
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3059–3077
November 12-16, 2024 ©2024 Association for Computational Linguistics

BC-Prover: Backward Chaining Prover for Formal Theorem Proving
Yuhang He1,2,3∗, Jihai Zhang1∗, Jianzhu Bao2,3, Fangquan Lin1,

Cheng Yang1, Bing Qin2,3, Ruifeng Xu2,3†, Wotao Yin4†
1 DAMO Academy, Alibaba group, Hangzhou, 310023, China

2 Peng Cheng Laboratory, Shenzhen, China
3 Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies

4 DAMO Academy, Alibaba Group US, Bellevue, WA, USA
yuhang.he.hitsz@outlook.com, jianzhubao@gmail.com,

qinb@163.com, xuruifeng.hitsz@gmail.com
{jihai.zjh, fangquan.linfq, charis.yang, wotao.yin}@alibaba-inc.com

Abstract

Despite the remarkable progress made by large
language models in mathematical reasoning, in-
teractive theorem proving in formal logic still
remains a prominent challenge. Previous meth-
ods resort to neural models for proofstep gen-
eration and search. However, they suffer from
exploring possible proofsteps empirically in
a large search space. Besides, they directly
use a less rigorous informal proof for proof-
step generation, neglecting the incomplete rea-
soning within. In this paper, we propose BC-
Prover, a backward chaining framework guided
by pseudo steps. Specifically, BC-Prover pri-
oritizes pseudo steps to proofstep generation.
The pseudo steps boost the proof construction
in two aspects: (1) Backward Chaining that
decomposes the proof into sub-goals for goal-
oriented exploration. (2) Step Planning that
makes a fine-grained planning to bridge the
gap between informal and formal proofs. Ex-
periments on the miniF2F benchmark show sig-
nificant performance gains by our framework
over the state-of-the-art approaches. Our frame-
work is also compatible with existing provers
and further improves their performance with
the backward chaining technique.

1 Introduction

Recent years have seen a surge of interest in math-
ematical reasoning tasks, such as premise selec-
tion (Mikula et al., 2023), autoformalization (Zhou
et al., 2024a; Wu et al., 2022) and automated theo-
rem proving (Wang et al., 2023b; Azerbayev et al.,
2023). Automated theorem proving poses a signif-
icant challenge, as it requires the prover to gener-
ate validated formal proofs fully automatically in
a prohibitively large search space (Lample et al.,
2022; Trinh et al., 2024). Therefore, interactive
theorem proving (ITP) has emerged as an alterna-
tive method for automating theorem proving. ITP

∗Equal Contribution
†Corresponding Authors

hypotheses proof goal tactic

Informal Proof : Since is the reverse function of , q , . So

Informal Statement : Suppose that . If , and ,
what is ? Show that it is .

Proof Construction

Theorem
Statement

Interaction at

proof state

Problem Example

Theorem Statement : theorem example (: equiv) (: inv_fun 2
10) (: 10 1) (: σ.inv_fun 1 2): (.to_fun 10)

1 : begin

, apply equiv
.apply_symm_apply

p
ro

of
 s

ta
te

--

--

--

--

proof assistant

Figure 1: Problem Example: An input example form
Zheng et al. (2022). Proof Construction: A sequence
of tactics updates the state interactively to prove the
goal. Interaction at S0: Given the value of σ−1, the
goal is to prove the value of σ. rw fails to rewrite
the proof goal with h1. simp fails to simplify the

proof goal with existing hypotheses. The have tactic
successfully proves h3 reversely by observing the goal.
It corresponds to the color sentence in the informal
proof.

typically involves prover writing steps to interact
with proof assistants like Isabelle (Nipkow et al.,
2002) and Lean (de Moura et al., 2015). Such
a process highlights understanding of hypotheses
and efficient search strategies to reach the proof
goal (Zhang et al., 2023). Besides its huge poten-
tial to accelerate research in mathematics, ITP has
demonstrated excellent application value in code
generation (Polu et al., 2023), synthetic theorem
generation (Lin et al., 2024; Huang et al., 2024)
and proof refactoring (Zhou et al., 2024b).

As Lean becomes prevalent due to its superior-
ity in interactive mathematical expression, a line
of work has explored using language models for
programmatically interacting with Lean (Yeh et al.,

3059

2023; Brandfonbrener et al., 2024; Welleck and
Saha, 2023). In this paper, we also focus on ITP
with Lean. Generally, the ITP task aims at con-
structing a proof (a sequence of tactics) of a proof
state (transformed from a theorem statement) as
illustrated in Figure 1. Tactics are proofsteps for
updating the proof state. They must be strictly ver-
ified by the proof assistant and utilize hypotheses
to achieve the proof goal. Unlike conventional pro-
gram languages, formal proof language adheres to
rigorous mathematical logic, leaving no room for
hallucination (Ji et al., 2023). Therefore, the ITP
task presents a significant challenge for LLMs.

Existing research on ITP mainly falls into two
paradigms: task-specific finetuning and prompt-
ing. Task-specific finetuning methods have shown
exceptional performance (Han et al., 2022; Wang
et al., 2023b). They rely on prohibitive training
costs on private datasets, making it impractical in
real scenarios without open-source code or models
(Polu et al., 2023; Lample et al., 2022). Prompting
methods, on the other hand, have already proven
to be a powerful copilot in real-world applica-
tions (Song et al., 2024). They explore the in-
context learning ability of LLMs to infer proofsteps
(Thakur et al., 2024; Ying et al., 2024). Our method
is also based on the prompting paradigm.

To produce more reliable tactics, most prompt-
ing methods involve informal proofs prior to proof
construction (Jiang et al., 2023). The informal
proofs are solutions in natural language as shown
in Figure 1: Proof Construction. However, directly
applying the informal proofs as in-context exam-
ples can mislead the LLMs, as there are gaps be-
tween formal and informal proofs. Specifically,
informal proofs are often less rigorous and tend
to skip steps, making them less reliable. To the
best of our knowledge, both prompting and finetun-
ing methods focus on generating forward-chaining
tactics, ignoring the backward-chaining strategy.
Backward chaining is an inference method de-
scribed colloquially as working backward from the
goal (Huang and Chang, 2023). Ignoring backward
chaining could trap the exploration of proofsteps.
As shown in Figure 1: Interaction at S0, in order
to prove the goal, a hypothesis h3 should be proved
first instead of using existing hypotheses.

In order to alleviate the above problems, we pro-
pose BC-Prover, a framework to operate backward-
chaining for ITP in Lean. Specifically, given a
theorem and its informal statement, our framework

first derives an informal proof and pseudo steps.
Pseudo steps are specific proof steps further elab-
orated based on the informal proof, aimed at pro-
viding a reference for the formal proof. During
proof construction, vanilla provers proposed in pre-
vious works generate forward-chaining tactics to
interact with Lean(Han et al., 2022; Yang et al.,
2023). Instead, inspired by literature in logic rea-
soning (Poole and Mackworth, 2010), our approach
performs (1) backward chaining: drawing auxil-
iary hypotheses about the internal reasoning. As
the pseudo steps indicate intermediate steps toward
the goal, we employ LLMs to recursively discover
provable sub-goals for ultimate proof-finding. To
avoid producing misleading steps, our approach
performs (2) step planning: planning the next
proofstep conditioned on the current state. Addi-
tionally, it augments the next proofstep with re-
trieval lemmas and plans similar to Yang et al.
(2023). Experiments show that BC-Prover achieves
a higher pass rate on the miniF2F benchmark com-
pared with several SOTA baselines. BC-Prover can
also collaborate with finetuned models to obtain
substantial improvement.

We summarize our contributions as follows:

• We sketch the proof in pseudo steps and make
fine-grained step planning to fill the gaps be-
tween informal and formal proofs.

• We incorporate a backward-chaining strategy
in search of goal-driven tactics to find proof
paths efficiently.

• Evaluation on ITP benchmark reveals that our
framework outperforms several strong base-
lines. The backward chaining strategy can
also enhance the existing provers.

2 Related Works

2.1 Formal Theorem Proving
Early approaches search proofs in first-order logic
automatically (Robinson and Voronkov, 2001;
Kovács and Voronkov, 2013). However, the in-
herent vast search space often limits their practical-
ity in higher-order mathematical problems (Bridge
et al., 2014). Later works on theorem proving have
thereby focused on ITP paradigm.

With the remarkable achievements of genera-
tive models in recent years, task-specific finetuning
models are widely used for ITP (Sanchez-Stern
et al., 2020; Polu and Sutskever, 2020a). Yang et al.

3060

(2023) implements a retrieval-augmented language
model to search appropriate lemmas for tactic gen-
eration. Welleck and Saha (2023) makes further
improvement by scaling the language model. Re-
cent researches also explore advanced LLMs with
sophisticated prompting methods (Poulsen et al.,
2024; Yousefzadeh and Cao, 2023). Jiang et al.
(2022) integrates LLM and Sledgehammer, a pow-
erful automated prover in Isabelle, for theorem
proving. First et al. (2023) investigates LLM for
repairing the whole proof after interaction with
the proof assistant. Similarly, Thakur et al. (2024)
repeatedly corrects proofsteps from assistant feed-
back. These previous approaches begin with estab-
lished hypotheses and keep applying tactics in a
forward-chaining fashion until the goal is reached.
We integrate a backward-chaining strategy to un-
cover possible facts for proving the goal.

2.2 Proof Autoformulation
The goal of proof autoformalization is to convert in-
formal theorems and proofs into machine-verifiable
formats. It has been studied since the early stage
of neural models (Kaliszyk et al., 2014). In the
era of LLMs, proof autoformulation demonstrates
its value in automated theorem proving by trans-
lating mathematical statements in natural language
into formal proofs (Wang et al., 2020; Wu et al.,
2022; Zhao et al., 2023). It promises to facilitate
the verification of mathematical papers (Szegedy,
2020). Jiang et al. (2023) introduces a draft-sketch-
prove pipeline to formulate informal proof auto-
matically. Subsequent research builds dynamic
lemma libraries and achieved substantial improve-
ment (Wang et al., 2023a). Thakur et al. (2024)
guides the next tactic generation with informal
proof in ITP but only yields a little increment.
Despite their contributions, none of the aforemen-
tioned methods have investigated pseudo steps as
intermediate results toward final proof, nor do they
formulate backward-chaining steps in the ITP task.

2.3 Proofstep Generation and Search
Combining language models for proofstep genera-
tion and heuristic algorithms for proofstep search
has been the key to ITP. A thread of research
trains a language model and simply adopts best-
first-search (Polu and Sutskever, 2020a; Welleck
et al., 2022; Polu et al., 2023; Zheng et al., 2023;
Jiang et al., 2021). Subsequent advancements fo-
cus on deriving more efficient search strategies like
MCTS (Lample et al., 2022). Wang et al. (2023b)

adjusts search steps to accommodate proof state
complexity, mirroring human reasoning over the
entire proof trajectory. Besides, some studies train
LLMs on extensive general mathematical corpora
and build strong LLM agents for proofstep gener-
ation (Shao et al., 2024; Azerbayev et al., 2023;
Rozière et al., 2023). These studies are highly rel-
evant to our work, as our goal is to build an LLM
agent that uses backward chaining to reduce the
search space of forward chaining.

3 Methodology

A problem statement consists of a theorem state-
ment Xt and its informal statement Xh. Xt will
be transformed into an initial proof state S0 =
{h1, ..., hl, g1, ..., gm} that holds l hypotheses h
and m goals g. A problem example is illustrated
in Figure 1: Problem Example. The ITP task can
be formulated as follows: given Xt, Xh and S0,
a prover needs to generate tactics iteratively to
construct a proof. In each iteration, the prover
searches for tactics to update the state. The itera-
tions "S0 ⇀ S1 ⇀ · · · " finish until all goals are
accomplished or the search ends.

3.1 Basic Prover

In general, a basic prover is composed of a proof-
step generator and a proofstep search mechanism.
The proofstep generator iteratively generates tac-
tics based on the proof state. The proofstep search
mechanism controls the overall search process,
maintaining states and selecting tactics during
proof construction.

Proofstep Generator. Following Polu and
Sutskever (2020b), we use a decoder-only language
model LM as the proofstep generator. The genera-
tor takes a proof state Si and generates k tactics:

{t0i , ..., tki } = LM(Si) (1)

Formally, the above process is defined as forward
chaining.

Proofstep Search. The goal of the proofstep
search is to build a proof tree that incrementally
evolves the state through tactic invocations. Start-
ing from the initial state S0, the prover expands
proof states by executing tactics in each iteration.
The intermediate states are maintained in a priority
queue and expanded based on the cumulative log
probability. The cumulative log probability is the
summation of the log probabilities of tactics that

3061

Proof State

Proofstep Planning

Goal-driven hypotheses

Lemmas & Plans

Language Model

Since 𝑞 is the reverse function of 𝑝,
q(10)=2, 𝑞(2)=1. So 𝑞(𝑞(10))=𝑞(2)=1

Plan𝟏: use this lemma to get value of 𝑞(𝑥)
Lemma1: function.inv_fun_eq (h : ∃ a,
f a = b):f (inv_fun f b) = b

Plan: Since we know 𝑝(1) and q is inverse
function. Next we apply p(1) and prove
𝜎. to_fun 2 = 1 according to ……

h3: ∀ x, σ.to_fun (σ.inv_fun x)
 = x

/- Step1: To prove the goal we
should prove q(10) = 2, using the
given p(2) = 10 -/
have f_10_eq_2 : σ.to_fun 10 = 2
:= by { placeholder }
/- Step2: Using Step1… -/
......
/- Step4: We need to find q(q(10)).
From Step2 we know …-/
calc σ. to_fun (σ. to_fun 10) : = 1
-- because q(2) = 1, q(10) = 2
/- Note: In this pseudo-code, `have`
statements are used to establish
smaller goal. You need write tactics
in {placeholder} -/

Backward Chaining

Step Planning Mathlib

𝑿𝒉 Suppose that p 𝑥 = 𝑞−1 𝑥 . If p 2 = ⋯

Xt theorem example (σ:equiv R R)(h₀= …

Augmentation

Proof Construction:

Pseudo Steps Generation:

/- Step1…-/
/- Step2…-/

h4: σ.to_fun 10 =2
TacticTacticIterations

Problem statement Informal Proof Pseudo Steps

Pseudo Steps

Tactic

(𝑔𝑠𝑢𝑏 ,𝑡𝑠𝑢𝑏)

Figure 2: Overview of BC-Prover. It first generates pseudo steps by sketching a proof of the problem. During proof
construction BC-Prover iteratively augments the proof state with step planning and backward chaining.

brought us to the next state Sj from S0. The prover
commonly adopts best-first search:

Sj = Lean(t
′
j−1, Sj−1) (2)

where Lean is the Lean assistant and Sj−1 is the
current state. The best tactic t

′
j−1 leads to a state

with the highest cumulative log probability. It can
be regarded that best-first search is operating in a
forward-chaining manner.

3.2 BC-Prover

Upon the basic prover, we propose our BC-Prover
framework, as shown in Figure 2. BC-Prover first
sketches an informal proof and pseudo steps for
the input mathematical problem. Subsequently,
BC-Prover engages in proof construction through
iterative processes. In each iteration, the backward
chaining mechanism utilizes the LLM’s reasoning
ability to discover goal-driven hypotheses. The
step planning module derives next-step planning
conditioned on the current state. Additionally, BC-
Prover retrieves potentially useful lemmas with the
help of a retriever and a re-ranking agent. Finally,
the proof state is augmented with the aforemen-
tioned information for tactic generation.

Pseudo Steps Generation. BC-Prover proceeds
pseudo steps generation before proof construction.
It formalizes the input problem following recent
advances in proof autoformulation (Jiang et al.,
2023). Accordingly, the problem is mapped into an

informal proof and pseudo steps sequentially:

M : (Xt, Xh)→ Ph (3)

M : (Xt, Xh, Ph)→ Ps (4)

whereM is parameterized by LLM,→ indicates
prompting and parsing procedure to generate the
desired results1. Ph and Ps denote informal proof
and pseudo steps respectively. Pseudo steps are
more structured, filling up steps that require explicit
proving but are taken for granted in informal proof.

In the following, BC-Prover conducts proof con-
struction. It is guided by the pseudo steps and
updates the proof state iteratively. The iterations
end when the goals are achieved or the search is
finished.

Backward Chaining. Backward chaining starts
from the goal and recursively breaks it into sub-
goals, which should be asserted as facts for goal
achievement (Al-Ajlan, 2015). Analogously, BC-
Prover performs backward chaining in each itera-
tion to establish provable hypotheses. The informal
proof briefly outlines the proof path. The pseudo
steps decompose it into commented proofsteps. As
pseudo steps declare necessary sub-goals, our back-
ward chaining is guided by it to establish d sub-
goals gsub and corresponding tactics tsub, using
LLMs’ reasoning ability:

M : (Ps, Si)→ H (5)

1All specific prompts can be found in Appendix A.1

3062

where H = {(gsub0 , tsub0), ..., (gsubd , tsubd)} and the
current state Si is also an essential input since it
tells about the existing hypotheses and final goal.
Next, all sub-goal and tactic pairs (gsub, tsub) are
to be verified by the proof assistant:

Hg = Lean(H, Si) (6)

where Hg = {hgoal0 , hgoal1 , ...}. The validated pairs
will be introduced as goal-driven hypotheses hgoal

to augment the proof state:

Sθ
i = [Si,Hg] (7)

where [·] is the augmentation operation.
Step Planning. Step Planning augments the

current state with step-level planning to bridge the
gap between informal and formal proofs. Since the
proof state involves obscure mathematical notions,
we annotate the proof state with a description D.
Then an LLM reasons out a next-step planning
under the current state. The whole procedure is
accomplished by promptingM, denoting as:

M : Sθ
i → D (8)

M : (D,Sθ
i , Ps)→ N (9)

where Sθ
i , Ps, and N are the state, pseudo steps,

and planning of the next proofstep respectively.
The planning gives instructions on the effective
tactics to progress the current state.

Following LeanDojo (Yang et al., 2023), we em-
ploy its premise retriever to query a set of lemmas
Lr from mathlib2. Afterward, an LLM re-ranking
agent selects n lemmas and summarizes plans for
their use in the next proofstep (Sun et al., 2023):

M : (Lr, S
θ
i , Ps)→ L (10)

where L is a set of potentially useful lemmas and
relevant brief plans.

Proofstep Generator. Finally, state Sθ
i is aug-

mented with the above-generated results. BC-
Prover instructM with the proof state S∗

i to gener-
ate k tactics:

S∗
i = [Sθ

i , N,L] (11)

M : (S∗
i)→ {t0i , ..., tki } (12)

Proofstep Search. BC-Prover iteratively guides
LLM to predict tactics for the current proof state.

2Mathlib is a user maintained library for the Lean. It
contains a large amount of lemmas for theorem proving

The best-first search is impractical since the log
probability is inaccessible by calling LLM’s API.
Inspired by DT-Solver (Wang et al., 2023b), we
alternatively select proofsteps based on state com-
plexity. Specifically, the current proof state is ex-
panded with tactic t

′
j that leads to the simplest Sj .

The simplicity of Sj is measured by the number of
tokens. The selected tactic is to interact with Lean
as described in Equation 2.

The basic prover searches exhaustively in a for-
ward chaining manner. Our framework, in each
iteration, recursively establishes goal-driven hy-
potheses. Hence, our proofstep search mechanism
is actually a bidirectional search, which reduces the
search space with backward chaining.

4 Experiment Setup

In this section, we introduce the experiment setup
for BC-Prover. Following Polu et al. (2023), we
evaluate BC-Prover in Lean. More experimental
details and hyperparameters are in Appendix A.

Baselines. Baselines of two paradigms are
compared, encompassing the state-of-the-art ITP
provers in Lean.

(1) Task-specific finetuning. PACT (Han et al.,
2022) co-trains the GPT-f model with nine auxiliary
tasks. Expert Iteration (Polu et al., 2023) trains the
language model by self-synthetic data from proof
searches. ReProver (Yang et al., 2023) proposes
a premise-augmented model for theorem proving.
LLMStep (Welleck and Saha, 2023) scales the
model of ReProver without premise retrieving.

(2) Prompting. CodeLama (Rozière et al.,
2023), Deepseek-Math (Shao et al., 2024),
LLEMMA (Azerbayev et al., 2023) are LLMs
trained on various large-scale mathematical corpus
with reinforcement learning technique. We choose
their 7B version because 7B models perform the
best in their reports. Copra (Thakur et al., 2024)
devises a GPT-4-based agent to search and correct
tactics from the assistant’s feedback. GPT-4 base-
line is implemented with gpt-4-turbo-2024-04
-09 version under few-shot settings like LLEMMA.

Note that we exclude some baselines that are in-
feasible to compare with (details in Appendix A.2).
For example, approaches across different proof as-
sistants are not comparable because of different
experiment settings.

Implementation details. In this paper, the LLM
is instantiated to be gpt-4-turbo-2024-04 -09.
In each iteration, BC-Prover generates k = 16

3063

Methods Search-k miniF2F-valid miniF2F-test
Task-specific finetuning
PACT (Han et al., 2022) - 23.9% 24.6%
Expert Iteration (Polu et al., 2023) ×64 28.5% 25.9%
ReProver (Yang et al., 2023) ×64 23.8% 26.5%
LLMStep (Welleck and Saha, 2023) ×64 26.2% 27.9%
Prompting
CodeLama-7B (Rozière et al., 2023) ×32 25.0% 20.5%
Deepseek-Math-7B (Shao et al., 2024) ×32 27.9% 28.3%
LLEMMA-7B (Azerbayev et al., 2023) ×32 26.6% 26.2%
Copra-GPT4 (Thakur et al., 2024) ×60 - 29.9%
GPT-4 (OpenAI, 2023) ×16 22.9% 23.4%
BC-Prover ×16 29.5% 30.7%
BC-ReProver ×16 32.0% 31.6%
BC-LLMStep ×16 35.2% 32.0%
BC-Prover∗ ×16 38.9% 36.9%

Table 1: Pass@1 results on the miniF2F benchmark. BC-Prover∗ denotes the cumulative pass rate of the miniF2F
dataset, considering the total number of problems solved using our framework. API cost of our framework is shown
in Appendix B.

tactics and d = 8 sub-goals. We set n = 5 for
lemma re-ranking. The temperature is set as 0 in
prompting the LLM. We adapt the basic provers
into our framework by only augmenting the current
state with goal-driven hypotheses. They implement
best-first search. More implementation details can
be found in Appendix A.3.

Theorem Proving Experimental Setup. In ITP
task, we adopt the miniF2F benchmark (Zheng
et al., 2022) for comparison with other works. This
benchmark contains two split datasets: miniF2F-
valid and miniF2F-test, which includes total 488
theorems sourced from Olympiad mathematical
problems (AIME, AMC, and IMO) as well as high-
school and undergraduate math classes. We follow
previous works (Lample et al., 2022) and evaluate
on these two splits. We primarily use Lean 3 as the
proof assistant. We evaluate the performance using
Pass@1 metric: the prover has only one attempt
and must find the proof within 100 iterations.

5 Results and Analysis

5.1 Main Result

We present the performance of our framework un-
der two different settings. Table 1 shows the over-
all performance of the baselines and our proposed
model.

BC-Prover Settings. We compare BC-Prover
with task-specific finetuning and prompting base-

lines. Overall, BC-Prover achieves better perfor-
mance with smaller search-k. Our framework sig-
nificantly improves over the GPT-4 by at least
6.5% and 7.3% on the miniF2F-valid and miniF2F-
test, respectively. BC-Prover outperforms another
GPT-4-based Copra with lower search-k on the set
and surpasses LLMs of mathematics domains by
10.2% at most. It hints that backward chaining and
step planning are important to guide LLMs to pro-
duce accurate tactics. Furthermore, task-specific
finetuning methods thoroughly explore the search
space with 64 search-k while BC-Prover achieves
a higher pass rate with 16 search-k. We think it is
mainly due to the backward chaining mechanism as
analyzed in Section 5.3. In conclusion, BC-Prover
presents competitive performance compared with
SOTA baselines on the miniF2F benchmark.

Collaborative Settings. Our framework is plug-
and-play with task-specific finetuning models. Un-
der collaborative settings, we employ ReProver and
LLMStep in Equation 11 to generate tactics. The
collaborative models are denoted as BC-ReProver
and BC-LLMStep. For a fair comparison with BC-
Prover, both BC-ReProver and BC-LLMStep are
constrained to only generate 16 tactics. It can be
observed that collaborative models performs better
than BC-Prover. The possible reason behind this
is that LLMs are not particularly trained on Lean.
Also, the Lean-related data is scarce and hard to ac-

3064

Forward Chaining Tactic Backward Chaining Tactic

LLMStep BC-LLMStep ReProver BC-ReProver GPT-4 BC-Prover

N
um

be
r

of
 T

ac
ti

cs

186

1

270

132

165

227

263

1 2

174

118
133

Figure 3: The number of tactics in the constructed proofs. There is an obvious increase in the number of backward
chaining tactics after applying our framework.

cess publicly (Han et al., 2022). Besides, both Re-
Prover and LLMStep achieve substantial improve-
ment in collaboration with our framework. On the
miniF2F-valid, backward chaining can bring about
a 9.0% increase for LLMStep and about 8.2% in-
crease for ReProver. It is worth noting that the
collaborative models can reach the final goal with
4 times less search-k. We argue that backward
chaining effectively introduces intermediate goals
to narrow the search paths for forward chaining.

In line with prior works (Lample et al., 2022),
BC-Prover∗ adds up the number of theorems solved
with our framework. In total, our framework suc-
cessfully carries out 38.9% (95/255) problems on
the valid split and 36.9% (90/244) on the test split.
The collaboration of our framework and finetuning
models is able to discover more new proofs than the
original BC-Prover. More experiments and results
refer to Appendix D

5.2 Ablation

Methods miniF2F-valid miniF2F-test
BC-Prover 29.5% 30.7%
w/o BC 25.4% 25.0%
w/o SP 27.4% 28.3%

Table 2: Ablation Study. Pass@1 results on the miniF2F.

We remove backward chaining (w/o BC) and
step planning (w/o SP) respectively to reveal the
effect of each module in our model. The Pass@1 of
the miniF2F benchmark is reported in Table 2. All
of our proposed modules can bring performance im-
provements. In particular, applying the BC to our
framework contributes about 4.1% and 5.7% pass
rate on valid set and test set, respectively, show-
ing the effectiveness of our proposed BC in proof-
finding. Also, it can be observed that removing SP

also leads to a drop in performance. One big fac-
tor is that SP gives comprehensive suggestions on
what to do next and how to achieve with extra lem-
mas, and removing it may exponentially enlarge
the forward-searching space.

5.3 Forward vs. Backward Chaining

Forward chaining tactics are machine-validated
proofsteps generated by the proofstep generator,
while backward chaining tactics (tsub) are proof-
steps that draw goal-driven hypotheses for proof
construction. To validate the effectiveness of back-
ward chaining, we measure the changes of types of
tactics after implementing our framework on the
baseline models. From the results in Figure 3, it
can be seen that none of the baseline models is able
to iteratively decompose the proof goal and cre-
ate helpful hypotheses, thus limiting their ability
to search forward. Also, the number of forward
chaining tactics indeed increases with the help of
our framework. To be specific, LLMStep generates
84 more forward proofsteps with 118 backward
chaining tactics. ReProver, likewise, finds 62 more
tactics during proofstep generation. Our LLM-
based BC-Prover searches for sug-goals in each
iteration, resulting in about 132 useful hypotheses.
The above results suggest that backward chaining
can steer the search in the correct direction.

5.4 Search Efficiency Analysis

Methods Avg.P ↓ Avg.I ↓ Max.I ↓
BC-Prover 1.80 2.30 23
GPT-4 2.07 3.45 61

Table 3: Avg.P indicates the average proofsteps of the
proofs. Avg.I and Max.I indicate the average and maxi-
mum iterations consumed in finding the proofs, respec-
tively.

3065

01 theorem mathd_algebra_209
02 (σ : equiv ℝ ℝ)
03 (h₀ : σ.inv_fun 2 = 10)
04 (h₁ : σ.inv_fun 10 = 1)
05 (h₂ : σ.inv_fun 1 = 2) :
06 σ.to_fun (σ.to_fun 10) = 1 :=
07 begin
08 norm_num,
09 apply_fun σ.inv_fun at h₁,
10 apply_fun σ at h₂,
11 simp at h₀,
12 sorry,
13 /- search end, goal unproved -/
14 end

GPT-4 Output:
01

07

08

09

10

11

12

BC-ProverOutput:

01 theorem mathd_algebra_209
02 (σ : equiv ℝ ℝ)
03 (h₀ : σ.inv_fun 2 = 10)
04 (h₁ : σ.inv_fun 10 = 1)
05 (h₂ : σ.inv_fun 1 = 2) :
06 σ.to_fun (σ.to_fun 10) = 1 :=
07 begin
08 have f_10eq2: σ.to_fun 10 = 2,
09 by {rw ← h₀, exact σ.right_inv 2},
10 have f_2eq1: σ.to_fun 2 = 1,
11 by {rw ← h₂, exact σ.right_inv 1},
12 have f_f10eqf2:
13 σ.to_fun (σ.to_fun 10) = σ.to_fun 2,
14 by {rw f_10eq2},
15 have id_apply_10_eq_10: id 10 = 10,
16 by {refl},
17 have f_f10eq1:
18 σ.to_fun (σ.to_fun 10) = 1,
19 by {rw [f_f10eqf2, f_2eq1]},
20 exact f_f10eq1,
21 end

10 12

08
07

01

15 17

20

21

Figure 4: Example outputs and search trees of "theorem mathd_algebra_209". The node is annotated with the line
number of the outputs. Left: GPT-4 reaches the end of the search and fails to solve the goal. Right: BC-Prover
reaches the goal with backward chaining, where the dash lines denote the backward chaining route. We highlight
the proofsteps of forward chaining: 01-07-08-09-10-11-12 (left) and 01-07-17-20-21 (right).

To better demonstrate why our proposed frame-
work works, we carry out an analysis of the search
efficiency. We compute several metrics from the
proof results as shown in Table 3. During the proof-
steps construction, the prover tries to find the cor-
rect path in the search tree. Avg.P reflects how
deep it reaches in the tree. GPT-4 uses up to 61
iterations with 2.07 Avg.P, which means GPT-4
spends most of its efforts in exploring proof paths.
Our BC-Prover is lower in Avg.P, Avg.I and Max.I,
showing that it can finish searching in 1.80 proof-
steps on average and find the correction direction
within fewer iterations. In conclusion, BC-Prover
exhibits higher search efficiency by incorporating
steps planning and backward chaining.

5.5 Case Study

In this section, we present a theorem example that
is successfully solved by our framework in Fig-
ure 4. More examples are shown in Appendix
E. The trees beside the proof are the proof trees
in proof constructions. We compare proof from
GPT-4 and our BC-Prover. The theorem states the
same problem as in Figure 1, where our goal is
σ.to_fun(σ.to_fun 10) = 1.

From Figure 4 left, we can see GPT-4 tries
to rewrite the existing hypotheses. For ex-
ample, line 09 rewrites the h1 into h1 :
σ.inv_fun(σ.inv_fun 10) = σ.inv_fun 1. The
transformation makes h1 look like the goal but ac-
tually does not drive the search towards the goal.

After the tactic in line 11, GPT-4 can not produce
any new tactic to update the state. Such a search is
purely forward chaining and ends up unsuccessful
in 25 iterations (25 nodes in total). In Figure 4 right,
BC-Prover is guided by pseudo steps and iteratively
established sub-goals and tactics. For example, line
08 states a sub-goal σ.to_fun 10 = 2 and tactic
rw ← h0, exact σ.right_inv 2. Line 08-09 is
validated by the Lean and introduce a new hypoth-
esis σ.to_fun 10 = 2, which is later used in line
12-14. The backward chaining makes the search
directly find a fowrad path (01-07-17) close to the
final goal. By applying line 20, BC-Prover accom-
plished the proof with less iteration and proofsteps.
We find that the new hypothesis introduced in Line
15 is useless in proving the goal. Similar hypothe-
ses can also be found in other cases as analyzed
in Appendix C. How to avoid generating these hy-
potheses to improve backward chaining is left for
future work.

6 Conclusion

In this work, we propose a novel framework, BC-
Prover. At the beginning, BC-Prover generates
pseudo steps for constructing proofs. During proof
construction, BC-Prover operates backward chain-
ing and step planning to construct proofs in formal
logic. The backward chaining searches for proof-
step in a goal-driven manner. The step planning
makes a detailed planning for each proofstep to in-
voke more accurate tactics. The experiment results

3066

on the benchmark demonstrate the superiority of
our framework. Our results demonstrate that future
work on ITP should incorporate backward chaining
to search tactics more effectively.

Limitations

Unlike informal natural language, formal theorems
in Lean are rigorous with lots of notions in mathe-
matical language. Although our framework mini-
mizes the gap between informal and formal lan-
guage, general LLMs are still prone to predict
tactics with grammar errors. Unfortunately, BC-
Prover outperforms several baselines but fails to
solve IMO-level Olympiad problems. Future re-
search could explore devising an LLM agent in the
Lean domain to alleviate these problems. During
the proof construction, the pseudo steps are not
updated as the proof goes on. BC-Prover relies
on the self-correction ability of LLM to adjust the
proofstep, which could be a weakness for proof
construction. The step planning module produces
complex instructions. Therefore, it cannot be ap-
plied to task-specific fine-tuning models and may
degrade LLMs of a small scale (e.g., 7B). We only
use ReProver and LLMStep to collaborate with our
framework. Consequently, for future research, we
aim to evaluate with more finetuning models to
verify the effectiveness of the backward chaining
technique.

Ethics Statement

We adhere strictly to the licenses and policies of
LLMs and publicly available datasets. We follow
the usage policy of OpenAI for constructing math-
ematical proofs and generate no harmful content.
The dataset contains mathematical theorems in for-
mal logic and does not involve any ethical prob-
lems.

Acknowledgment

This work was supported by Damo Academy
through Damo Academy Research Intern Program.
This work was partially supported by the National
Natural Science Foundation of China 62176076,
Natural Science Foundation of GuangDong
2023A1515012922, the Shenzhen Foundational
Research Funding JCYJ20220818102415032, the
Major Key Project of PCL2021A06, Guangdong
Provincial Key Laboratory of Novel Security Intel-
ligence Technologies 2022B1212010005.

References
Ajlan Al-Ajlan. 2015. The comparison between forward

and backward chaining. International Journal of
Machine Learning and Computing, 5(2):106.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.
2023. Llemma: An open language model for mathe-
matics. CoRR, abs/2310.10631.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon
Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, An-
dres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zo-
har. 2022. cvc5: A versatile and industrial-strength
SMT solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I, volume 13243 of Lecture
Notes in Computer Science, pages 415–442. Springer.

David Brandfonbrener, Sibi Raja, Tarun Prasad,
Chloe Loughridge, Jianang Yang, Simon Henniger,
William E. Byrd, Robert Zinkov, and Nada Amin.
2024. Verified multi-step synthesis using large lan-
guage models and monte carlo tree search. CoRR,
abs/2402.08147.

James P. Bridge, Sean B. Holden, and Lawrence C. Paul-
son. 2014. Machine learning for first-order theorem
proving - learning to select a good heuristic. J. Autom.
Reason., 53(2):141–172.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy
Avigad, Floris van Doorn, and Jakob von Raumer.
2015. The lean theorem prover (system description).
In Automated Deduction - CADE-25 - 25th Interna-
tional Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, volume
9195 of Lecture Notes in Computer Science, pages
378–388. Springer.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy
Brun. 2023. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2023, San Fran-
cisco, CA, USA, December 3-9, 2023, pages 1229–
1241. ACM.

3067

https://doi.org/10.48550/ARXIV.2310.10631
https://doi.org/10.48550/ARXIV.2310.10631
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.48550/ARXIV.2402.08147
https://doi.org/10.48550/ARXIV.2402.08147
https://doi.org/10.1007/S10817-014-9301-5
https://doi.org/10.1007/S10817-014-9301-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W.
Ayers, and Stanislas Polu. 2022. Proof artifact co-
training for theorem proving with language models.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 1049–1065. Association for Computa-
tional Linguistics.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing
Cao, Huajian Xin, Haiming Wang, Zhenguo Li, Linqi
Song, and Xiaodan Liang. 2024. MUSTARD: mas-
tering uniform synthesis of theorem and proof data.
CoRR, abs/2402.08957.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1–248:38.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han,
and Yuhuai Wu. 2021. Lisa: Language models of
isabelle proofs. In 6th Conference on Artificial Intel-
ligence and Theorem Proving, pages 378–392.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski,
Konrad Czechowski, Tomasz Odrzygózdz, Piotr Mi-
los, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models and
automated theorem provers. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, and Her-
man Geuvers. 2014. Developing corpus-based trans-
lation methods between informal and formal mathe-
matics: Project description. In Intelligent Computer
Mathematics - International Conference, CICM 2014,
Coimbra, Portugal, July 7-11, 2014. Proceedings,
volume 8543 of Lecture Notes in Computer Science,
pages 435–439. Springer.

Laura Kovács and Andrei Voronkov. 2013. First-order
theorem proving and vampire. In Computer Aided
Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Com-
puter Science, pages 1–35. Springer.

Guillaume Lample, Timothée Lacroix, Marie-Anne
Lachaux, Aurélien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Xiaohan Lin, Qingxing Cao, Yinya Huang, Zhicheng
YANG, Zhengying Liu, Zhenguo Li, and Xiaodan
Liang. 2024. Atg: Benchmarking automated theorem
generation for generative language models.

Maciej Mikula, Szymon Antoniak, Szymon
Tworkowski, Albert Qiaochu Jiang, Jin Peng
Zhou, Christian Szegedy, Lukasz Kucinski, Piotr
Milos, and Yuhuai Wu. 2023. Magnushammer: A
transformer-based approach to premise selection.
CoRR, abs/2303.04488.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paul-
son. 2002. Isabelle/HOL: a proof assistant for
higher-order logic. Springer.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2023. Formal mathematics statement curriculum
learning. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Stanislas Polu and Ilya Sutskever. 2020a. Generative
language modeling for automated theorem proving.
CoRR, abs/2009.03393.

Stanislas Polu and Ilya Sutskever. 2020b. Generative
language modeling for automated theorem proving.
ArXiv, abs/2009.03393.

David Poole and Alan K. Mackworth. 2010. Artificial
Intelligence - Foundations of Computational Agents.
Cambridge University Press.

Seth Poulsen, Sami Sarsa, James Prather, Juho
Leinonen, Brett A. Becker, Arto Hellas, Paul Denny,
and Brent N. Reeves. 2024. Solving proof block
problems using large language models. In Proceed-
ings of the 55th ACM Technical Symposium on Com-
puter Science Education, SIGCSE 2024, Volume 1,
Portland, OR, USA, March 20-23, 2024, pages 1063–
1069. ACM.

J. Robinson and Andrei Voronkov. 2001. Handbook
of Automated Reasoning: Volume 1. MIT Press,
Cambridge, MA, USA.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,

3068

https://openreview.net/forum?id=rpxJc9j04U
https://openreview.net/forum?id=rpxJc9j04U
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.67
https://doi.org/10.48550/ARXIV.2402.08957
https://doi.org/10.48550/ARXIV.2402.08957
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://papers.nips.cc/paper_files/paper/2022/hash/377c25312668e48f2e531e2f2c422483-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/377c25312668e48f2e531e2f2c422483-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/377c25312668e48f2e531e2f2c422483-Abstract-Conference.html
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
https://doi.org/10.1007/978-3-319-08434-3_34
https://doi.org/10.1007/978-3-319-08434-3_34
https://doi.org/10.1007/978-3-319-08434-3_34
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-3-642-39799-8_1
http://papers.nips.cc/paper_files/paper/2022/hash/a8901c5e85fb8e1823bbf0f755053672-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a8901c5e85fb8e1823bbf0f755053672-Abstract-Conference.html
https://api.semanticscholar.org/CorpusID:269757700
https://api.semanticscholar.org/CorpusID:269757700
https://doi.org/10.48550/ARXIV.2303.04488
https://doi.org/10.48550/ARXIV.2303.04488
https://doi.org/10.48550/ARXIV.2303.08774
https://openreview.net/pdf?id=-P7G-8dmSh4
https://openreview.net/pdf?id=-P7G-8dmSh4
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://api.semanticscholar.org/CorpusID:221535103
https://api.semanticscholar.org/CorpusID:221535103
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
https://doi.org/10.1145/3626252.3630928
https://doi.org/10.1145/3626252.3630928

Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence K. Saul,
and Sorin Lerner. 2020. Generating correctness
proofs with neural networks. In Proceedings of
the 4th ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages,
MAPL@PLDI 2020, London, UK, June 15, 2020,
pages 1–10. ACM.

Stephan Schulz. 2004. System description: E 0.81. In
Automated Reasoning - Second International Joint
Conference, IJCAR 2004, Cork, Ireland, July 4-8,
2004, Proceedings, volume 3097 of Lecture Notes in
Computer Science, pages 223–228. Springer.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar.
2024. Towards large language models as copilots for
theorem proving in lean. CoRR, abs/2404.12534.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Christian Szegedy. 2020. A promising path towards
autoformalization and general artificial intelligence.
In Intelligent Computer Mathematics - 13th Interna-
tional Conference, CICM 2020, Bertinoro, Italy, July
26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pages 3–20. Springer.

Amitayush Thakur, George Tsoukalas, Yeming Wen,
Jimmy Xin, and Swarat Chaudhuri. 2024. An in-
context learning agent for formal theorem-proving.

Trieu Trinh, Yuhuai Tony Wu, Quoc Le, He He, and
Thang Luong. 2024. Solving olympiad geometry
without human demonstrations. Nature, 625:476–
482.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin
Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo
Li, Heng Liao, and Xiaodan Liang. 2023a. Lego-
prover: Neural theorem proving with growing li-
braries. CoRR, abs/2310.00656.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen,
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun
Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang.
2023b. Dt-solver: Automated theorem proving with

dynamic-tree sampling guided by proof-level value
function. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 12632–12646. Association for
Computational Linguistics.

Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, and
Josef Urban. 2020. Exploration of neural machine
translation in autoformalization of mathematics in
mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pages 85–98. ACM.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023c. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Christoph Weidenbach. 2001. Combining superposi-
tion, sorts and splitting. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 1965–2013. Elsevier
and MIT Press.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Sean Welleck and Rahul Saha. 2023. LLMSTEP:
LLM proofstep suggestions in lean. CoRR,
abs/2310.18457.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N.
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J.
Prenger, and Animashree Anandkumar. 2023. Le-
andojo: Theorem proving with retrieval-augmented
language models. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Eric Yeh, Briland Hitaj, Sam Owre, Maena Quemener,
and Natarajan Shankar. 2023. Coprover: A recom-
mender system for proof construction. In Intelligent
Computer Mathematics - 16th International Confer-
ence, CICM 2023, Cambridge, UK, September 5-8,

3069

https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1145/3394450.3397466
https://doi.org/10.1007/978-3-540-25984-8_15
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2404.12534
https://doi.org/10.48550/ARXIV.2404.12534
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1007/978-3-030-53518-6_1
http://arxiv.org/abs/2310.04353
http://arxiv.org/abs/2310.04353
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://doi.org/10.48550/ARXIV.2310.00656
https://doi.org/10.48550/ARXIV.2310.00656
https://doi.org/10.48550/ARXIV.2310.00656
https://doi.org/10.18653/V1/2023.ACL-LONG.706
https://doi.org/10.18653/V1/2023.ACL-LONG.706
https://doi.org/10.18653/V1/2023.ACL-LONG.706
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
https://doi.org/10.1145/3372885.3373827
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://doi.org/10.1016/B978-044450813-3/50029-1
https://doi.org/10.1016/B978-044450813-3/50029-1
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1fc548a8243ad06616eee731e0572927-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2310.18457
https://doi.org/10.48550/ARXIV.2310.18457
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4441469427094f8873d0fecb0c4e1cee-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1007/978-3-031-42753-4_16
https://doi.org/10.1007/978-3-031-42753-4_16

2023, Proceedings, volume 14101 of Lecture Notes
in Computer Science, pages 237–251. Springer.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,
Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu,
Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang
Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu
Wang, Kai Chen, and Dahua Lin. 2024. Internlm-
math: Open math large language models toward veri-
fiable reasoning. CoRR, abs/2402.06332.

Roozbeh Yousefzadeh and Xuenan Cao. 2023. Large
language models’ understanding of math: Source
criticism and extrapolation. CoRR, abs/2311.07618.

Liao Zhang, Lasse Blaauwbroek, Cezary Kaliszyk, and
Josef Urban. 2023. Learning proof transformations
and its applications in interactive theorem proving. In
Frontiers of Combining Systems - 14th International
Symposium, FroCoS 2023, Prague, Czech Republic,
September 20-22, 2023, Proceedings, volume 14279
of Lecture Notes in Computer Science, pages 236–
254. Springer.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. 2023.
Decomposing the enigma: Subgoal-based demon-
stration learning for formal theorem proving. CoRR,
abs/2305.16366.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengy-
ing Liu, Jiankai Sun, Huajian Xin, Jianhao Shen,
Zhenguo Li, and Yu Li. 2023. Lyra: Orchestrating
dual correction in automated theorem proving. CoRR,
abs/2309.15806.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2022. minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian
Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
2024a. Don’t trust: Verify - grounding LLM quan-
titative reasoning with autoformalization. CoRR,
abs/2403.18120.

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger B.
Grosse. 2024b. REFACTOR: learning to extract the-
orems from proofs. CoRR, abs/2402.17032.

A More Experiment Setup

A.1 Prompts for BC-Prover

For reproducibility, we provided detailed prompts
during the proof construction. Concretely, the
prompt we used for generating the pseudo steps
(Equation 3 and 4) is in Figure 5 and 6. The prompt
for backward chaining (Equation 5) is in Figure
7. The prompt for generating next-step planning

As a mathematician and expert, your task is to provide a correct, concise,
and clear mathematical answer according to the theorem and its informal
statement. Note that the theorem is provable.
{examples}
Formal theorem:
{theorem_statement}
Informal statement:
{informal_statement}
Informal proof:

Figure 5: The prompt for generating informal proof.

As a mathematician and expert in Lean theorem prover, your task is to
write a pseudo code in Lean 3 in response to a problem statement. Your
pseudo code should be structured and clearly written, meeting the following
criteria:
- It is readable and must be broken down into numerical steps like ’Step1’,
’Step2’ ...
- Steps of the proof should be explained in detail using comments enclosed
in ’/-’ and ’-/’
- Be clear and concise, avoiding any unnecessary or apologetic language.
- Make sure each step of the pseudo-code can be easily converted into
formal Lean 3 code.
- Please use NO ‘sorry‘ tactic or placeholders for proofs or assumptions in
the pseudo-code.
- Assume you have already imported the necessary Mathematic Library to
finish the proof.
informal problem statement:
{informal_statement}
informal proof of the problem:
{informal_proof}
Please wirte the pseudo code:
{theorem_statement}
PSEUDO-CODE:

Figure 6: The prompt for generating pseudo steps.

(Equation 8 and 9) is in Figure 8 and 9. The prompt
for summarizing plans for lemma usages (Equation
10) is in Figure 10. The prompt for generating
proofsteps in forward chaining (Equation 11) is in
Figure 11.

In particular, we demonstrate the sample out-
puts of backward chaining, next-step planning, and
plans for lemma usages in Figure 13, 14 and 15,
respectively.

A.2 Justification for Excluding Baselines

In Table 1, we compare BC-Prover with recently re-
leased LLM in mathematics to our knowledge. We
empirically excluded three task-specific finetuned
provers targeting ITP in Lean. Here, we focus
the discussion on reasons for excluding the three
provers (Lample et al., 2022; Polu and Sutskever,
2020b; Polu et al., 2023). Most importantly, it
is infeasible to reproduce their work with reason-
able effort because they didn’t release any code,
pre-trained models, or available training datasets.
Therefore, we can only compare the Pass@1 met-
rics reported in their papers. However, it is also
impractical due to several reasons:

3070

https://doi.org/10.48550/ARXIV.2402.06332
https://doi.org/10.48550/ARXIV.2402.06332
https://doi.org/10.48550/ARXIV.2402.06332
https://doi.org/10.48550/ARXIV.2311.07618
https://doi.org/10.48550/ARXIV.2311.07618
https://doi.org/10.48550/ARXIV.2311.07618
https://doi.org/10.1007/978-3-031-43369-6_13
https://doi.org/10.1007/978-3-031-43369-6_13
https://doi.org/10.48550/ARXIV.2305.16366
https://doi.org/10.48550/ARXIV.2305.16366
https://doi.org/10.48550/ARXIV.2309.15806
https://doi.org/10.48550/ARXIV.2309.15806
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv
https://doi.org/10.48550/ARXIV.2403.18120
https://doi.org/10.48550/ARXIV.2403.18120
https://doi.org/10.48550/ARXIV.2402.17032
https://doi.org/10.48550/ARXIV.2402.17032

As a mathematician and expert in Lean theorem prover, your task is to
analyze the pseudo-code. Please consider what is missing to decompose
and achieve the proof goal in a backward reasoning manner. Request useful
and reusable hypotheses, meeting the following criteria:
- The hypotheses should be created with Structured Tactic Proofs. That is
they should be introduced with the tactic ‘let‘, ‘have‘, or ‘suffices‘(it adds
the hypothesis to the current goal).
- Please make sure that the hypotheses are valid in Lean and you have to
successfully proof them in the format: ‘have hypo: (sub-goal_statement),
by {{<valid_proof>}},‘.
- You can try smart tactics to prove the hypothesis like ‘ring‘(prove
equalities in commutative rings) and ‘nlinarith‘(handles some goals in
nonlinear arithmetic).
- The hypotheses should be non-trivial and able to cover a large step in
proofs. You can refer to the pseudo-code for inspiration.
- Please use NO placeholders for proofs or assumptions in the
<valid_proof>.
- DO NOT generate hypotheses that already exist in the proof state.
- DO NOT generate the keyword ‘sorry‘.
Pseudo-code:
{pseudo_steps}
Please provide {k} effective hypotheses according to the Current Proof
State:
{current_state}
#1
“‘lean
have hypothsis1: (<sub-goal_statement>), by {{<tactics>}},
“‘
#2

Figure 7: The prompt for backward chaining.

• Lample et al. (2022) only report the Pass@64
on the miniF2F benchmark with their ap-
proach. They constructed a synthetic train-
ing dataset named Equations, which is not
publicly available. Their model is also inac-
cessible. As a result, we cannot make a fair
comparison or reproduce their work.

• Polu and Sutskever (2020b) didn’t report their
result on the miniF2F benchmark because they
published their works before the miniF2F was
officially released. They didn’t make their
model public so it is also difficult to reproduce
their work.

• Polu et al. (2023) further fine-tuned their mod-
els on new proofs collected through their in-
teraction with Lean on miniF2F benchmark
which is supposed to be used in the evaluation.
They also construct extra proofs to transfer to
miniF2F. Considering the potential overfitting
issue, we compare with a generalized model
result reported in their paper (Expert Iteration
in Table 1).

• We would like to evaluate them under our
framework to verify the backward chaining
mechanism, whereas none of them make the
models public. Hence, we only use ReProver
and LLMStep to collaborate with our frame-
work.

As a mathematician and expert in Lean theorem prover, your task is to
shortly explain the current proof state. Your explanation should:
- Be clear and concise, avoiding any unnecessary or apologetic language.
- Only briefly state the existing hypotheses and the goal.
- There is no need to provide an approach or solution.
Current State:
{proof_state}

Figure 8: The prompt for generating proof state descrip-
tion.

As a mathematician and expert in Lean theorem prover, your task is to
derive exactly one next proof step according to the current state, meeting
the following criteria:
- You should analyze the state and align the next step with one step in the
pseudo-code.
- If the aligned target in the pseudo-code is missing or unprecise, the
predicted next step should be further decomposed.
- The predicted next proof step must be close to Lean code.
- Do not fabricate hypotheses or lemmas that didn’t appear in the context.
- Please use NO ‘sorry‘ or placeholders for proofs and assumptions.
Pseudo Code:
{pseudo_steps}
Current State:
{proof_state}
{description}
The predicted step should be clear, concise, and easy to translate into
Lean code:

Figure 9: The prompt for generating next-step planning.

Besides formal theorem proving in Lean, we no-
tice that recent researchers also target other proof
assistants like Isabelle, Coq, Holight, and Meta-
math. Unfortunately, it is generally impractical to
compare with their work for mainly three reasons:

• Different proof assistants have different char-
acteristics. As for Isabelle, it has powerful
automatic reasoning tools like Sledgeham-
mer. Sledgehammer integrates automated the-
orem provers (ATPs) into Isabelle environ-
ment. When Sledgehammer is called, it will
try to prove the conjecture using strong, ex-
ternal ATPs like E (Schulz, 2004), SPASS
(Weidenbach, 2001), Vampire (Kovács and
Voronkov, 2013), Z3 (de Moura and Bjørner,
2008), or cvc5 (Barbosa et al., 2022). And yet,
Lean does not have equally powerful tools.
Many ITP frameworks in Isabelle make use of
this characteristic and achieve higher scores
in miniF2F benchmark.

• Different evaluation metrics. Most studies on
ITP in Isabelle evaluate their approaches with
the pass rate within 100 or 200 attempts(Wang
et al., 2023a; Zheng et al., 2023). Our frame-
work, however, adopts Pass@1 as the metric.

• Use of human-verified informal proof. Jiang
et al. (2023) and Wu et al. (2022) use human-

3071

As a mathematician and expert in Lean theorem prover, your task is
to recall the lemmas in the mathlib3 library and find at least {k} most
helpful lemmas for theorem proving. You are required to both analyze the
pseudo-code and select appropriate premises from the premise list, meeting
the following criteria:
- The pseudo-code provides valuable information about which lemma
should be selected.
- Please only select lemmas that help solve the current proof state.
- You should think step by step: make a brief analysis in one single sentence
and select the lemma.
- Your response should be clear and concise, ignoring the useless lemmas:
“‘text
Analysis_1: <analysis_holder>
Selection_1: <selectioin_holder>
Analysis_2: <analysis_holder>
Selection_2: <selection_holder>“‘
##Pseudo-code:
{pseudo_steps}
##Lemma List:
{retrieved_lemmas}
##Proof State:
{proof_state}
Please select at least {k} useful lemmas in the Lemma List or the mathlib3
library.

Figure 10: The prompt for summarizing plans for
lemma usages.

verified informal proofs to refactor ITP into
translation between informal and formal proof.
In real-world mathematics proving, only the
problem is given. Our framework focuses on
more realistic scenarios.

Owing to the above-mentioned reasons, we only
focus on comparing baselines targeting solving the
Lean problem on the miniF2F benchmark similar
with Yang et al. (2023).

A.3 More Implementation Details
In this section, we provide more implementation
details of our framework.

(1) How do we implement backward chaining?
By definition, backward chaining starts from the
goal and recursively breaks it into sub-goals, which
should be asserted as facts for goal achievement
(Al-Ajlan, 2015). The key is to generate a Lean
format statement that opens up a sub-goal and state
tactics to prove the sub-goal. We implement Equa-
tion 5 using structured tactic proofs in Lean 3. In
particular, we define backward chaining as have
statements in structured tactic proofs: have hgoal :
gsub by { tsub } . The LLM is required to generate
have statements. After verifying the statement, we
can introduce the goal-driven hypothesis hgoal by
interacting with Lean.

(2) How do we parse the responses from LLM?
We officially set k = 16 in forward chaining and

3https://leanprover.github.io/theorem_
proving_in_lean/propositions_and_proofs.html#
introducing-auxiliary-subgoals

As a mathematician and expert in Lean 3 theorem prover, your task is to
analyze the current proof state (telling you what facts you have already
established and what goals remain to prove) and given theorem (including
the pseudo-code, informal statement, and some potentially useful lemmas).
You should provide {k} tactic(s) helpful toward proving the proof state,
meeting the following criteria:
- Pseudo-code gives valuable hints. The generated tactic should STRICTLY
correspond to steps in the pseudo-code.
- Assume you have already imported all lemmas from mathlib3 libraries to
finish the proof. You are strongly encouraged to wisely ‘apply‘, ‘exact‘, or
‘rw‘ with lemmas to solve the proof state.
- You are encouraged to decompose and reduce the proof state using
‘rewrite‘, ‘field_simp‘, ‘let‘.
- ‘revert‘ (move hypotheses into the goal and yield an implication) and
‘intros‘/‘simp_intros‘ (inverse to ‘revert‘) some hypotheses are helpful to
restructure and simplify the state.
- Each tactic should be explained in detail using comments enclosed in ’/-’
and ’-/’.
- Please use NO placeholders for proofs or assumptions in the tactic.
- DO NOT use the keyword ‘sorry‘ in your tactic.
- Do not fabricate hypotheses that didn’t appear in the context window.
Potentially Useful Lemmas from mathlib3 (For example):
{lemmas_plans}
Pseudo Code:
{next_step_planning}
Do not change the current proof state because you are only focusing
on solving the current problem. Please provide at least {k} effective and
commented tactic(s) according to the pseudo-code. Restate the current state
before the tactic
{augmented_proof_state}

Figure 11: The prompt for generating proofsteps in
forward chaining.

d = 8 in backward chaining. Occasionally, we
may end up getting less or more than the predefined
amount because the generative models could not
strictly follow the input instructions. In such cases,
we cut off the results to make sure we get amount
less than k or d.

(3) How does our framework collaborate with
task-specific finetuning models? Task-specific fine-
tuning models are finetuned on sequences of the
form:

[s]proof-state[PROOFSTEP]tactic[/s]

where the proof state consists of hypotheses and
proof goal. Augmenting the proof state with N and
L is infeasible. Therefore, we only reconstructed
the proof state with Hg. Besides, their input con-
text is limited so we only reconstructed the proof
state in the first 10 iterations to avoid exceeding the
maximum input length.

B Computational Cost

We record the total computational cost of calling
gpt-4-turbo- 2024-04-09 API for solving the
miniF2F benchmark in one attempt. The estimated
token and dollar cost are shown in Table 4. It is
worth noting that BC-Prover is fully based on LLM
so it calls the API many more times than BC-Prover
and BC-LLMStep.

3072

https://leanprover.github.io/theorem_proving_in_lean/propositions_and_proofs.html##introducing-auxiliary-subgoals
https://leanprover.github.io/theorem_proving_in_lean/propositions_and_proofs.html##introducing-auxiliary-subgoals
https://leanprover.github.io/theorem_proving_in_lean/propositions_and_proofs.html##introducing-auxiliary-subgoals

Methods input tokens output tokens cost
BC-Prover 2.1M 0.7M 45.13$
BC-ReProver 0.6M 0.3M 15.92$
BC-LLMStep 0.6M 0.3M 16.09$

Table 4: The input and output token in million. The API
cost in dollar.

C Quantitative Analysis of Backward
Chaining

h₁ : (3 : ℝ) ≠ 0

h₇ : g (f 5 - 1) = g 6

nonneg_of_sq_diff : ∀ (a b : ℝ), 0 ≤ (a - b - 1) ^ 2

h_x_eq_3y : x = 3 * y,

lemma_div_1529_6: 1529 / 6 = 254

simpl_mult_eighteen: (18 * 18) % 10 = 4

h₂ : 2 * (a + b) = 4

base_and_units: ∀ a : ℕ, ∃ b u : ℕ, a = 10 * b + u ∧ u < 10

basic_ineq: ∀ (m n : ℕ), 0 < n -> m * 1 ≤ m + 1

lemma_completing_the_square: ∀ x : ℝ, x^2 - 14 * x + 3 = (x - 7)^2 - 46

h₁ : x^2 - 5*x - 14 ≤ 0

h_sq_neg4_mod_17 : ((-4 : ℤ)^2 % 17) = 16 % 17

hypothesis1: 1 % 10 = 1

hypothesis1: ∀ x, σ.to_fun (σ.inv_fun x) = x

Figure 12: We consider hypotheses that contribute
little to a proof goal to be of low quality.

Although our framework invokes the backward
chaining in mathematical proving, we still wonder
what else can be done to further prompt ITP. We
conduct a quality analysis of our hypotheses pro-
duced by backward chaining. First of all, we sam-
ple around 200 hypotheses from the constructed
proofs. Some examples are listed in Figure 12. We
found that most of them are not of high quality.
They are either trivial or rather similar to exist-
ing lemmas. This sort of hypothesis might con-
tribute little to finding the proofs. Furthermore,
we estimated the number of reusable hypotheses
by whether they are invoked throughout the whole
proof. We found out that only around 16% tactics
make a difference in proof-finding. Even so, our
framework managed to solve some of the complex
problems and cause no performance degradation.
In conclusion, it still remains a problem how to
work in backward chaining to generate high-quality
hypotheses, which is left for future work.

D More Experiment Result

Autoformulation Settings. Autoformalization is
the task of automatically translating natural lan-
guage mathematics into a formal language that can
be verified by a program. It requires a profound
understanding of semantics across informal and for-
mal mathematics. Here, we evaluate BC-Prover in

proof autoformalization task settings, where a cor-
rect human-written informal proof is given. As re-
sults in Table 5 illustrate, BC-Prover can find more
proofs in miniF2F-test. Concretely, the Pass@1
improves by 3.3% on the miniF2F-test. It implies
that LLM still struggles to generate a correct infor-
mal proof. A possible solution is to vote for the
best informal proof from multiple candidates like
self-consistency (Wang et al., 2023c), which we
plan to study in future work.

Methods miniF2F-valid miniF2F-test
BC-Prover 29.5% 30.7%
BC-Prover + human informal 29.9% 34.0%

Table 5

Category of Solved Proofs. The MiniF2F
benchmark contains 488 problems in various cat-
egories. The problems can be categorized into
Olympiad problems (AIME, AMC, and IMO),
number theory problems, algebra problems, and
induction problems. Among them, the Olympiad
problems are the most difficult. In total, we find
proofs of 97 algebra problems, 67 number the-
ory problems, 21 Olympiad problems (19 AMC, 2
AIME, 0 IMO), and 0 induction problems.

E More Cases

Here, we present more proofs found by our frame-
work in Figure 16, 17 and 18. The informal prob-
lem statements and human-written informal proofs
are displayed for readers to understand.

3073

Input
As a mathematician and expert in Lean theorem prover, your task is to analyze the pseudo-code.
Please consider what is missing to decompose and achieve the proof goal in a backward reasoning
manner. Request useful and reusable hypotheses, meeting the following criteria:
- The hypotheses should be created with Structured Tactic Proofs. That is they should be introduced
with the tactic ‘let‘, ‘have‘, or ‘suffices‘(it adds the hypothesis to the current goal).
- Please make sure that the hypotheses are valid in Lean and you have to successfully proof them in
the format: ‘have hypo: (sub-goal_statement), by {{<valid_proof>}},‘.
- You can try smart tactics to prove the hypothesis like ‘ring‘(prove equalities in commutative rings)
and ‘nlinarith‘(handles some goals in nonlinear arithmetic).
- The hypotheses should be non-trivial and able to cover a large step in proofs. You can refer to the
pseudo-code for inspiration.
- Please use NO placeholders for proofs or assumptions in the <valid_proof>.
- DO NOT generate hypotheses that already exist in the proof state.
- DO NOT generate the keyword ‘sorry‘.
Pseudo-code:
{pseudo_steps}
Please provide {k} effective hypotheses according to the Current Proof State:
n : N,
h : n % 7 = 5
⊢ 5 * n % 7 = 4
#1
“‘lean
have hypothsis1: (<sub-goal_statement>), by {{<tactics>}},
“‘
#2

Output
#2
“‘lean
have h_mul_mod : 5 * 5 % 7 = (5 % 7) * (5 % 7) % 7, from nat.mul_mod 5 5 7,
“‘
#3
“‘lean
have h_25_mod_7 : 25 % 7 = 4, by norm_num,
“‘
#4
“‘lean
have h_mul_mod : ∀ a b n : N , (a * b) % n = ((a % n) * (b % n)) % n, from nat.mul_mod,
......

Figure 13: Prompt example for sub-goal and tactic pairs generation in Backward Chaining

3074

Input
As a mathematician and expert in Lean theorem prover, your task is to recall the lemmas in the
mathlib3 library and find at least {k} most helpful lemmas for theorem proving. You are required
to both analyze the pseudo-code and select appropriate premises from the premise list, meeting the
following criteria:
- The pseudo-code provides valuable information about which lemma should be selected.
- Please only select lemmas that help solve the current proof state.
- You should think step by step: make a brief analysis in one single sentence and select the lemma.
- Your response should be clear and concise, ignoring the useless lemmas:
“‘text
Analysis_1: <analysis_holder>
Selection_1: <selectioin_holder>
Analysis_2: <analysis_holder>
Selection_2: <selection_holder>“‘
Pseudo-code:
{pseudo_steps}
Lemma List:
[Premise_0] lemma <a>nat.mul_mod (a b n : N) : (a * b) % n = ((a % n) * (b % n)) % n
[Premise_1] lemma <a>nat.add_mod (a b n : N) : (a + b) % n = ((a % n) + (b % n)) % n
[Premise_2] lemma <a>nat.mod_add_div’ (m k : N) : m % k + (m / k) * k = m
[Premise_3]
Proof State:
{proof_state}
Please select at least {k} useful lemmas in the Lemma List or the mathlib3 library.

Output
Selection_1: none required directly, as the hypothesis itself provides the needed relationship, so we
move on to implications of the hypothesis.
Analysis_2: The transition from modular equivalence to a statement about the modulus operation’s
result is required to conclude the proof. We need a lemma that directly allows converting a "less
than" relationship into an equality under modulus.
Selection_2: <a>nat.mod_eq_of_lt - This lemma can be used to convert the modular equivalence
between ((5 * n) mod 7) and 4 into an equality statement, assuming we have established that
5 ∗ n < 7 which isn’t directly required here but is implied in the kind of transition we are making.
......
Therefore potentially useful premises are:
[nat.mul_mod] lemma <a>nat.mul_mod (a b n : N) : (a * b) % n = ((a % n) * (b % n)) % n
[nat.mod_eq_of_lt] lemma <a>nat.mod_eq_of_lt a b : nat (h : a < b) : a % b = a
......

Figure 14: Prompt example for lemmas and plans generation in Step Planning

3075

Input
As a mathematician and expert in Lean theorem prover, your task is to derive exactly one next proof
step according to the current state, meeting the following criteria:
- You should analyze the state and align the next step with one step in the pseudo-code.
- If the aligned target in the pseudo-code is missing or unprecise, the predicted next step should be
further decomposed.
- The predicted next proof step must be close to Lean code.
- Do not fabricate hypotheses or lemmas that didn’t appear in the context.
- Please use NO ‘sorry‘ or placeholders for proofs and assumptions.
Pseudo Code:
{pseudo_steps}
Current State:
n : N , h : n % 7 = 5, h_mod_25_4 : 25 % 7 = 4, h_5_mod_7 : 5 % 7 = 5, h_final_mod : 5 % 7 * 5 %
7 = 4, h_5_mul_5_mod_7 : 5 * 5 % 7 = 4, h_mul_mod : ∀ (a b n : N), a * b % n = a % n * (b % n)
% n
⊢ 5 % 7 * n % 7 = 4
{description}
The predicted step should be clear, concise, and easy to translate into Lean code:
Output
Given the current state and the hypotheses provided, we observe that the hypotheses.
......
So, the predicted Lean code as the next logical step would be to apply ‘h_mul_mod‘ using our values
‘5‘, ‘n‘, and ‘7‘, followed by substituting ‘n % 7‘ with ‘5‘, guided by ‘h‘.
“‘lean
have h_step : 5 % 7 * n % 7 % 7 = 5 * 5 % 7, from eq.trans (h_mul_mod 5 n 7) (by rw [h,
h_5_mod_7]),
“‘
This step uses ‘eq.trans‘ to transform the application of ‘h_mul_mod‘ into an intermediate step
towards our goal by rewriting ‘n % 7‘ as ‘5‘, utilizing ‘h‘ and recognizing the modulo property of ‘5‘
as per ‘h_5_mod_7‘. The application of ‘by rw [h, h_5_mod_7]‘ rewrites the expression according
to our hypothesis ‘h‘ and the property of modulo ‘5‘ modulo ‘7‘.

Figure 15: Prompt example for next proofstep planning in Step Planning

3076

informal_statement:
One dimension of a cube is increased by 1, another is decreased by
1, and the third is left unchanged. The volume of the new
rectangular solid is 5 less than that of the cube. What was the
volume of the cube?
$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 64
\qquad \textbf{(D)}\ 125 \qquad \textbf{(E)}\ 216$
Show that it is \text{(D)}.

informal_proof:
Let the original cube have edge length a. Then its volume is a^3.

The new box has dimensions $a-1$, a, and $a+1$, hence its volume is
$(a-1)a(a+1) = a^3-a$.

The difference between the two volumes is a. As we are given that
the difference is 5, we have $a=5$, and the volume of the original
cube was $5^3 = 125\Rightarrow\text{(D)}$.

theorem amc12a_2009_p5
(x : ℝ)
(h₀ : x^3 - (x + 1) * (x - 1) * x = 5) :
x^3 = 125 :=

begin
have h_cube_pos : 0 ≤ x ^ 3,
by { apply pow_nonneg, linarith,},

have h_five_pos : 0 ≤ (5 : ℝ), by { norm_num,},
have h_125 : 5 ^ 3 = 125, by { norm_num,},
revert h₀
ring
intro h_x_eq_5
revert x,
simp [h_125],

have h_final: ∀ (x : ℝ), x = 5 → x^3 = 125,
by { intros x hx, rw hx, norm_num, },

intro x,
intros h₀ h₁,
exact h_final x h₁,

end

Figure 16: An example proof of BC-Prover.

informal_statement:
If $f(x)=ax^4-bx^2+x+5$ and $f(-3)=2,$ then what is the value of
$f(3)$? Show that it is 8.
informal_proof:
Evaluating $f(x)$ for $x=3$ and $x=-3$, we have
\[\left\{ \begin{aligned} f(3)& = a \cdot 3^4 - b \cdot 3^2 + 3 + 5,
\\ f(-3) &= a \cdot (-3)^4 - b \cdot (-3)^2 + (-3) + 5. \end{aligned}
\right.\]If we subtract the second equation from the first equation,
all the terms but one cancel out, and we get \[f(3) - f(-3) = 3 - (-3)
= 6.\]Thus, if $f(-3) = 2,$ then $f(3) = f(-3) + 6 = 2 + 6 = 8.$

theorem mathd_algebra_246
(a b : ℝ)
(f : ℝ → ℝ)
(h₀ : ∀ x, f x = a * x^4 - b * x^2 + x + 5)
(h₂ : f (-3) = 2) :
f 3 = 8 :=

begin
have h₃ : f (-3) = a * (-3)^4 - b * (-3)^2 - 3 + 5,
from h₀ (-3),

have h₅ : 81*a - 9*b = 0, by linarith,
have h₆ : f 3 = a * 3^4 - b * 3^2 + 3 + 5, from h₀ 3,
have h₇ : a * 3^4 = 81*a, by ring,
have h₈ : b * 3^2 = 9*b, by ring,
have h₁₂ : 3 + 5 = 8, by ring,
nlinarith,

end

Figure 17: An example proof of BC-LLMStep.

informal_statement:
Show that for any positive real numbers a and b, $(a+b)^4 \leq
8(a^4 + b^4)$.
informal_proof:
Re-arranging, we must prove $(\frac{a+b}{2})^4\leq\frac{a^4 + b^4}{2}$.
We prove the more general statement $(\frac{a+b}{2})^n\leq\frac{a^n +
b^n}{2}$ for integers $n > 0$ by induction.

The result is trivial for $n=1$. Let us assume the property holds for
$n \geq 1$.

We have that $\left(\frac{a+b}{2}\right)^{n+1} =
\left(\frac{a+b}{2}\right)^n \frac{a+b}{2} \leq \frac{a^n+b^n}{2}
\frac{a+b}{2}$

However, $\frac{a^{n+1}+b^{n+1}}{2} - \frac{a^n+b^n}{2} \frac{a+b}{2}
= \frac{(a^n - b^n)(a-b)}{4}$.

$a^n - b^n$ and $a-b$ have the same sign so $\frac{(a^n - b^n)(a-b)}{4}
\geq 0$ and $\frac{(a^n - b^n)(a-b)}{4} \geq 0$.

As a result, $\left(\frac{a+b}{2}\right)^{n+1} \leq
\frac{a^{n+1}+b^{n+1}}{2}$ and the property holds in $n+1$.

By induction, the result is true for any natural number $n \geq 1$.

theorem algebra_apb4leq8ta4pb4
(a b : ℝ)
(h₀ : 0 < a ∧ 0 < b) :
(a + b)^4 ≤ 8 * (a^4 + b^4) :=

begin
have hypothesis4: 0 ≤ (a - b)^2,

by { exact pow_two_nonneg (a - b),},
have hypothesis6: 2 * (a^2 * b^2) ≤ a^4 + b^4, by
{
have h₁: 0 ≤ (a^2 - b^2)^2,
from pow_two_nonneg (a^2 - b^2),

simp [pow_two] at h₁,
nlinarith,

},
have hypothesis7: 6 * a^2 * b^2 ≤ 8 * a^2 * b^2,

by { nlinarith,},
nlinarith,

end

Figure 18: An example proof of BC-ReProver.

3077

