branching and looping structure fol-
lowing the plan to call APIs to get the answer.
Supervised Methods. For WebQSP, GraphQ,
GrailQA, and MetaQA, we also provide the fully
supervised results of several representative models
for comparison, including QGG (Lan and Jiang,
2020), BERT+Ranking (Gu et al., 2021), Arc-
naeQA (Gu and Su, 2022), RnG-KBQA (Ye et al.,
2022), KV-Mem(Miller et al., 2016), PullNet (Sun
et al., 2019), EmbedKGQA (Saxena et al., 2020)
and TransferNet Shi et al. (2021).
Evalution Metrics. Following these baselines, we
use F1 for WebQSP, GraphQ, and GrailQA, use
Hit@1 for MetaQA, and use Accuracy for SoAy-
Bench.

D.2 Implementation Details

We train the schema plugins of the source and target
KBs for 3 epochs and 1 epoch, respectively. The
batch size and learning rate are set to be 128 and 1e-
5, respectively. Besides, we train the PI plugin for 1
epoch with batch size 16 and learning rate 1e-5. For

2https://platform.openai.com/docs/models/gpt-3-5

Dataset Seen Unseen
Num EM F1 Num EM F1

GraphQ 2148 71.0 52.8 247 15.4 20.4
GrailQA 6433 79.9 67.4 330 10.0 16.4

Table 8: Performance of KB-Plugin on test cases whose
compositional structures are seen and unseen in the
source dataset KQA Pro. EM means the exact match of
program sketch.

WebQSP, GraphQ, and GrailQA, we use the same
off-the-shelf entity-linker as Pangu to find topic
entities; For MetaQA, we follow our baselines to
use oracle topic entities; For SoAyBench, we find
topic entities using spaCy (Honnibal et al., 2020).

E Analysis about Question Compositional
Structures

For GraphQ and GrailQA, we translate their
SPARQL programs to KoPL programs using
GraphQ Trans (Nie et al., 2022) and analyze
the performance of KB-Plugin on the test cases
whose question compositional structures (identi-
fied by program sketches) are seen and unseen in
the source domain dataset KQA Pro, respectively.
From the results in Table 8 we can see that (1) KQA
Pro covers most of question compositional struc-
tures in the target dataset; (2) KB-Plugin correctly
predicts the program sketches for over 70% ques-
tions whose compositional structures are seen in
the source domain dataset, implying that the map-
ping from questions to program sketches is largely
independent of KB schemas and transferable across
KBs, which is consistent with the findings of Cao
et al. (2022b) and Li et al. (2023a); (3) KB-Plugin
performs poorly on the questions with unseen com-
positional structures though they are relatively rare,
indicating that more advanced transfer techniques
across compositional structures remains to be ex-
plored.

F Error Analysis

We analyze 100 incorrect predictions (i.e., F1<1)
randomly sampled from the dev set of GrailQA.
The major errors are predicting wrong schema
items (36%). Specially, when facing several
schema items with only subtle differences, e.g.,

“publisher”(reverse) v.s. “game version published”,
KB-plugin tends to prefer to choose the shorter one
due to the inherent defects of beam search. Be-
sides, 21% errors are due to a wrong termination
check where the model misses the last relation or
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predicts an additional function. There are also 5%
wrong function predictions. Apart from the above
errors caused by our model, 27% errors are caused
by unidentified or wrongly identified topic entities
during entity linking, 9% errors are due to ambigu-
ous or wrong annotations, and the remaining 2%
errors are due to the incompletion of KBs.

2882


