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Abstract

Capturing inter-modal incongruities within the
text-image pair is a critical challenge in multi-
modal sarcasm detection (MSD). Fortunately,
graph neural networks (GNNs) have made
promising advancements in MSD, which show
advantages in explicitly capturing data relation-
ships. Nevertheless, current GNN-based MSD
methods do not effectively address some of the
inherent limitations of GNNs, which include:
1) neglecting high-order relationships, and 2)
underestimating high-frequency messages. In
this paper, we propose a Dual Graph-based
Learning Framework (DGLF) to address the
above two issues. Specifically, we construct a
hypergraph to perform high-order aware prop-
agation and a vanilla graph to perform high-
frequency enhanced propagation, respectively.
We empower GNNs to 1) better capture the in-
herent and complicated relationships based on
the hypergraph and 2) deliver sufficient mod-
eling through high-frequency enhanced mes-
sages on the vanilla graph. Besides, we in-
troduce multi-modal fusion information bottle-
neck to effectively fuse the two learned graph
features. Experimental results on two bench-
mark datasets show that the proposed model
outperforms previous state-of-the-art methods.

1 Introduction

Due to the rise of social media platforms such as
X and Facebook, multi-modal sarcasm detection
(MSD) has garnered increasing research attention.
MSD aims to recognize the sarcastic sentiment in
multi-modal social posts (Cai et al., 2019), which
typically refer to textual sentences accompanying
images. Unlike traditional text-only sarcasm detec-
tion (Riloff et al., 2013; Poria et al., 2016; Zhang
et al., 2016) focusing on inconsistencies in expres-
sion within the text, the key objective of MSD is

†Equal contribution.
*Corresponding authors: Xian Wu and Wei Liu.

(b) feeding my abs nothing 
but the best quality beef(a) what a gorgeous day

Figure 1: Two examples of multi-modal sarcasm. In
example (a), the text refers to a “gorgeous” day, but
the accompanying image shows heavy rain, indicating
sarcastic. In example (b), the text mentions “the best
quality beef ”, but the image displays fast food beef
burgers, suggesting sarcastic as well.

to effectively identify subtle inter-modal inconsis-
tencies in the expression of sentiment within an
image-text pair, as shown in Figure 1.

Towards this goal, a group of MSD works at-
tempt to concatenate the textual and visual fea-
tures to encapsulate sarcastic information (Schi-
fanella et al., 2016), or leverage attention mecha-
nism (Vaswani et al., 2017) to implicitly fuse fea-
tures across modalities based on external knowl-
edge (Cai et al., 2019; Pan et al., 2020). More
recently, Graph Neural Networks (GNNs) have
achieved remarkable advancements in MSD, show-
casing their exceptional ability by explicitly extract-
ing structural information (Liang et al., 2021, 2022;
Liu et al., 2022). As shown in Figure 2(a), the con-
ventional approach in this paradigm constructs a
heterogeneous graph, where each token from both
modalities is treated as a node, with similarity-
based edge construction or carefully adjusted edge
weighting strategies. On this basis, it enables simul-
taneous modeling of inter- and intra-modal token
dependencies through message passing, facilitating
tighter entanglement and richer interactions.

Despite the promising progress these GNN-
based MSD models have achieved, we discover
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Figure 2: Conceptual comparison of the state-of-the-art
methods (a) and the proposed model DGLF (b). “MIB”
is short for multi-modal information bottleneck.

that they still suffer from two main issues:
(1) Neglect of high-order relationship explo-

ration. They predominantly conceptualize rela-
tionships among tokens in pairwise formulations,
providing merely an approximation of higher-order
relationships through the aggregation of multiple
pairs (Feng et al., 2019; Bai et al., 2021). As de-
picted in Figure 1(b), crucial visual information
“burger”, which aligns with sarcastic textual cues
“best quality beef ”, may be scattered across the im-
age (two burgers within the image). While it is
feasible to construct edges simultaneously among
two visual tokens involving “burger” and textual
tokens of “best quality beef ”, simplifying these
high-order relationships into pairwise formulation
might compromise their expressiveness (Sun et al.,
2021). Therefore, the sophisticated and nuanced
high-order relationships may not be fully captured
by existing GNN-based MSD methods.

(2) Overlooking high-frequency messages ex-
ploitation. The propagation rule of GNNs, charac-
terized by the aggregation and smoothing of mes-
sages from neighboring nodes, is widely regarded
as an analogy to a fixed low-pass filter (Wu et al.,
2019). It predominantly facilitates the flow of
low-frequency messages in the graph while signif-
icantly attenuating high-frequency messages (Bo
et al., 2021). Conversely, in GNNs for MSD, the
high-frequency messages may be more vital which
reflects discrepancies and inconsistencies in the ex-
pression of sentiment. As such, the potential of
high-frequency information remains largely unex-
ploited in existing GNN-based MSD frameworks.

To tackle the above issues, as shown in Fig-
ure 2(b), we propose a Dual Graph-based Learning
Framework termed DGLF for MSD. For the first
issue, we construct a hypergraph (Feng et al., 2019)
with edge-dependent node weights (Chitra and
Raphael, 2019) to facilitate high-order aware prop-
agation, where each token from both modalities is

represented as a node. We construct intra- and inter-
modal hyperedges, which can connect an arbitrary
number of nodes. In this fashion, DGLF enables
the natural encoding of high-order relationships
beyond pairwise formulation. For the second is-
sue, we construct another vanilla graph to perform
high-frequency enhanced propagation, by adopt-
ing a set of frequency filters (Dong et al., 2021;
Bo et al., 2021), which distill different frequency
constituents from node features. By adaptively inte-
grating high-frequency enhanced messages, DGLF
effectively captures sarcastic inconsistencies in lo-
cal neighborhoods, which is vital for MSD. More-
over, we introduce multi-modal information bottle-
neck (Wu et al., 2023; Zhu et al., 2024a) to effec-
tively fuse the learned graph features, which nar-
rows down the solution space, driving the model’s
gaze toward shared modality information.

Overall, our contributions are three-fold: (1) We
propose DGLF, a novel dual graph-based learn-
ing framework for MSD. To our best knowledge,
we are the first to introduce hypergraph into MSD.
(2) We construct a hypergraph and a vanilla graph
to perform high-order aware and high-frequency
enhanced propagation, respectively. Besides, we
introduce multi-modal information bottleneck to
effectively fuse the learned graph features. (3) Ex-
tensive experiments show that our model achieves
new state-of-the-art results, further analyses con-
firm the effect of each component of our model.

2 Methodology

Task Definition. Given a sample Si from the
training set, the objective of MSD is to determine
whether the sample implies any sarcasm by learn-
ing a model f(·) using the text Ti and correspond-
ing image Vi of Si. This conventional training
procedure is represented as ŷi = f(Ti,Vi |Θ) ∈
{0, 1}, where ŷi = 1 indicates the sample is pre-
dicted to be sarcastic and vice versa; Θ represents
the learnable model parameters. For simplicity, we
temporally omit the superscript i that indexes the
training samples in the following.

Next, before diving into the details of the pro-
posed DGLF’s architecture, we first introduce the
feature encoding (§2.1) of modalities and construc-
tion of the dual graphs (§2.2) for the MSD task.

2.1 Feature Encoding

For a fair comparison with previous works, given
a textual sentence T = {t1, t2, . . . , tN} consist-
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ing of N words, we adopt the pre-trained BERT
model (Devlin et al., 2019), to map each word
t∗ into d-dimensional embedding,1 denoted as
Ht ∈ RN×d. For a given image V ∈ RLh×Lw ,
following Liang et al. (2021); Liu et al. (2022),
we first resize it to 224 × 224 pixels, i.e., L =
Lh = Lw = 224. Then the image is divided into
M = p × p patches2, w.r.t. V ∈ RM×(L/p×L/p).
Subsequently, we feed the sequence of M image
patches into a Vision Transformer (ViT) (Dosovit-
skiy et al., 2021) with an MLP layer to acquire the
visual representation Hv ∈ RM×d.

2.2 Graph Construction

2.2.1 Hypergraph Construction
After we obtain textual and visual representations
Ht and Hv through §2.1, we construct a hyper-
graph G with edge-dependent node weights (Feng
et al., 2019; Chitra and Raphael, 2019) from the
representations as shown in Figure 3(a, b).

Mathematically, denote a hypergraph G =
(V, E , τ, ζ) in which each node vδi ∈ V(δ ∈
{t, v}, |V| = N + M) corresponds to a textual
token vti or visual token vvi , where we initialize
the node embeddings {vti , vvi } with the encoded
representations {hti, hvi }, respectively.

For every hyperedge e ∈ E(|E| = 2+N+M), it
encodes intra- or inter-modal dependencies. Specif-
ically, each node vδi (δ ∈ {t, v}), where i spans the
range 1 to Nδ with Nδ denoting the total number
of tokens in modality δ, is first connected to all
other tokens in the same modality {vδj |j ̸= i, 1 ≤
j ≤ Nδ} through a single intra-modal hyperedge.
Here we obtain 2 intra-modal hyperedges. Further-
more, each node vδi is connected to all tokens in
the opposite modality {vδ̄k|1 ≤ k ≤ Nδ̄}, with δ̄
indicating the modality opposite to δ via an inter-
modal hyperedge, where Nδ̄ represents the total
number of tokens in modality δ̄. Here we obtain
N and M inter-modal hyperedges from N textual
tokens and visual tokens, respectively. The sum of
N +M inter-modal hyperedges and 2 intra-modal
hyperedges results in N +M + 2 hyperedges.

Unlike prior methods (Liang et al., 2021, 2022;
Liu et al., 2022) that resort to adjustments of edge
weighting strategies through complex relationship
learning or similarity metrics, our DGLF embraces
simplicity by adopting randomly initialized weight

1Following Liang et al. (2021, 2022), we adopt the first
sub-token’s representation as the whole word representation.

2In line with previous works, p is set to 7.
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Figure 3: The illustration of hypergraph (a, b) and
vanilla graph (c, d), w.l.o.g, only the edges directed
into vv2 , vt2, v′v2 and v′t2 are shown. As demonstrated,
the hypergraph is adept at modeling high-order relation-
ships, where four vertices in (a) (e.g., vv1 , vv2 , vv3 and vt2)
are connected by a single hyperedge sharing the same
color green; and in (c), the edge construction adheres to
the pairwise relationship assumption.

values. Concretely, we introduce two distinct cate-
gories of weights in G: (1) an edge weight τ(e)
assigned to each hyperedge e, and (2) a node
weight ζe(v) for every node v upon which hyper-
edge e is incident, denoted as edge-dependent node
weight (Chitra and Raphael, 2019). ζe(v) quanti-
fies the significance of node v within hyperedge
e, thereby reinforcing fine-grained intra- and inter-
modal relationships. Denote A ∈ R|V|×|E| repre-
sent the incidence matrix, in which a nonzero entry
Ave = 1 indicates that the hyperedge is incident
with the node v; otherwise Ave = 0. Formally,
edge-dependent node weights can be represented
by a weighted incidence matrix Â ∈ R|V|×|E|:

Â =

{
ζe(v), if e is incident with node v,
0, otherwise.

(1)

2.2.2 Vanilla Graph Construction
As previously discussed, high-frequency infor-
mation that reflects emotional discrepancies may
be more pivotal for MSD (Bo et al., 2021; Wu
et al., 2019), and combining the power of mes-
sages with different frequencies is worth explor-
ing. This insight compels us to introduce a high-
frequency enhanced propagation aimed at distilling
varying frequency importance. To this end, we
further construct a vanilla graph G′ = {V ′, E ′}
from the multi-modal encoded representations as
shown in Figure 3(c, d), in parallel with the hy-
pergraph. Mathematically, denote a vanilla graph
G′ = {V ′, E ′} whose nodes V ′ are identical to the
ones in G, denoted with {v′ti , v′vj }. The node em-
beddings are similarly initialized with the encoded
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the direction of message passing. Note that in High-
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frequency messages. (Zoom-in for better view)

representations {hti, hvj} as well. The normal-
ized graph Laplacian matrix can be represented as
L = I−D

−1/2
G′ A′D−1/2

G′ , where A′ ∈ R|V′|×|V′|

denotes the adjacency matrix, DG′ denotes a diago-
nal degree matrix and I denotes an identity matrix.

2.3 Model Architecture
This section introduces the details of our proposed
DGLF, whose architecture is shown in Figure 4.

2.3.1 High-order Aware Propagation
The main objective of constructing the hypergraph
is to explore the subtle high-order sarcastic infor-
mation within and across modalities. Concretely,
we first conduct node convolution by aggregating
node features to update hyperedge embeddings,
and then conduct hyperedge convolution to spread
the hyperedge messages to the nodes:

V(ℓ+1) = σ(D−1
G AWeB

−1Â⊤V(ℓ)), (2)

in which V(ℓ) = {vδi,(ℓ)|δ ∈ {t, v}, i ∈
[1, N ] when δ = t; i ∈ [1,M ] when δ =
v}, V(ℓ) ∈ R|V|×d is the input at layer ℓ;
σ is a non-linear activation function; We =
diag(τ(e1), . . . , τ(e|E|) denotes the hyperedge
weight matrix; DG ∈ R|V|×|V| and B ∈ R|E|×|E|

denote the node degree and hyperedge degree ma-
trix. In this manner, the high-order inter- and intra-
modal relationships are gradually refined. After L
iterations, we get the outputs of the last iteration
vδi,(L) as the high-order aware representations.

2.3.2 High-frequency Enhanced Propagation
To propagate high-frequency enhanced information
on the vanilla graph, we first design a low-pass filter

Fl and a high-pass filter Fh to distil the messages
from the node features:

Fl = I+D
−1/2

G′ A′D−1/2

G′ = 2I− L,

Fh = I−D
−1/2

G′ A′D−1/2

G′ = L.
(3)

Note that Fh is equivalent to the normal-
ized graph Laplacian matrix, which is consistent
with the theory that the Laplacian kernel can be
employed to highlight high-frequency informa-
tion (Jain and Farrokhnia, 1991).

Now, we employ these two filters to adaptively
aggregate messages with varying frequencies. To
be specific, we use a weighted sum to combine
low-frequency and high-frequency messages:

V′(k+1) = Wl(Fl ·V′(k)) +Wh(Fh ·V′(k))

= V′(k) + (Wl −Wh)D
−1/2

G′ A′D−1/2

G′ V′(k),
(4)

where V′(k) = {v′δi,(k)|i ∈ [1, N ] when δ =

t; i ∈ [1,M ] when δ = v, δ ∈ {t, v}} ∈ R|V ′|×d is
the input at layer k; Wl,Wh ∈ R|V ′|×|V ′| denote
the weight matrices for low- and high-frequency
information. It can be further rewritten as:

v′i,(k)+1 = v′i,(k) +
∑

j∈Ni

wl
ij − wh

ij√
|Nj |

√
|Ni|

v′j,(k), (5)

where Ni denotes the neighboring nodes of node
i; wl

ij and wh
ij denote the weight contributions of

node j’s low-frequency and high-frequency mes-
sages to node i, respectively with wl

ij + wh
ij = 1.

And they are calculated using a self-gating mecha-
nism similar to Bo et al. (2021).

By stacking K layers, each node receives the
high-frequency enhanced messages, which are ig-
nored by previous works, and we utilize outputs
of the final layer v′δi,(K) as the high-frequency en-
hanced representations.

2.3.3 Information Bottleneck based
Multi-modal Fusion

Ideally, concatenated representations should encap-
sulate information shared across modalities. Thus,
we introduce Multi-modal Fusion Information Bot-
tleneck (MFB) (Wu et al., 2023; Mai et al., 2022),
which effectively constrains the solution space to
focus more on the shared multi-modal informa-
tion. Concretely, we first fuse different modalities
to obtain concatenated high-order aware and high-
frequency enhanced representations as follows:

V̄ = Vt
(L) ⊕Vv

(L), V̄′ = V′t
(K) ⊕V′v

(K), (6)
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Denote H = Ht ⊕ Hv, the MFB for concate-
nated high-order aware and high-frequency en-
hanced representations are calculated as follows:

min
p(V̄|H)∈Ω1

MFB(V̄;H) ≜ −
∑

δ

I(Hδ; V̄) + βI(H; V̄),

min
p(V̄′|H)∈Ω2

MFB(V̄′;H) ≜ −
∑

δ

I(Hδ; V̄
′) + βI(H; V̄′),

(7)

where δ ∈ {t, v}; β serves as a trade-off hyper-
parameter; Ω1 and Ω2 denote the search space of
the conditional distribution of V̄ and V̄′ given the
initial concatenated vertex feature H, respectively.
We then perform bound estimations to enable its
computation and training via back propagation:

Proposition 1. The upper and lower bounds of
mutual information between two random variables
x and y can be estimated as:

E
[
log f(y+,x)∑

yi∈Y f(yi,x)

]
≤ I(x;y) ≤ DKL(p(x|y)||q(x)),

(8)
where x and y+ are positive pairs sampled from
p(x|y), f(·, ·) represents a scoring function that
measures the similarity between two embeddings,
and q represents a prior distribution of x.

The form of mutual information’s lower bound
above is known as the InfoNCE loss (Oord et al.,
2018). Thus, the MFB loss can be expressed as :

LMFB =
∑

δ

LInfoNCE(Hδ, V̄) + βDKL(p(V̄|H)||q(V̄))

+
∑

δ

LInfoNCE(Hδ, V̄
′) + βDKL(p(V̄

′|H)||q(V̄′)).
(9)

2.4 Training Objective
After the above procedures, we follow Liang
et al. (2021, 2022) to employ attention mecha-
nism (Vaswani et al., 2017) based on H and V
(resp. V′) to obtain the high-order aware presen-
tation f1 (resp. high-frequency enhanced presenta-
tion f2). Now, we concatenate f1 and f2 to obtain
the final representation f , which is then fed into a
fully-connected layer with softmax normalization
to capture a probability distribution ŷ ∈ Rdp of
sarcasm detection space as follows:

ŷ = softmax(Wof + bo), (10)

where dp is the dimensionality of sarcasm labels;
Wo and bo ∈ Rdp are trainable parameters. For
MSD task, we minimize the cross-entropy loss via
the standard gradient descent algorithm:

LMSD = −
N∑

i=1

dp∑

j=1

yj
i log ŷ

j
i + λ||Θ||2, (11)

where N denotes the training data size; yi and
ŷi represent the ground-truth and predicted label
distribution of instance i, respectively; Θ denotes
all trainable parameters of our DGLF and λ denotes
the coefficient of L2-regularization.

The final training objective is the sum of LMSD
(Eqn. (11)) and LMFB (Eqn. (9)).

3 Experiments

3.1 Main Results

Due to space limitation, we put experiment settings
in Appendix A.1. The performance comparison of
our model and baselines are shown in Table 1, from
which we have the following observations:
(1) Our model achieves new state-of-the-art
(SOTA) performance on all metrics and datasets.
Specifically, on MMSD, DGLF overpasses HKE by
1.62% and 2.91% on Acc. and F1; on MMSD2.0,
it overpasses Att-BERT by 1.49% and 1.56% on
Acc. and F1 respectively. This is because our
model captures complicated high-order relation-
ships based on the hypergraph, and our designed
high-frequency enhanced propagation based on the
vanilla graph further improves the model’s ability
to detect inconsistencies in sarcasm.
(2) The improvements on MMSD dataset are
much sharper. This can be attributed to the fact
that MMSD2.0 eliminated obvious sarcastic cues in
MMSD, which has led to an obvious performance
decline in existing GNN-based methods that rely
on edge weighting strategies with complex relation-
ship learning or similarity metrics, sometimes even
underperforming compared to Att-BERT. Thanks
to the high-order and high-frequency information
captured, our model achieves consistent improve-
ments over all baselines on both datasets.
(3) Based on more advanced feature encoders
(e.g., CLIP), our DGLF can still achieve signifi-
cant improvements. We suspect the reason is that
the advantages of our approach are orthogonal to
the ability of feature encoders. Our method can
teach CLIP to model high-order relationships and
high-frequency messages on dual graphs, which
can hardly be learned in the pre-training process.

3.2 Method Analysis

Effect of High-order Aware Propagation. One
of the core contributions of our work is modeling
the high-order relationships based on the hyper-
graph, while previous GNN-based works only ad-
here to the pairwise relationship formulation. To
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Modality Model MMSD MMSD2.0

Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

Text-only

TextCNN (Kim, 2014) 80.03 74.29 76.39 75.32 71.61 64.62 75.22 69.52
Bi-LSTM (Graves and Schmidhuber, 2005) 81.90 76.66 78.42 77.53 72.48 68.02 68.08 68.05
SMSD (Xiong et al., 2019) 80.90 76.46 75.18 75.82 75.36 68.45 71.55 69.97
BERT∗ (Devlin et al., 2019) 83.60 78.50 82.51 80.45 76.52 74.48 73.09 73.78

Image-only
ResNet (He et al., 2016) 64.76 54.41 70.80 61.53 65.50 61.17 54.39 57.58
ViT∗ (Dosovitskiy et al., 2021) 68.51 57.19 70.83 63.28 71.80 64.96 75.15 69.68

Multi-modal

HFM (Cai et al., 2019) 83.44 76.57 84.15 80.18 70.57 64.84 69.05 66.88
D&R Net (Xu et al., 2020) 84.02 77.97 83.42 80.60 – – – –
Att-BERT (Pan et al., 2020) 86.05 80.87 85.08 82.92 80.03 76.28 77.82 77.04

GNN-based, BERT & ViT as Encoder
InCrossMGs (Liang et al., 2021) 86.10 81.38 84.36 82.84 – – – –
CMGCN (Liang et al., 2022) 86.54 – – 82.73 79.83 75.82 78.01 76.90
HKE∗ (Liu et al., 2022) 87.39 81.40 86.93 84.07 76.39 73.50 75.96 74.71
DGLF (Ours) 89.01† 84.96† 89.10† 86.98† 81.52† 77.98† 79.23† 78.60†

CLIP as Encoder
Multi-view CLIP∗ (Qin et al., 2023) 88.22 82.03 88.13 84.97 85.14 80.18 88.21 84.00
DGLFCLIP (Ours) 89.43† 85.81† 89.27† 87.51† 86.82† 81.90† 89.85† 85.69†

Table 1: Results comparison. ∗ denotes our re-implementation using the official code. - denotes missing results
from the published work. Since CLIP-based methods use different pre-trained feature encoders, we gray out them
for a fair comparison. † denotes the significance tests of DGLF and DGLFCLIP over baselines at p-value < 0.05.

verify its effect, we design variant 1 as shown in
Table 2. We can observe that Acc. drops by 1.95%
on MMSD and 1.65% on MMSD2.0. Moreover,
F1 drops more significantly: 2.16% on MMSD
and 1.81% on MMSD2.0. This proves that model-
ing the high-order relationships on the hypergraph
G can naturally encode higher arity relationships
within and between visual and textual elements,
thus significantly improving sarcasm detection.

In §2.2.1, we define two types of weights in
hypergraph G to capture the high-order relation-
ships at a fine-grained level. To study its effect, we
conduct the ablation experiments by removing dif-
ferent sets of them. It can be seen that from variant
2 to 4 in Table 2 that removing either or both (i.e.,
setting weight value τ(e) or/and ζe(v) as 1) leads
to performance decreases in all metrics on both
datasets. This indicates that the formulated weights
in hypergraph G benefit the final performance.

Effect of High-frequency Enhanced Propaga-
tion. The aim of constructing another vanilla
graph G′ is to perform high-frequency enhanced
propagation. To verify its effectiveness, we design
variant 5 by performing predictions using the high-
order aware propagation on the hypergraph only.
From Table 2, we find that variant 5 obtains dra-
matic drops in all metrics on both datasets. The ap-

parent performance gap verifies the high-frequency
enhanced messages in MSD, which can capture the
varying importance of sentiment discrepancy and
commonality within local neighborhoods.

To further analyze the propagation of only high-
frequency and low-frequency information in the
vanilla graph G′, we set Rl and Rh in Eqn. (4) to
zero, respectively. From variant 6 and variant 7 in
Table 2, we observe that erasing high-frequency in-
formation results in a more noticeable performance
decline. This fully demonstrates the necessity of
high-frequency information for the MSD task and
intuitively supports our motivation.

Effect of Multi-modal Information Bottleneck.
From Table 2 variant 8, we can find that removing
LMFB in final training loss leads to large perfor-
mance decreases. Specifically, Acc. drops 1.28%
and 0.56% on MMSD and MMSD2.0; F1 drops
1.37% and 0.67% on MMSD and MMSD2.0. This
can verify the effectiveness of MFB, which con-
strains the solution space of the two learned graph
representations to focus on cross-modal shared in-
formation, thus boosting performance.

Sensitivity of Hyper-parameter. To investigate
the robustness of our proposed multi-modal infor-
mation bottleneck, we conduct sensitivity analyses.
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# Variant MMSD MMSD2.0

Acc. (%) F1 (%) Acc. (%) F1 (%)

- DGLF 89.01 86.98 81.52 78.60

Effect of High-order Aware Propagation
1 w/o high-order aware propagation 87.06 (↓1.95) 84.82 (↓2.16) 79.87 (↓1.65) 76.79 (↓1.81)
2 w/o edge weight τ(e) 87.25 (↓1.76) 85.17 (↓1.81) 80.81 (↓0.71) 77.80 (↓0.80)
3 w/o node weight ζe(v) 87.81 (↓1.20) 85.69 (↓1.29) 80.98 (↓0.54) 77.97 (↓0.63)
4 w/o both weights 87.08 (↓1.93) 84.86 (↓2.12) 80.35 (↓1.17) 77.31 (↓1.29)

Effect of High-frequency Enhanced Propagation
5 w/o high-frequency enhanced propagation 86.73 (↓2.28) 84.17 (↓2.81) 79.51 (↓2.01) 76.28 (↓2.32)
6 w/o low-frequency messages included 88.07 (↓0.94) 85.86 (↓1.12) 80.67 (↓0.85) 77.59 (↓1.01)
7 w/o high-frequency messages included 87.84 (↓1.17) 85.60 (↓1.38) 80.46 (↓1.06) 77.37 (↓1.23)

Effect of Multi-modal Information Bottleneck
8 w/o multi-modal information bottleneck 87.73 (↓1.28) 85.61 (↓1.37) 80.96 (↓0.56) 77.93 (↓0.67)

Table 2: Results of ablation experiments.
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Figure 5: (a) Performance variations when altering the
value of β in MFB loss (Eqn. (9)) on MMSD dataset.
(b) Performance of using different pre-trained methods
on MMSD. Base denotes without the proposed dual
graphs, i.e., only using BERT and ViT to conduct MSD.

We varied the value of β from 0.2 to 1.0 as per Eqn.
(9) and the results are displayed in Figure 5(a). As
depicted, the performance remains relatively stable
across different values of β, albeit with a slight
decreasing trend as β increases. This suggests that
our model is largely insensitive to β. However, as
β increases and the constraint tightens, there is a
gradual effect on the model performance.

Impact of Graph Layers. To investigate the im-
pact of stacking different graph layers for hyper-
graph G and vanilla graph G′, we conduct a grid

85

87

89

1 2 3 4 5

(a) Effect of L

(b) Effect of K

Acc. F1

85

87

89

1 2 3 4 5

Figure 6: Results of the proposed DGLF at different
graph layers (a) L and (b) K on MMSD dataset.

search on the number of layers L and K, respec-
tively. Specifically, we search them from 1 to 5
on the validation set and the results on MMSD
dataset are shown in Figure 6. We observe that
the effects of L and K are similar. At first, the
results steadily improve as stacking more layers,
and peak at L = 2 and K = 3 respectively. Further
stacking more layers has little positive impact, as
it may incorporate noise from neighborhoods. For
MMSD2.0, we empirically found that the perfor-
mance is not particularly sensitive to the number
of layers, displaying no specific pattern.

Generalizability of Dual Graphs. To evaluate
the generalizability of the proposed dual graphs
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Figure 7: Comparison with large vision-language mod-
els (LVLMs) on MMSD2.0 dataset.

nice warm 
running weather 
this morning ...

i just love ... work 
before everyone 
else. waking up 
at 3:30 am is so 
rewarding .

Image Text Image Text

Model Prediction Model Prediction

HKE

DGLF sarcastic

non-sarcastic

CMGCN sarcastic

HKE

DGLF sarcastic

non-sarcasticCMGCN

(b)(a)

non-sarcastic

Figure 8: Case study.

with various pre-trained methods beyond CLIP, we
conduct experiments using four variants that em-
ploy different textual and visual encoders. From
results in Figure 5(b), we find that the dual graphs
are compatible with various pre-trained models
and perform consistently outperform the baseline
model without graphs. This verifies the effective-
ness and generalizability of the proposed DGLF.
Further, it is evident that using more sophisticated
pre-trained methods, such as ViT, BERT and CLIP,
leads to superior performance.

Comparison with Large Vision-Language Mod-
els (LVLMs). To ascertain the competitive edge
of our model, we conducted comparative analy-
ses against prevalent LVLMs including Qwen-VL-
Chat (Bai et al., 2023), LLaVA-1.5 (Liu et al.,
2024), and Gemini Pro (Team et al., 2023) follow-
ing Wang et al. (2024). The obvious performance
gap between ours and LVLMs in Figure 7 under-
scores the persistent challenges that LVLMs en-
counter in MSD, despite their advanced zero-shot
learning and chain-of-thought capabilities. It em-
phasizes the need for dedicated efforts in designing
effective MSD frameworks. Combining the power
of LVLMs (Chen et al., 2024) to detect sarcasm is
an interesting direction in future work.

3.3 Case Study
We present two sarcastic cases in Figure 8 to quan-
titatively verify the effectiveness of our DGLF.

i always try to 
add a little 
extra love to 
my response by 
adding the " o "

was going to 
watch a youtube 
video but had
to click on this 
great ad for 
keychains instead

Image Text Image Text(a) (b)

Figure 9: Examples of error prediction.

Model Acc. (%) P (%) R (%) F1 (%)

DGLF 81.52 77.98 79.23 78.60
+ OCR 81.64 77.10 81.06 79.03

Table 3: Results on incorporating Optical Character
Recognition (OCR) information on MMSD2.0 dataset.

Case (a). The sarcasm arises from the contrast be-
tween the text, which suggests pleasant and warm
conditions, and the image, which displays a much
colder temperature typically not considered warm.
Despite involving a more complex fusion architec-
ture, HKE still employs a naive GNN propagation
framework, transmitting low-frequency messages
between nodes. In contrast, our model obtains high-
order and high-frequency messages from both the
hypergraph and the vanilla graph, and accurately
captures the inter-modal inconsistencies, thereby
correctly identifying it as sarcastic.

Case (b). The sarcasm likely stems from the ex-
aggeration between the text and the image. The text
describes waking up extremely early as “reward-
ing”, which contrasts sharply with the image ac-
companying it, depicting the reality of driving early
in the morning. Unfortunately, previous SOTA
GNN-based methods still predict it as non-sarcastic.
Thanks to the proposed dual graph framework, our
model can propagate high-frequency messages that
reflect discrepancies in the graph, thereby effec-
tively capturing inter-modality inconsistencies and
achieving precise prediction.

3.4 Error Analysis

We further conduct error analysis to understand
DGLF’s performance. We observe that the major-
ity of errors occur in samples where images contain
important textual information, such as the purely
textual image in Figure 9 (a) and in Figure 9 (b)
which includes both textual and visual expressions.
Based on these observations, we conducted a pre-
liminary experiment to leverage textual information
within images by integrating OCR into DGLF for
MSD. From the results in Table 3, we find a no-
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table performance improvement. Thus it would be
interesting to effectively leverage important textual
information in images for future research.

4 Related Work

Multi-modal Sarcasm Detection. With the rapid
popularization of social media platforms, multi-
modal sarcasm detection (MSD) has garnered in-
creasing research attention in recent years (Zhu
et al., 2024c; Wang et al., 2024). Some early
works (Xu et al., 2020; Pan et al., 2020; Xin et al.,
2024) focused more on contextual dependencies
and utilized feature concatenation for multi-modal
modeling. More recently, researchers formulated
the MSD task upon GNNs, which have shown
promising results. Therein, InCrossMGs (Liang
et al., 2021) proposed in-modal and cross-modal
graphs to determine the sentiment inconsistencies.
Based on this, CMGCN (Liang et al., 2022) ex-
plored a cross-modal graph to model the contra-
dictory sentiments between key textual and visual
information. HKE (Liu et al., 2022) further in-
troduced a GNN-based hierarchical framework by
exploring both the atomic-level congruity and the
composition-level congruity.

Nevertheless, these GNN-based MSD models
still deliver insufficient high-order relationships
and high-frequency messages, as we discussed.

Graph Neural Networks. GNNs can explicitly
model data relationships, which have been widely
employed in various applications such as sentiment
analysis and argument pair extraction (Li et al.,
2021; Chen et al., 2023; Sun et al., 2023; Zhu et al.,
2024b). GNNs have also inspired MSD researchers
and offer a new solution for the MSD task, from
unimodal setting (Lou et al., 2021) to multi-modal
scenario (Qin et al., 2023).

However, previous works fail to address the gen-
eral limits of GNNs, which motivates our work.

Multi-modal Information Bottleneck. The In-
foMax principle proposed by Linsker (1988) seeks
to maximize the mutual information between fea-
ture and model output. Along this way, Han et al.
(2021) built up a hierarchical mutual information
maximization guided model for multi-modal senti-
ment analysis. Wu et al. (2023) focused on video-
based sentiment analysis and used contrastive learn-
ing to achieve mutual information maximization.

In this work, we utilize the lower bound of multi-
modal information bottleneck (Mai et al., 2022)

to constrain the learned graph features and initial
modality features, driving the model’s gaze toward
shared modality information.

5 Conclusion

In this paper, we propose a new GNN-based frame-
work for MSD. We construct a hypergraph and a
vanilla graph to perform high-order aware propa-
gation and high-frequency enhanced propagation,
respectively. Based on this, we introduce multi-
modal information bottleneck to effectively fuse
the two learned graph representations. Extensive
experiments and analyses on two MSD benchmarks
show the superiority of our proposed framework.

Limitations

Our DGLF has the following limitations: (1) The
proposed dual graph approach (combining hyper-
graph and vanilla graph) might lead to increased
computational complexity. (2) The effectiveness
of the DGLF might be contingent upon the qual-
ity of the underlying pre-trained models (BERT,
ViT), and can benefit from more advanced fea-
ture encoders, which is not the focus of this work.
(3) DGLF lacks validation on more diverse multi-
modal MSD datasets that include additional modal-
ities such as audio and video, as well as testing
across various other tasks, which may limit its
broader generalizability and effectiveness.
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A Appendix

A.1 Experimental Settings
Datasets. We conduct experiments on two
widely-used benchmark datasets: MMSD (Cai
et al., 2019) and MMSD2.0 (Qin et al., 2023).
Specifically, MMSD is derived from English Twit-
ter. Thereinto, tweets with some special hash-
tags (e.g., sarcasm) are positive examples and
those without such hashtags are negative examples.
MMSD2.0 is updated from MMSD, which is the
most advanced benchmark in MSD. The statistics
of these two datasets are shown in Table 4.

Evaluation Metrics. Following previous
works (Liu et al., 2022; Qin et al., 2023), we adopt
accuracy (Acc.), precision (P), recall (R), and F1
score (F1) to evaluate the model performance.

Implementation Details. For a fair comparison,
we follow Liang et al. (2021, 2022); Liu et al.
(2022) to utilize the pre-trained uncased BERT-
base model (Devlin et al., 2019) to embed each
word as a 768-dimensional embedding and employ
the pre-trained ViT (Dosovitskiy et al., 2021) to

MMSD/MMSD2.0 Train Validation Test

Sentences 19,816/19,816 2,410/2,410 2,409/2,409
Positive 8,642/9,572 959/1,042 959/1,037
Negative 11,174/10,240 1,451/1,368 1,450/1,372

Table 4: Statistics of two experimental datasets.

embed each visual patch as a 768-dimensional em-
bedding, i.e., d = 768. Adam (Kingma and Ba,
2014) is utilized as the optimizer with a learning
rate of 2e-5, and the mini-batch size is 16. The
coefficient λ is set to 1e-5. We test L and K in
the range from 1 to 5 on the validation set and
choose the best-performing one to the test set, re-
spectively. The hyper-parameter β is set as 0.2.
Paired t-test is performed to test the significance
of performance improvement with a default signifi-
cance level of 0.05. All experiments are conducted
on one NVIDIA GeForce RTX 3090. The results
reported in all experiments are averages of 5 runs
with different random seeds to ensure the final re-
ported results are statistically stable.

A.2 Model Zoo

We compared our proposed DGLF with a series of
strong baselines, which can be broadly classified
into three main categories:

(1) Text-only methods. These methods purely
rely on textual information for sarcasm detection,
including TextCNN (Kim, 2014), a deep learn-
ing model based on CNN; Bi-LSTM (Graves and
Schmidhuber, 2005), a bidirectional LSTM net-
work for text classification; SMSD (Xiong et al.,
2019) explored a self-matching network to capture
textual incongruity information; and BERT (De-
vlin et al., 2019), the vanilla pre-trained uncased
BERT-base taking ‘[CLS] text [SEP]’ as in-
put. (2) Image-only methods. The sarcasm detec-
tion in these methods relies solely on image input,
including ResNet (He et al., 2016) which trains
a sarcasm classifier; and ViT (Dosovitskiy et al.,
2021), which utilizes the ‘[class]’ token repre-
sentations to detect the sarcasm. (3) Multi-modal
methods. These methods utilize both visual and
textual information for sarcasm detection, includ-
ing HFM (Cai et al., 2019) introduced a hierarchi-
cal fusion model for MSD; D&R Net (Xu et al.,
2020) proposed a decomposition and relation net-
work modeling both cross-modality contrast and
semantic association; Att-BERT (Pan et al., 2020)
explored inter-modality attention and co-attention
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to model the incongruity of multimodal informa-
tion; InCrossMGs (Liang et al., 2021) leveraged
the sarcasm relations from both intra- and inter-
modality perspectives using local multi-modal fea-
tures; CMGCN (Liang et al., 2022) explored the
sarcastic relations across objects of the image and
tokens of the text; HKE (Liu et al., 2022) utilized
both the atomic-level congruity based on cross at-
tention and the composition-level congruity based
on GNNs; and Multi-view CLIP (Qin et al., 2023)
employed the pre-trained CLIP (Radford et al.,
2021) model to detect different sarcastic cues cap-
tured from multiple perspectives.

Further, to investigate the effectiveness of our
DGLF when used with different pre-trained models,
we also set the following variants: -GloVe+ViT:
We replace pre-trained BERT in our proposed
framework with GloVe (Pennington et al., 2014) to
initialize each word into a 300-dimensional embed-
ding and utilize ViT for learning image-modality
representations. -BERT+ResNet: Following Pan
et al. (2020), we replace the ViT in our frame-
work with ResNet-152 (He et al., 2016) to em-
bed each image patch as a 2048-dimensional vec-
tor. -GloVe+ResNet: We use GloVe to acquire
word embeddings and employ ResNet for learning
image-modality representations.

A.3 Proof of Proposition 1
Proof. The proof of mutual information’s lower
bound estimation can be found in the appendix
of Oord et al. (2018). Here we present the proof
for the upper bound estimation. We know that the
KL divergence is always greater than zero, and
therefore we have:

DKL(p(x)||q(x)) = Ep(x)[log p(x)]−Eq(x)[log q(x)] ≥ 0.
(12)

By following the definition of mutual informa-
tion, we get:

I(x;y) = Ep(x,y)[log
p(x|y)
p(x)

]

≈ Ep(x|y)[log
p(x|y)
p(x)

]

≤ Ep(x|y)[log
p(x|y)
p(x|y) ]

= DKL(p(x|y)||q(x)).

(13)

Thus, we conclude:
I(x;y) ≤ DKL(p(x|y)||q(x)). (14)

□
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