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Abstract
Natural Language Inference (NLI) evaluation
is crucial for assessing language understanding
models; however, popular datasets suffer from
systematic spurious correlations that artificially
inflate actual model performance. To address
this, we propose a method for the automated
creation of a challenging test set without rely-
ing on the manual construction of artificial and
unrealistic examples. We categorize the test
set of popular NLI datasets into three difficulty
levels by leveraging methods that exploit train-
ing dynamics. This categorization significantly
reduces spurious correlation measures, with ex-
amples labeled as having the highest difficulty
showing markedly decreased performance and
encompassing more realistic and diverse lin-
guistic phenomena. When our characterization
method is applied to the training set, models
trained with only a fraction of the data achieve
comparable performance to those trained on
the full dataset, surpassing other dataset charac-
terization techniques. Our research addresses
limitations in NLI dataset construction, provid-
ing a more authentic evaluation of model per-
formance with implications for diverse NLU
applications.

1 Introduction

Natural Language Inference (NLI), or textual en-
tailment (Dagan et al., 2009), has emerged as an
enduring challenge in the field of Natural Language
Processing for evaluating the Natural Language Un-
derstanding (NLU) capabilities of models. Persis-
tently, NLI remains a difficult problem, as it implies
reasoning across several linguistic phenomena to
determine the logical relationship (i.e., entailment,
contradiction, or neutral) between two documents -
a premise and a hypothesis. The capability to accu-
rately infer relationships between sentences is cru-
cial for a wide range of applications, such as ques-
tion answering (Demszky et al., 2018), dialogue
systems (Welleck et al., 2019), and fact-checking
(Thorne et al., 2018; Stab et al., 2018).

Since its inception (Dagan et al., 2005), sev-
eral large-scale benchmark datasets have been pro-
posed for NLI (Bowman et al., 2015; Williams
et al., 2018; Nie et al., 2019); however, in time, the
most ubiquitously used are the Stanford Natural
Language Inference (SNLI) (Bowman et al., 2015)
and the MultiNLI datasets (Williams et al., 2018),
which have played a pivotal role in advancing the
state of the art (Storks et al., 2019).

However, multiple works (Liu et al., 2020; Gu-
rurangan et al., 2018; Tsuchiya, 2018; Poliak et al.,
2018; Naik et al., 2018; Glockner et al., 2018)
pointed out several critical limitations in these
datasets, stemming from systematic annotation er-
rors and spurious correlations that impact both the
training and test sets. A critical consequence of
these issues is the inflation of model performance,
leading to seemingly high results (Naik et al., 2018;
Liu et al., 2020) that may not generalize well to
real-world scenarios. For example, a widely used
RoBERTa model (Liu et al., 2019) trained solely
on the hypothesis achieves an unreasonable accu-
racy of 71.7% on SNLI and 61.4% on MultiNLI
(random chance being 33%), which strongly points
towards systematic errors in dataset construction.

In this work, we aim to address the limitations of
existing NLI datasets by proposing an automated
construction of a more challenging test set. In con-
trast to previous approaches, we avoid manually
creating artificial examples (Naik et al., 2018); in-
stead, we leverage existing samples from the test
set. To accomplish this, we generalize dataset car-
tography (Swayamdipta et al., 2020) to cluster sam-
ples in the test set and characterize them into three
categories of increasing difficulty. Our approach
leverages 8 measures of training dynamics of each
premise-hypothesis pair and is inspired by related
works in both NLI (Naik et al., 2018; Geiger et al.,
2018; Liu et al., 2020) and approaches tackling the
problem of learning with noisy data (Pleiss et al.,
2020; Swayamdipta et al., 2020). We show that our
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method can isolate examples exhibiting spurious
correlations and provide a challenging test set. Fur-
thermore, our method is general, model-agnostic,
and easily extensible to other datasets (e.g., for fact-
checking (Thorne et al., 2018)). Our experiments
show that using the same method on the training set
enables the aggressive filtering of uninformative
examples during training, reducing data quantity
but increasing quality, enabling the model to obtain
on-par performance on the NLI stress test proposed
by Naik et al. (2018), using only a fraction of data.
We make our code publicly available1.

This work makes the following contributions:

1. We denote spurious correlations in the test sets
for two popular NLI datasets - SNLI (Bow-
man et al., 2015) and MultiNLI (Williams
et al., 2018) and a fact-checking dataset, repur-
posed for NLI: FEVER (Thorne et al., 2018).
We show statistically significant correlations
between the performance of models and the
presence of several measures of spurious cor-
relations across labels.

2. We propose a general method for creating a
strong test set for NLI. Using a multitude of
training dynamics features of samples in an ex-
isting test set, our method automatically char-
acterizes examples in the test set into three in-
creasing difficulty levels, which strongly cor-
relate with decreased model performance. Our
method minimizes spurious correlations, pro-
viding a more accurate measure of model per-
formance in the real world on NLU tasks. Our
method is model-independent and the underly-
ing difficulty splits generalize across models.

3. The same procedure applied to the training
data achieves similar performance on the test
set while using only 33% of the available data
for SNLI and 59% for MultiNLI, surpassing
other dataset characterization methods (Pleiss
et al., 2020; Swayamdipta et al., 2020), in-
dicating that our approach can be used as a
strong method for increasing data quality.

The paper is structured as follows. After empha-
sizing the shortcomings of existing NLI datasets
and presenting various stress tests, we introduce
our method for test set characterization. Then, we
present the main results, a comparison with a dif-
ferent encoder to argue that our approach is model-

1https://github.com/cosmaadrian/nli-stress-test

agnostic, and an analysis supporting the viability
of our approach as an alternative to training set
characterization. The paper ends with conclusions
and limitations.

2 Related Work

Across the development of natural language infer-
ence and understanding systems, multiple large-
scale training and testing datasets have been de-
veloped over different linguistic domains. Ini-
tially, progress was driven by the addition of SNLI
(Bowman et al., 2015), but several other variants
have been proposed, such as MultiNLI (Williams
et al., 2018), containing multiple domains, SciNLI
(Sadat and Caragea, 2022) for scientific question
answering, SQuAD (Rajpurkar et al., 2016) and
GLUE (Wang et al., 2018) benchmarks for general-
purpose NLU. Moreover, many related problems
in NLU can be cast as an NLI problem; for in-
stance, the FEVER (Thorne et al., 2018) dataset for
fact-checking can be regarded as an NLI problem
in terms of identifying the relationship between a
statement and supporting evidence.

However, driven by the widespread observations
that previous popular NLI datasets contain short-
cuts (Tsuchiya, 2018; Gururangan et al., 2018),
multiple works (Nie et al., 2019; Glockner et al.,
2018; Naik et al., 2018; Geiger et al., 2018; Yanaka
et al., 2019; Saha et al., 2020) developed "stress
tests" to benchmark specific linguistic phenomena.

For instance, Glockner et al. (2018) proposed
a simple test set based on SNLI (Bowman et al.,
2015) that involves changing a single word in the
premise sentences. In this setting, performance is
substantially worse than the original SNLI test set,
indicating the presence of spurious correlations in
the training dataset construction. Naik et al. (2018)
proposed an NLI Stress Test by quantifying the
lexical phenomena (e.g., presence of antonyms, nu-
merical reasoning) behind common model errors in
MultiNLI (Williams et al., 2018). Their proposed
stress test involved constructing artificial examples
that exacerbate common sources of model error,
showcasing that some models have markedly re-
duced performance. Nie et al. (2019) proposed a
new benchmark called Adversarial NLI (ANLI),
which leverages an interactive human-and-model-
in-the-loop procedure to collect hard examples for
natural language inference, obtaining a challenging
stress test for current models.

Geiger et al. (2018) constructed a dataset of artifi-
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Figure 1: Overall diagram of our method to automatically construct a challenging test set for NLI.

cially built sentences based on first-order logic, fix-
ing the sentence structure and only varying words
corresponding to parts of speech at predefined po-
sitions. Such a dataset comprises unrealistic sen-
tences but provides insight into the (lack-of) expres-
sive power of certain neural architectures. Like-
wise, Yanaka et al. (2019) proposed the evaluation
of monotonicity reasoning for NLI by construct-
ing a dataset through curating and manipulating
sentence pairs from the Parallel Meaning Bank
(Abzianidze et al., 2017). Saha et al. (2020) iden-
tified the lack of conjunctive reasoning examples
in current NLI test sets and estimated that around
72% of sentence pairs in SNLI have conjunctions
unchanged between premise and hypothesis. The
authors proposed CONJNLI, a stress test composed
of conjunctive sentence pairs collected automati-
cally from Wikipedia and manually verified.

In contrast to previous work, we propose a
method to characterize the test set into multiple
difficulty levels by using training dynamics of neu-
ral networks (Swayamdipta et al., 2020; Pleiss
et al., 2020), thereby isolating easy and spurious
examples and keeping only challenging pairs. Our
method is general, model-agnostic, utilizes existing
dataset samples (avoiding unrealistic artificial sen-
tence pairs), is easily extensible to other datasets,
and does not require manual verification of human
annotators. Previous approaches (Naik et al., 2018;
Saha et al., 2020) aim to develop a stress test for
NLI by amplifying spurious correlations and eval-
uating model performance under various extreme
conditions. Our goal is to minimize spurious cor-
relations in existing benchmarks to gain a more
realistic sense of performance under challenging
real-world examples.

3 Test Set Characterization

Our goal is to generalize the Data Maps proposed
by Swayamdipta et al. (2020) to characterize the
test set. Swayamdipta et al. (2020) proposed an
approach to gauge the contribution of each training
sample in a dataset by analyzing training dynamics
(variability, average confidence of the gold label,
and average correctness) across training for a fixed
amount of epochs. After training, each example
is split into one of three categories (i.e., easy-to-
learn, ambiguous or hard-to-learn) using a fixed
percentile threshold on one of the features. For
example, instances regarded as ambiguous are ex-
amples for which the variability across 5 epochs
is in the top 33% percentiles, disregarding other
measures.

We aim to extend and generalize Data Maps
by employing a Gaussian Mixture Model (GMM)
(Reynolds, 2009) to learn the best fitting distribu-
tion of data difficulty levels, thus avoiding fixed
thresholds. Unlike other clustering techniques,
such as KMeans, which outputs spherical clusters
and disregards cluster variance, we chose a GMM
as a more flexible clustering method. Figure 1
showcases the general methodology used in this
work. We first characterize the test set by training
two separate models with both premise and hypoth-
esis (P+H), and hypothesis only (H); second, we
gather 8 measures of training dynamics for each
instance and cluster them to obtain three difficulty
levels (4 for P+H and 4 for H). We found that diffi-
culty levels simultaneously align with measures of
spurious correlations and model performance.

In contrast to the initial approach of
Swayamdipta et al. (2020), we include 6
additional features for a more informative charac-
terization across training. In our scenario focused
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on NLI in particular, we gather statistics for
training dynamics across two types of settings:
normal training (i.e., training with P + H) and
hypothesis-only (H). Models trained only with
the hypothesis have been shown to produce
unreasonably high results (Poliak et al., 2018; Liu
et al., 2020), mostly due to artifacts in dataset
construction. These insights enabled us to gather
statistics about such examples and improve data
characterization through more diverse features for
each instance. Different from Swayamdipta et al.
(2020) who focused on characterizing the training
set for increasing data quality, we aim to construct
a more challenging test set automatically.

As such, in order to construct a data map of the
test set, we trained a model for E epochs on the
test set using premise and hypothesis and, sepa-
rately, using only the hypothesis to gather training
dynamics for each example in the test set. Let
Dtest = {(x, y∗)i}Ni=1 be a test dataset containing
N instances, where, in our case, xi is comprised
of a premise + hypothesis pair or only a hypoth-
esis. We compute the following measures across
training an Encoder model in both scenarios (P +
H and H) for each example xi: confidence (µ̂i),
variability (σ̂i), correctness (ĉi) and Area Under
Margin (AUMi).

µ̂i =
1

E

E∑

e=1

pθ(e)(y∗i |xi) (1)

σ̂i =

√∑E
e=1(pθ(e)(y∗i |xi)− µ̂i)

E
(2)

ĉi =
1

E

E∑

e=1

[argmax(pθ(e)(xi)) = y∗i ] (3)

where pθ(e) corresponds to the model’s prob-
ability during training at epoch e. Following
Swayamdipta et al. (2020), we compute confidence,
variability, and correctness concerning the correct
label y∗i . Furthermore, we compute AUM (Pleiss
et al., 2020), which was initially proposed to iden-
tify mislabeled examples but yielded a similar type
of characterization as Data Maps. We include
AUM as an additional measure of instance cor-
rectness/learnability. Let z(e)y (xi) be the logit (pre-
softmax) for class y of the model at epoch e, given
an instance xi. The area under margin (AUM or
average margin) of xi is computed as:

AUMi =
1

E

E∑

e=1

(z
(e)
y∗i

(xi)− max
(y ̸=y∗i )

z(e)y (xi)) (4)

In all our experiments, we first fine-tune pre-
trained RoBERTa models (Liu et al., 2019), fol-
lowed by DeBERTa (He et al., 2022) models due
to their established high performance on a wide
set of tasks. In our formulation, any other encoder
would yield similar results, as this method is based
only on the final classification output and not model
internals. However, characterization based on fi-
nal logits and class confidences is affected by how
calibrated the models’ predictions are (Guo et al.,
2017), as poorly calibrated models have lower logit
variance across classes. For our scope, we are inter-
ested in identifying and separating spurious correla-
tions in NLI benchmarks and not in benchmarking
different classifiers for this task. We explore the
impact of the underlying encoder in Section 4.1.

In Table 1, we show the results of our RoBERTa
models trained on SNLI, MultiNLI, and FEVER
on different configurations of training/testing splits
and using both the premise and the hypothesis or
only the hypothesis. Our reproduction of results
is on par with other works. For completeness, we
also show results where the model is trained on the
test set, but note that the purpose is only to gather
training dynamics and not directly use it as a clas-
sifier. The model trained on only the hypothesis
obtains 71% accuracy on SNLI and 61% accuracy
on MultiNLI, while random chance performance
is 33%. These results strongly point toward spu-
rious correlations and annotation artifacts on both
datasets (Tsuchiya, 2018; Gururangan et al., 2018;
Poliak et al., 2018; Liu et al., 2020). In the case
of FEVER, the hypothesis-only model achieved
close to random-chance, indicating less spurious
correlations found in the hypothesis.

Dataset Train Split Test Split Accuracy (P + H) Accuracy (H)

SNLI Train Test 0.9178 0.7170
Test Test 0.9799 0.8764

MultiNLI Train Val 0.8773 0.6142
Val Val 0.9841 0.8612

FEVER Train Dev 0.7702 0.3822
Dev Dev 0.9459 0.7137

Table 1: Results for RoBERTa on SNLI, MultiNLI and
FEVER under various train/test splits and input types.

After training two classifiers (P + H and H) on
each dataset’s test set, we construct a feature vector
fi describing the training dynamics of an instance
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i by concatenating the training dynamics of each
sample in both settings:

f
(P+H)
i = [µ̂

(P+H)
i , σ̂

(P+H)
i , ĉ

(P+H)
i ,AUM(P+H)

i ]

f
(H)
i = [µ̂

(H)
i , σ̂

(H)
i , ĉ

(H)
i ,AUM(H)

i ]

fi = f
(P+H)
i ∥ f (H)

i

(5)

Using the feature vectors {fi}Ni=1, we cluster
the test set using a Gaussian Mixture Model into
three clusters. Feature vectors are normalized with
standard scaling by subtracting the mean and divid-
ing by the standard deviation of each feature. The
clusters are ranked according to the intra-cluster
average confidence µ̂(P+H), and we interpret them
as belonging to three difficulty levels, following
the terminology introduced by Swayamdipta et al.
(2020): easy, ambiguous and hard, in decreasing or-
der of the average intra-cluster confidence µ̂

(P+H)
.

See Appendix A for a high-level overview of our
algorithm.

Figure 2 depicts the distribution of features
across difficulty levels for both datasets. While
each type of feature captures different aspects of
the learnability of an instance, their combination
offers a more diverse view of the learning dynam-
ics during training. In the case of both SNLI and
MultiNLI, harder examples have consistently lower
average margin and more variability of the cor-
rect class. The effect is not as pronounced in a
hypothesis-only setting; however, there is a clear
delimitation of easy examples for average margin
and confidence, indicating potential annotation ar-
tifacts. For FEVER, since the dataset has reduced
spurious correlations, the identified splits corre-
spond to difficult-to-learn examples, not necessar-
ily examples with annotation artifacts.

In the interest of quantifying the number of spu-
rious correlations found in the test set, we follow
Naik et al. (2018) and track several measures that
correspond to either shallow statistics between the
premise and the hypothesis, or the presence of
negations or misspelled words. Table 2 presents
the heuristics implemented in our work. We auto-
matically compute each measure, avoiding time-
consuming manual annotations.

Training the pretrained models for dataset char-
acterization was performed for 5 epochs each, with
a batch size of 32, using the Adam optimizer with
a learning rate of 10−5 following a linear decay

Name Explanation
Word Overlap Number of common words between the

premise and hypothesis, normalized by
sentence length

Number of Antonyms Number of antonyms of each of the
words in the premise contained in hy-
pothesis, based on WordNet (Fellbaum,
1998), normalized by sentence length.

Length Mismatch Difference in length between premise
and hypothesis, normalized by sentence
length

Misspelled Words Total number of misspelled words us-
ing a spellchecker in the premise and
hypothesis, normalized by sentence
length.

Contains Negation Boolean flag if either the premise of hy-
pothesis contains a negation word (e.g.,
no, not, never, none)

Table 2: Heuristic measures of spurious correlations
used, similar to the categories by Naik et al. (2018).

Dataset Split Fraction of total Accuracy
(P + H)

Accuracy
(H)

SNLI
Easy 0.70 (6889 / 9824) 0.97 0.82
Amb. 0.17 (1725 / 9824) 0.89 0.46
Hard 0.12 (1210 / 9824) 0.56 0.38

MultiNLI
Easy 0.75 (7381 / 9815) 0.94 0.67
Amb. 0.14 (1420 / 9815) 0.75 0.43
Hard 0.10 (1014 / 9815) 0.53 0.39

FEVER
Easy 0.50 (10083 / 19998) 0.95 0.43
Amb. 0.24 (4903 / 19998) 0.88 0.49
Hard 0.25 (5012 / 19998) 0.29 0.16

Table 3: Performance of RoBERTa models trained on
the training set and evaluated on different splits of our
stress test.

schedule with warm-up. We used mixed precision
for all training runs.

4 Results & Discussion

Table 3 shows the performance of a RoBERTa
model trained on each dataset’s training set and
evaluated on our stress test after characterization
using training dynamics. Easier instances have
more examples annotated with "contradiction" and
"entailment", while harder instances have more
examples annotated with "neutral". Performance
monotonously degrades upon increasing difficulty
levels, reaching 56% accuracy on SNLI-hard and
53% accuracy on MultiNLI-hard. Performance
on the easy split for both datasets is considerably
higher compared to the global accuracy with all
splits combined. Furthermore, the accuracy of a
model trained using only the hypothesis degrades
to almost random chance on harder splits, indicat-
ing that the hard split has fewer annotation artifacts.
Compared to Swayamdipta et al. (2020), the dif-
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Figure 2: Distributions of feature values across difficulty levels for the test set for SNLI (top), MultiNLI (middle), and
FEVER (bottom). In addition to features explored in Data Maps (Swayamdipta et al., 2020), we also incorporated the
Average Margin (Pleiss et al., 2020) and included training dynamics across a model trained only on the hypothesis.

Figure 3: Distributions of the measures of spurious correlations for each level (easy, ambiguous, hard) across the
three labels (entailment, neutral, contradiction) for SNLI (top), MultiNLI (middle) and FEVER (bottom).

ficulty levels are not equal in size; the majority
(∼70%) of samples belongs to the easy category,
while only around 10% are characterized as being
hard. For FEVER, the performance degradation in
the hard split is more dramatic: 29% accuracy for
hard compared to 88% for ambiguous, indicating
truly difficult examples for the model.

Even though the hard split is relatively small,
the subsample is challenging for current models,
as it comprises instances with fewer spurious cor-

relations between premise and hypothesis. Fewer
annotation artifacts enable fewer "correct" predic-
tions from linguistic patterns present only in the
hypothesis. In Figure 4, we show per-class counts
relative to the difficulty levels for both datasets. It
is the case that easier samples contain more contra-
dictions and entailments, prone to linguistic com-
monalities (word overlap, presence of antonyms).
Thus, the hard split has more neutral instances.

Through manual inspection, we found that for
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Figure 4: Counts for each class in SNLI, MultiNLI, and
FEVER, according to each difficulty level.

SNLI, the easy splits contain unrelated sentences
which are sometimes annotated incorrectly as Con-
tradiction (e.g., "a woman running in the park"
versus "a man cooking at home" - two unrelated
sentences annotated as contradicting). The model
learns this pattern and incorrectly predicts Contra-
diction on some Neutral pairs (e.g., "... girls chat-
ting on the stairwell" versus "girls are at school").
For MultiNLI, we found that the easy split usu-
ally aligns with simple sentence negations (e.g.,
"it gets it" versus "it doesn’t get it") or paraphras-
ing ("I guess history repeats itself" versus "his-
tory certainly doesn’t repeat"). These observations
strongly point towards spurious correlations be-
tween premise and hypothesis, making the sen-
tences easier to classify correctly. We provide se-
lected examples in the Appendix A. The ambiguous
and hard splits in both datasets contain increasingly
more subtle cues, with little overlap in words be-
tween premise and hypothesis (e.g., "standing on a
tree log" versus "crossing the stream" / "wouldn’t
have mattered" versus "would have gotten worse"),
having more natural and challenging sentence
pairs.

Across SNLI, MultiNLI, and FEVER, we
tracked the average amount of each measure be-
tween difficulty levels and classes (see Figure
3). To rigorously test the difference between the
classes at various difficulty levels, we perform a
non-parametric two-sided Mann-Whitney-U test
(Mann and Whitney, 1947) with Bonferroni correc-
tion to test for statistical significant differences2.

We found no evidence for the presence of spuri-
ous correlations (Mann-Whitney’s U test p > .05)
in the hard split between the three classes. Some
measures are more associated with certain classes.
For example, instances annotated with Contradic-
tion have a disproportionate amount of antonyms

2Significance thresholds: Not Significant (ns): .05 < p,
*: .01 ≤ p ≤ .05, **: .001 ≤ p ≤ .01, ***: p ≤ .001,

between premise and hypothesis in the easy and am-
biguous splits. Similarly, negation is more present
in the Contradiction class for easy splits. For in-
stances annotated with Entailment, word overlap is
present significantly in easy splits. Between SNLI
and MultiNLI, MultiNLI has a disproportionately
large amount of negations compared to SNLI. For
both SNLI and MultiNLI, our method yields little
to no significant differences between classes in the
hard split across the spurious correlation measures.
For FEVER, measures such as the presence of nega-
tions, number of antonyms, and word overlap are
reduced across difficulty levels. Note that FEVER
includes a small statement as the premise and a
long text extract containing evidence as the hypoth-
esis, which makes the length mismatch negative.

4.1 Impact of the Underlying Encoder
To show that our method is model-agnostic, we
further provide a comparison between the dataset
characterizations obtained by RoBERTa and De-
BERTa. Table 4 showcases the accuracies of the
two models on each others’ data characterizations.
The difficulty splits are maintained cross-model.

Source: RoBERTa Source: DeBERTa
Split Dataset Target Model Accuracy Accuracy

Easy

SNLI RoBERTa 0.9779 0.9462
DeBERTa 0.9792 0.9624

MultiNLI RoBERTa 0.9470 0.9502
DeBERTa 0.9545 0.9567

FEVER RoBERTa 0.9101 0.9346
DeBERTa 0.8967 0.9501

Ambiguous

SNLI RoBERTa 0.8916 0.9802
DeBERTa 0.9003 0.9881

MultiNLI RoBERTa 0.7577 0.9086
DeBERTa 0.7746 0.9543

FEVER RoBERTa 0.9532 0.8697
DeBERTa 0.9470 0.8697

Hard

SNLI RoBERTa 0.5678 0.6337
DeBERTa 0.6446 0.6437

MultiNLI RoBERTa 0.5375 0.7497
DeBERTa 0.6460 0.7585

FEVER RoBERTa 0.3444 0.2913
DeBERTa 0.4089 0.2977

Table 4: Comparison between RoBERTa and DeBERTa
accuracy on each difficulty level, across models.

Across datasets and difficulty levels, the perfor-
mance sharply drops for the "hard" split for both
models. DeBERTa achieved higher accuracy for
"hard" set, most likely due to better overall per-
formance compared to RoBERTa. In Figure 5, we
show that overall heuristic values for "Contains
Negation" are maintained across both models. Ex-
tended results for are presented in Appendix A.

Our proposed methodology is general and inde-
pendent of the underlying encoder model since we
process training dynamics computed from raw logit
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Figure 5: Comparison between the characterizations
obtained by RoBERTa and DeBERTa on the "Contains
Negation" heuristic measure.

scores. This characterization procedure may be
adapted to using Large Language Models (LLMs)
(Lee et al., 2023) in a zero-shot classification set-
ting by manipulating the log-likelihood for the to-
kens of the correct classes. However, using LLMs
requires a different approach than the one presented
here since the networks are usually used without
further training, in an in-context-learning manner
(Dong et al., 2022). Furthermore, even if the LLMs
are fine-tuned (Hu et al., 2021), it is not straightfor-
ward how the logits of each of the three classes are
tracked across training. We leave this approach for
future work.

4.2 Training Set Characterization

Stress Test by Naik et al. (2018)
Method Splits % SNLI Word

Overlap
Spelling
Error

Numerical
Reasoning

Negation Length
Mismatch

Antonym Overall

DataMaps Amb. 33% 0.6792 0.7202 0.3745 0.5388 0.7176 0.6237 0.6662
AUM Amb. 33% 0.6818 0.6904 0.2896 0.4837 0.7134 0.7417 0.6416

Ours

Easy 53% 0.6720 0.6713 0.4287 0.4622 0.6870 0.4446 0.6246
Easy+Amb 86% 0.7231 0.7500 0.4452 0.6124 0.7578 0.6582 0.7083
Amb 33% 0.7264 0.7414 0.4158 0.6666 0.7491 0.6515 0.7093
Amb+Hard 46% 0.7302 0.7305 0.3761 0.5533 0.7471 0.6619 0.6860
Easy+Hard 66% 0.6714 0.6815 0.3803 0.5617 0.6993 0.4971 0.6442
Hard 13% 0.3191 0.3310 0.3304 0.3184 0.3189 0.0 0.3177

All 100% 0.7252 0.7559 0.2794 0.5923 0.7771 0.7268 0.7037

Table 5: Results for a RoBERTa model trained on SNLI
in various configurations and evaluated on the stress
test by Naik et al. (2018) based on MultiNLI. The best
results are bold, while the second best are underlined.

Our method provides a more challenging test
set devoid of shortcuts and spurious correlations.
Further, we explore the possibility of using this
approach to improve data quality for training NLI
models. We employ the same algorithm to char-
acterize the training sets for SNLI and MultiNLI
and train a RoBERTa model on the different result-
ing combinations of difficulty levels. Under each

Stress Test by Naik et al. (2018)
Method Splits % MultiNLI Word

Overlap
Spelling
Error

Numerical
Reasoning

Negation Length
Mismatch

Antonym Overall

DataMaps Amb. 33% 0.7046 0.7938 0.4065 0.5469 0.8197 0.5712 0.7222
AUM Amb. 33% 0.6428 0.7998 0.2888 0.5638 0.8254 0.5129 0.7115

Ours

Easy 41% 0.6885 0.7978 0.3391 0.5514 0.8210 0.5274 0.7179
Easy+Amb. 84% 0.6601 0.8274 0.4777 0.5764 0.8467 0.6330 0.7459
Amb. 43% 0.6283 0.8235 0.4602 0.5578 0.8421 0.5742 0.7337
Amb+Hard 59% 0.6961 0.8255 0.4651 0.5628 0.8476 0.6288 0.7474
Easy+Hard 56% 0.7170 0.8032 0.2948 0.5607 0.8258 0.5062 0.7237
Hard 15% 0.4525 0.4966 0.2705 0.4589 0.4914 0.2506 0.4656

All 100% 0.6701 0.8308 0.5380 0.5654 0.8500 0.6312 0.7511

Table 6: Results for a RoBERTa model trained on
MultiNLI in various configurations and evaluated on
the stress test proposed by Naik et al. (2018) based on
MultiNLI. The best results are bold, while the second
best are underlined.

configuration, the model is trained for 10 epochs
with early stopping on the validation set loss, with
a learning rate of 10−5 following a linear decay
schedule with a warm-up.

We evaluate each model on the stress test pro-
posed by Naik et al. (2018) that is based on
MultiNLI. However, we emphasize that the stress
test of Naik et al. (2018) is designed to unrealis-
tically amplify spurious correlations to gauge the
model performance under various extreme condi-
tions, in contrast to our method, which eliminates
linguistic shortcuts while mimicking real-world
examples. In Tables 5 and 6, we show the per-
formance on the dataset proposed by Naik et al.
(2018) for RoBERTa models trained on SNLI and
MultiNLI. The authors provided metadata for each
instance that allows fine-grained evaluation under
different linguistic reasoning phenomena.

We compared our approach with Data Maps
(Swayamdipta et al., 2020) and Area Under Margin
(Pleiss et al., 2020), two popular methods for train-
ing set characterizations using training dynamics.
For Data Maps, we select ambiguous examples by
keeping the instances where average variability is
in the top 66% percentile. For AUM, while the
authors did not explicitly propose a threshold for
characterizing each instance, we follow a similar
approach to Data Maps by considering ambigu-
ous examples to have an average margin between
the 33% and 66% percentiles. Our method outper-
forms Data Maps and AUM across the majority of
settings and, in some cases, outperforms a model
trained on the full dataset while using a smaller
amount of data but of higher quality. This indicates
that our method is a viable alternative to AUM or
Data Maps for increasing dataset quality.
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5 Conclusions

Our method highlights significant shortcomings in
widely used NLI evaluation datasets (SNLI and
MultiNLI) due to spurious correlations in the an-
notation process. To address these issues, we
proposed an automatic method for constructing
more challenging test sets, effectively filtering out
problematic instances and providing a more re-
alistic measure of model performance. Our ap-
proach, which categorizes examples in increasing
difficulty levels using a wide range of training
dynamics features, enhances evaluation reliabil-
ity and offers insights into underlying challenges
in NLI. Importantly, our methodology is general
and model-agnostic, and can be applied across dif-
ferent datasets and models, promising improved
evaluation practices in NLP.

Furthermore, we provided evidence that our
method can obtain a challenging test set even if the
dataset has fewer annotation artifacts; we charac-
terized FEVER, a fact-checking dataset repurposed
for NLI, and showed that the identified hard split
is a highly challenging subset of the dataset. By
aggressively filtering uninformative examples, we
show that comparable model performance can be
achieved with significantly reduced data require-
ments. Our work contributes to advancing NLI
evaluation standards, fostering the development of
more robust NLU models.

Limitations

Our method is unsuitable for automatically identify-
ing mislabeled examples in a dataset. While it does
incorporate measures such as Area Under Margin
(Pleiss et al., 2020), designed with this purpose,
proper manual verification is needed to increase
annotation quality.
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A Appendix

A.1 Algorithm
We present the high-level overview of our method-
ology in Algorithm 1.

Algorithm 1 Pseudo-code for the construction of a
stress test based on training dynamics.
Require: Dtest - the target test set

Train encoder model M(P+H)
θ on Dtest using the premise and hypothesis

for 5 epochs, tracking training dynamics
Compute µ̂(P+H), σ̂(P+H), ĉ(P+H), AUM(P+H) (Eqs. 1,2, 3, 4)
Construct training dynamics features f(P+H)

i for each instance i (Eq. 5)

Train encoder model M(H)
ϕ on hypothesis for E epochs, tracking training

dynamics
Compute µ̂(H), σ̂(H), ĉ(H), AUM(H) (Eqs. 1,2, 3, 4)
Construct training dynamics features f(H)

i for each instance i (Eq. 5)

Concatenate features vectors fi = f
(P+H)
i ∥ f

(H)
i

Train a Gaussian Mixture Model with 3 clusters on fi
Order clusters based on average intra-cluster confidence µ̂, considering
"easy" (e), "ambiguous" (a) and "hard" (h) having µ̂

(e)
> µ̂

(a)
> µ̂

(h)

Split Dtest into D
(e)
test, D(a)

test, D(h)
test, based on examples corresponding

to each cluster
return D

(e)
test, D(a)

test, D(h)
test

A.2 Qualitative Samples
In Table 7, we show qualitative examples from each
of the three datasets we experimented on.

A.3 Extended Comparison
Figure 6 depicts extended comparisons between
the characterizations of the two models on SNLI,
MultiNLI, and FEVER.
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Dataset Difficulty Premise Hypothesis True Label Model Prediction Correct?

SNLI

Easy

A brown dog plays in a deep pile of snow. A brown dog plays in snow Entailment Entailment ✔

Woman running in a park while listening to music. A man cooking at home. Contradiction Contradiction ?
Two daschunds play with a red ball A cat in a litter box. Contradiction Contradiction ?
A grim looking man with sunglasses pilots a boat. The happy pilot flies his plane. Contradiction Contradiction ?

Amb.

An older women tending to a garden. The lady has a garden Entailment Entailment ✔

People are hiking up a mountain with no greenery. The hikers have backpacks. Neutral Neutral ✔

A man in a suit speaking to a seated woman. A man in a costume speaking to another man. Contradiction Contradiction ✔

A helmeted male airborne on a bike on a dirt road. The man fell off his bike. Contradiction Contradiction ?

Hard

A couple is taking a break from bicycling. a couple sit next to their bikes. Neutral Contradiction ✗

Three kids in a forest standing on a tree log. Children crossing stream in forest. Neutral Contradiction ✗

A car is loaded with items on the top. The car is a convertible.. Contradiction Neutral ✗

3 girls chatting and laughing on the stairwell. Girls are at school. Neutral Contradiction ✗

MultiNLI

Easy

Through a friend who knows the lift boy here. A friend knows the lift boy here. Entailment Entailment ✔

I guess history repeats itself, Jane. History certainly doesn’t repeat, Jane. Contradiction Contradiction ✔

He says men are here. He said that the men were not here. Contradiction Contradiction ✔

it gets it It doesn’t get it. Contradiction Contradiction ✔

Amb.

He slowed. He stopped moving so quickly. Entailment Neutral ✗

uh high humidity Air with increased water content. Entailment Entailment ✔

I don’t know all the answers, fella. Buddy, I just can’t answer all those questions. Entailment Neutral ✗

British action wouldn’t have mattered. If Britain got involved, things would have gotten worse. Contradiction Neutral ✗

Hard

Detroit Pistons they’re not as good as they were last year Detroit Pistons played better last year Entailment Entailment ✔

The White House denies this. The White House, off the record, knows it to be true. Neutral Contradiction ✗

I’m not interested in tactics, Al. Al is very interested in tactics. Neutral Contradiction ✗

The four Javis children? asked Severn. You have to ask Severn about the four Jarvis children. Contradiction Entailment ✗

Table 7: Selected qualitative examples from SNLI and MultiNLI for each split. In some cases, easy instances for
SNLI are mislabeled neutral pairs while for MultiNLI easy instances are simple negations and paraphrasing. The
hard split contains sentence pairs with more subtle linguistic cues.

Figure 6: Extended comparison between characterizations given by RoBERTa and DeBERTa across the three
datasets for the proposed heuristics.
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