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Abstract

The problem of hallucination and omission, a
long-standing problem in machine translation
(MT), is more pronounced when a large lan-
guage model (LLM) is used in MT because an
LLM itself is susceptible to these phenomena.
In this work, we mitigate the problem in an
LLM-based MT model by guiding it to better
word alignment. We first study the correlation
between word alignment and the phenomena
of hallucination and omission in MT. Then we
propose to utilize word alignment as preference
to optimize the LLM-based MT model. The
preference data are constructed by selecting
chosen and rejected translations from multiple
MT tools. Subsequently, direct preference op-
timization is used to optimize the LLM-based
model towards the preference signal. Given the
absence of evaluators specifically designed for
hallucination and omission in MT, we further
propose selecting hard instances and utilizing
GPT-4 to directly evaluate the performance of
the models in mitigating these issues. We ver-
ify the rationality of these designed evaluation
methods by experiments, followed by exten-
sive results demonstrating the effectiveness of
word alignment-based preference optimization
to mitigate hallucination and omission. On the
other hand, although it shows promise in miti-
gating hallucination and omission, the overall
performance of MT in different language direc-
tions remains mixed, with slight increases in
BLEU and decreases in COMET.

1 Introduction

Large language models (LLMs) have been evolv-
ing rapidly and showing predominant perfor-
mance in many natural language processing (NLP)
tasks (Brown et al., 2020; Achiam et al., 2023; Tou-
vron et al., 2023). However, in machine translation
(MT), the use of decoder-only LLMs is still lim-
ited due to issues such as model size (Xu et al.,
2024a) and low-resource languages (Hendy et al.,
2023). Conventional encoder-decoder MT models

trained on parallel corpora still dominate in prac-
tice (Costa-jussà et al., 2022). One of the primary
concerns of applying an LLM to MT is reliabil-
ity. Although it does not happen frequently, an
LLM is known to hallucinate (Dhuliawala et al.,
2023; Zhang et al., 2023a; Bang et al., 2023) as
it is pre-trained to predict the next token in very
large-scale raw texts. Specifically in MT, LLM-
based translation systems therefore could have the
phenomena of hallucination and omission, which
is also a long-term challenge in the field of MT
(Yang et al., 2019; Vamvas and Sennrich, 2022),
known as over- and under-translation. In partic-
ular, in the very recent WMT-2024 General Ma-
chine Translation Task (Kocmi et al., 2024), a
newly released LLM-based MT model Unbabel
Tower (Alves et al., 2024) has achieved the high-
est accuracy in most language pairs, demonstrating
the promise of LLM in MT, but also showing the
significance of the problem of hallucination and
omission. As a result, we attempt to mitigate the
hallucination and omission in LLM-based MT to
improve its practicality in this work.

Hallucination in MT occurs when information
not present in the source text is generated in the
translation, and omission occurs when some of the
information in the source text is missed in the trans-
lation. As a related tool that explicitly aligns the
source text and translation at the word level, word
alignment is potentially positive for MT due to
the nature of align and translate (Bahdanau et al.,
2015). The degree of coverage of the source text
in translation could be a direct signal to identify
the hallucination and omission in MT (Tu et al.,
2016). Figure 1 shows the normalized frequency
of the coverage scores predicted by a word aligner.
The examples that are annotated as “no hallucina-
tion or omission” tend to have a higher coverage
score, while those in “full hallucination or omis-
sion” are more likely to have an extremely low
coverage score. “small hallucination or omission”

3223



0.0 0.2 0.4 0.6 0.8 1.0
Coverage Score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

al
ize

d 
Fr

eq
ue

nc
y

Hallucination Class Distribution
Full Hallucination
Partial Hallucination
No Hallucination

(a) Coverage distribution of different hallucination degree.
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(b) Coverage distribution of different omission degree.

Figure 1: A preliminary experiment shows that higher
coverage scores correlates to less hallucination and
omission. The coverage scores are predicted by a
word aligner (Wu et al., 2023a). The human annotation
of hallucination and omission is from HalOmi bench-
mark (Dale et al., 2023b). Details about the dataset and
word alignment model can be found in §5.1.

and “partial hallucination or omission” distribute in
the middle. As the annotations are carefully made
by humans and highly correlates to the coverage
scores from the word aligner, this indicates that
word alignment is a simple but promising direction
to mitigate these phenomena.

Consequently, we propose Word Alignment Pref-
erence (WAP) that utilizes word alignment as a
signal to optimize LLM-based MT models. WAP
consists of three steps: diverse translation collec-
tion, preference data construction, and preference
optimization. Specifically, we collect diverse trans-
lations with multiple existing translation tools, se-
lect chosen and rejected examples with the word
aligner (Wu et al., 2023a), and optimize the model

on preference data using direct preference optimiza-
tion (DPO) (Rafailov et al., 2024).

Furthermore, the evaluation of hallucination and
omission is challenging, and there is no existing
evaluator specifically designed for this. Improving
the BLEU and COMET score does not necessarily
mean reducing hallucination and omission because
there are other factors such as mistranslation and
fluency. In addition, hallucination is relatively in-
frequent, although very severe once it does occur.
Hence, to effectively evaluate it, we design exten-
sive experiments that include testing on instances
that potentially have the problem of hallucination
and omission, and using GPT-4 as the evaluator
with comprehensive analysis. Experimental analy-
sis demonstrates the effectiveness of WAP in miti-
gating hallucination and omission in MT.

In summary, the contributions of this work in-
clude the following:

• We studied the correlation between the cov-
erage score by word alignment and the phe-
nomena of hallucination and omission in MT.
From the preliminary experiments in Figure 1
we found that word alignment is a promising
signal to mitigate it.

• In §3 we propose a novel approach, namely
WAP, to construct a word alignment-based
preference dataset, and use DPO to optimize
the LLM-based MT model. The validity of
the preference dataset is also demonstrated by
direct fine-tuning on preferred and rejected
translations in §6.4.

• As there is no particular benchmark for evalu-
ating the performance of MT models on hallu-
cination and omission. We design various ex-
periments, including selecting hard instances
and using LLM as an evaluator in §5.2. The
effectiveness of the evaluation, as well as the
proposed WAP has been validated through ex-
periments and analysis in §6

2 Related work

Hallucination and omission in MT. Hallucina-
tions are cases in which the model generates out-
put that is partially or completely unrelated to the
source sentence, while omissions are translations
that do not include some of the input informa-
tion (Dale et al., 2023b). Dale et al. (2023a) ex-
plore methods that leverage the internal workings
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of models and external tools, such as cross-lingual
sentence similarity and natural language inference
models, to detect and mitigate hallucinations in
MT. HalOmi (Dale et al., 2023b) introduces an
annotated dataset specifically designed to detect
hallucinations and omissions. In Figure 1 and §5.2
we use HalOmi as a reference to assess how these
two phenomena correlate to the coverage output of
the GPT-4 evaluator and the word aligner, respec-
tively. In particular, Yang et al. (2019) introduce
the use of word alignment to reduce omission in
MT, which partially inspires our idea.

Preference tuning for LLMs. LLMs are capa-
ble of completing tasks in the zero-shot or few-shot
manner (Radford et al., 2019; Brown et al., 2020).
In addition, performance in downstream tasks can
also be enhanced by fine-tuning them with instruc-
tion datasets (Wei et al., 2022; Chung et al., 2024;
Ouyang et al., 2022). However, acquiring instruc-
tion datasets is costly, while obtaining preferences
for LLM responses is relatively easier (Rafailov
et al., 2024). DPO (Rafailov et al., 2024) directly
optimize LLM with preference data by removing
an extra reward model. We utilize DPO in this work
due to the ease of use and effectiveness. A contem-
poraneous preference-based method ALMA-R (Xu
et al., 2024b), introduces contrastive preference
optimization to fine-tune LLMs specifically using
reference-free MT metrics and human annotation
as preference. ALMA-R focuses on improving gen-
eral LLM-based MT but we attempt to mitigate the
hallucination and omission in MT. In addition, our
preference data are made entirely automatically,
which also draws the difference between ALMA-R
and our work. The recently released LLM-based
Unbabel Tower (Alves et al., 2024) has achieved
the best performance in most language pairs in
WMT-2024 (Kocmi et al., 2024), which may com-
plement our findings in future work.

Word alignment. Word-level information has
been useful in many NLP tasks such as language
pre-training (Chi et al., 2021; Wu et al., 2021),
cross-lingual sentence embedding (Zhang et al.,
2023b; Li et al., 2023; Miao et al., 2024), fine-
grained visual language grounding (Peng et al.,
2023; Wu et al., 2023b, 2024), and particularly in
word alignment for MT (Bahdanau et al., 2015; Tu
et al., 2016), which aligns the corresponding words
in translations. Word aligners based on pre-trained
language models (Jalili Sabet et al., 2020; Dou and

Neubig, 2021; Nagata et al., 2020; Chousa et al.,
2020) have outperformed previous ones based on
statistical MT (Och and Ney, 2003; Dyer et al.,
2013). WSPAlign (Wu et al., 2023a) is a pre-
trained word aligner that outperforms most of the
previous ones; hence we use it in the experiments.

3 Proposed approach

3.1 Gathering translation candidates
To steer the MT model to avoid hallucination and
omission using preference optimization, we first
need comparable but different translations. Start-
ing with a source text x, we utilize K methods to
produce translations, notated as π1, ..., πK . Then
we can get a set of translations Y , in which yk ∈ Y
is obtained by yk = πk(x) and |Y | = K.

Details of gathered translations We start with
the parallel training data in ALMA (Xu et al.,
2024a). This parallel data encompasses five lan-
guage pairs with human translations in both direc-
tions: cs ↔ en, de ↔ en, is ↔ en, zh ↔ en and
ru ↔ en. We employ ISO 639 language codes1 to
denote languages. Specifically, “cs” corresponds
to Czech, “de” to German, “is” to Icelandic, “zh”
to Chinese and “ru” and “en” to Russian and En-
glish, respectively. To generate the translations we
require, this dataset is translated in both directions
using two well-known MT tools, including DeepL2

and ChatGPT (gpt-3.5-turbo-0613)3. The
prompt we use to translate sentences is shown in
Figure 3. The original human-written translation
in the training set is also utilized. In particular,
Icelandic (is) is not supported by DeepL, therefore,
we use Google Translate4 as an alternative.

3.2 Selecting chosen and rejected translation
After obtaining the translation candidates
(y1, ..., yK), we use a state-of-the-art public word
aligner, namely WSPAlign5, to automatically an-
notate the degree of coverage for each translation.
We follow the usage setting in the original paper
of WSPAlign (Wu et al., 2023a). In particular,
WSPAlign performs a bidirectional alignment
and uses a threshold to filter out low-confident

1https://en.wikipedia.org/wiki/List_
of_ISO_639_language_codes

2https://www.deepl.com/en/translator
3https://platform.openai.com/docs/

models/gpt-3-5-turbo
4https://cloud.google.com/translate/

docs/basic/translate-text-basic
5https://github.com/qiyuw/WSPAlign
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Model 2

Human

Word Aligner

“他是⼀个⼼地善良、⼼胸
开阔的灵魂。”

“他⼼地善良。”

“他拥有善良的⼼地及宽阔
的胸怀。”

Preference Pairs

Chosen Rejected

Model 1

TA

TB

TC

S

Source Text

Direct Preference Optimization

TC TA TB

TC TB

Translations

Source Text

“He was a kind spirit 
with a big heart.”

S

Figure 2: An illustration of WAP framework. The source is first translated by multiple MT tools, including human
translation. An external word aligner is then utilized to predict the coverage score for each translation. Finally,
translation with the highest and lowest coverage score are selected as preference pairs for preference optimization.

Prompt for Translation 

You are a helpful assistant that translates 
{SOURCE_LANG} sentences to {TARGET_LANG} 
sentences. 

{TEXT}

Figure 3: The prompt for translating sentences.

alignment of word pairs. Then, the ratio of the
source words, that are aligned with at least one
word, in the translation is taken as the coverage
score, which will be used for the following
preference annotation. The whole process to
predict the coverage score is notated as C(·, ·).
Formally, the coverage score for a translation
yk can be calculated by C(x, yk) ∈ [0.0, 100.0].
Subsequently, the preferred translation and the
rejected translation are selected as follows:

yw = argmax
yk∈Y

C(x, yk)

yl = argmin
yk∈Y

C(x, yk)
(1)

where yw is the chosen translation and yl is
the rejected one. Then a triplet (x, yw, yl) is con-
structed for the following preference optimization.

3.3 Filtering
Note that the whole process of constructing the
preference data is automatic, and the existing MT
and word alignment models are not perfect. Even
for human-annotated translation, quality is also an
issue that cannot be ignored (Xu et al., 2024b), and

can affect the performance of the model trained on
it. Hence, noises are inevitable in both the trans-
lated texts and the preference choices. On the other
hand, the MT tools we choose generally have good
performance, it could happen that the generated
translations are not diverse enough, leading to the
preference signal being disrupted. To improve the
quality of the constructed preference datasets as
much as possible, multiple strategies are applied to
filter out potential bad training instances:

• Remove the instance when the chosen and
rejected translations only have a marginal dif-
ference in coverage score. The difference
threshold is empirically set as 5.0, that is,
(x, yw, yl) is excluded from the dataset if
C(x, yw)− C(x, yl) < 5.0.

• Remove the instance where the chosen and
rejected translations are too semantically sim-
ilar. Sentence embedding is a widely used
technique for sentence similarity with low
computation cost (Gao et al., 2021; Wu et al.,
2022; Xie et al., 2022; Zhao et al., 2024).
In particular, LaBSE (Feng et al., 2022)6 is
used in our experiments. We notate it as
LB(·). The similarity threshold is empirically
set as 0.9, i.e. (x, yw, yl) is excluded from
the dataset if sim(LB(yw),LB(yw)) > 0.9.
sim(·, ·) ∈ [0.0, 1.0] is cosine similarity.

• One possible failure case for word alignment
is when the MT models directly copy the orig-
inal texts, which is bad translation, but gets a

6https://huggingface.co/
sentence-transformers/LaBSE
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high alignment score because the wrong trans-
lation is partially the same with the original
texts. To remove this part of the noise, we cal-
culate the BLEU score (Papineni et al., 2002)7

for the chosen translation and exclude it if the
BLEU score > 20.0.

4 Details of dataset

Figure 4 presents the varying proportions of the
“chosen” and “rejected” preference pairs from three
sources: ChatGPT, DeepL, and Human. The fig-
ure indicates that most of the “chosen” translations
originate from ChatGPT, while a significant portion
of human-written translations are “rejected”. This
observation supports the conclusion that human-
written translations can also exhibit quality issues,
as discussed in ALMA-R (Xu et al., 2024b). Ex-
amples in our constructed preference dataset are
presented in §B.1.
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Figure 4: This figure illustrates the proportions of “cho-
sen” and “rejected” preference pairs derived from three
sources: ChatGPT, DeepL and Human. “all” repre-
sents the overall proportion for the aggregated dataset.
xx ↔ en is the subset pair of English and another
language. Particularly, Google Translate is used for
is ↔ en as an alternative to DeepL.

4.1 Optimization LLM-based MT model

The final step is to optimize the LLM-based MT
model on our preference data. Direct preference
optimization (DPO) (Rafailov et al., 2024) is a sim-
ple but effective approach that directly optimizes
the preference model on a pre-constructed static
dataset. DPO has recently been applied to optimize
LLM in preference data (Tunstall et al., 2023; Xu

7https://github.com/mjpost/sacrebleu

et al., 2024b) recently. We also utilize DPO as
an optimization approach. Formally, the training
objective is as follows,

l = − log σ(β log
π(yw|x)

πref (yw|x)
−β log

π(yl|x)
πref (yl|x)

)

(2)
where σ is the sigmoid function, π is the model

to be optimized, and πref is the reference model.
We use ALMA-13B8 as our base model, i.e., the
starting point of π, in the experiments. ALMA-13B
is also used as a reference model πref , but note that
πref will not be updated during training.

5 Evaluation

5.1 Baselines and evaluation datasets

We choose ALMA-13B9 as the baseline for all ex-
periments in this paper, as well as the starting
point of optimization. ALMA (Xu et al., 2024a)
was trained from Llama (Touvron et al., 2023) in
two steps: initial fine-tuning on monolingual data
and subsequent fine-tuning on a small set of high-
quality parallel data. For fairly studying the ef-
fect of word alignment preference, we use the data
used in the supervised fine-tuning in ALMA as
the source dataset to construct our preference data
in §3. Specifically, the source data was collected
from WMT’17 (Bojar et al., 2017) to WMT’20
(Barrault et al., 2020), in addition to the devel-
opment and text dataset from Flores-200 (Costa-
jussà et al., 2022). After filtering, we finally make
20,074 and 2,226 preference triplets for training
and development, respectively. For evaluation, the
test set is from WMT22, except that is ↔ en is
from WMT21. The remaining data from WMT21
(except is ↔ en) is used as the development set.
Specifically, 3485, 4021, 2000, 3912, 4053 ex-
amples are included in the test set for cs ↔ en,
de ↔ en, is ↔ en, zh ↔ en, and ru ↔ en,
respectively. The detailed experimental setup is
introduced in §A.

HalOmi In particular, we want to validate
whether our proposed method is capable of mit-
igating hallucination and omission in MT. Hence,
we also use HalOmi (Dale et al., 2023b) in the ex-
periments. HalOmi is an evaluation benchmark for
the detection of hallucination and omission in MT.

8https://github.com/fe1ixxu/ALMA
9https://huggingface.co/haoranxu/

ALMA-13B
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Figure 5: Comparison of WAP and baseline in hard and easy instances. N instances with the lowest COMET score
by the baseline are selected from the test set as hard instances, and the remaining are easy instances. Results when
N = 100, 200 and 500 are presented. Refer to §C for the full numeric results of the entire test.

It contains fine-grained sentence-level and token-
level annotations of full and partial hallucinations
and omissions that cover 18 language directions.
Each instance in the data set was annotated in “No
hallucination and omission”, “Small hallucination
and omission”, “Partial hallucination and omission”
or “Full hallucination and omission” by humans.
In this paper, we use it to test the performance of
GPT-4 as an evaluator. Details are in §5.2.

5.2 The design of evaluation
We focus on optimizing LLM-based MT models to
avoid hallucination and omission. However, to our
best knowledge, there is no benchmark measuring
MT models specifically for this issue, making the
evaluation very challenging. Improving the BLEU
or COMET score does not necessarily mean reduc-
ing hallucination and omission because there are
other factors such as mistranslation and fluency.
In addition, hallucination is relatively infrequent,
although very severe once it does occur. To intu-
itively validate whether our approach is capable of
mitigating hallucination and omission in MT, we

design several evaluation strategies in this section.

Select hard instances. We first select instances
that the baseline model does not perform well on.
This subset of instances is labeled as hard instances
in this work. The subset of the remaining examples
is labeled as easy instances. Specifically, N in-
stances with the lowest COMET score are selected
from the test set for each translation direction. As
hard examples tend to include more hallucination
and omission, we report the comparison of models
on hard examples and remaining examples, respec-
tively. In the experiment, we sample three subsets
where N = 100, N = 200 and N = 500. The ex-
perimental analysis can be found in §6.1. Note that
the hard instances are only selected for evaluation.
We do not differentiate hard or easy instances in the
training set. Only word alignment signal is used to
select preferred dataset for a fair comparison.

Utilize LLM as the evaluator for hallucination
and omission. Besides the BLEU and COMET
in hard instances, a direct estimate of the degree
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Hallucination Omission
No Partial Full No Partial Full

# of examples 817 42 65 627 237 60
Avg. score 84.19 45.95 3.84 87.97 66.28 1.66
Pearson Corr. 0.5969 0.5686

Table 1: Average coverage score calculated by GPT-4 for different level of hallucination or omission. The Pearson
Correlation between the annotated labels and GPT-4 coverage scores is also reported. Ideally, higher score should
correlate to less hallucination and omission.

Prompt of Coverage Calculation  

Given a source sentence {SOURCE_TEXT} in {
SOURCE_LANGUAGE} and a translation 
{TRANSLATION} in {TARGET_LANGUAGE}, does 
the translation has hallucination or 
omission to the source contents?

***You MUST answer with only a coverage
percentage score***.

Figure 6: Prompt to calculate the coverage score.

of hallucination and omission in translation is still
needed. As we mentioned earlier that improving
the BLEU and COMET score does not necessarily
mean reducing hallucination and omission because
there are other factors such as mistranslation and
fluency, we utilize the generalization and reason-
ing ability of LLM (Kojima et al., 2022; Mitchell
et al., 2023; Wei et al., 2023) to achieve this di-
rect evaluation. We use one of the most powerful
LLM, gpt-4-061310, as an evaluator. LLM is
prompted to check whether the given translation
has hallucination or omission referring to the given
source texts. A coverage score between 0 and 100
is output as the degree metric. The prompt used is
shown in Figure 6.

Is LLM really capable of evaluating halluci-
nation and omission in MT? Despite the fact
that LLMs have shown impressive zero-shot per-
formance in various tasks (Kojima et al., 2022;
Mitchell et al., 2023; Wei et al., 2023), the assess-
ment of LLM in the evaluation of hallucination
and omission is still important because it has not
been widely used on this task. We use HalOmi
datasets introduced in §5.1 to assess this ability
of GPT-4. The examples in de ↔ en, zh ↔ en,
and ru ↔ en are selected, then GPT-4 is used to
predict the coverage score for these examples.

Table 1 shows the average score of the degree of
coverage predicted by GPT-4. The examples from
HalOmi are divided into three subsets according

10https://platform.openai.com/docs/
models/gpt-4-turbo-and-gpt-4

to the labels. We merged the “Partial hallucina-
tion and omission” and “Small hallucination and
omission” in the original because the number of
examples in these two categories is small. It clearly
demonstrates that examples annotated as “No hal-
lucination and omission” have a higher coverage
score predicted by GPT-4 and those in “Full hal-
lucination and omission” have an extremely low
coverage score. As a result, using GPT-4 is an ef-
fective way to assess whether a translation has the
problem of hallucination or omission.

6 Experimental results

6.1 Evaluation on hard instances
In §5.2 we introduce how to select hard instances
from the test set and explain why hard instances are
suitable to assess hallucination and omission. In
this section, we evaluate our model on these hard
instances and the remaining examples, respectively.
Figure 5 demonstrates the results when the number
of hard instances N = 100, 200, and 500, respec-
tively. The following findings can be concluded:

• WAP consistently outperforms the baseline in
hard instances in most translation directions,
for both BLEU and COMET metrics.

• WAP generally reaches comparable perfor-
mance compared to baseline for both BLEU
and COMET.

• With increasing the number of hard instances,
the improvement gained by WAP decreases.

These results indicate that WAP mitigates hallucina-
tion and omission to a certain extent, because these
issues are more likely to occur in hard instances.
In addition, our model also remains competitive
to the baseline in the remaining easy instances. It
is reasonable that there is no significant difference
because the compared models are generally good.
The challenging part should be in the hard ones.
Moreover, it is observed that with increasing N ,
the improvement gets narrower. The reason is that
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de-en cs-en is-en zh-en ru-en en-de en-cs en-is en-zh en-ru Avg.
N=100

Baseline 94.30 92.95 94.90 63.08 89.85 92.85 82.75 97.05 84.65 90.53 88.29
+WAP 95.85 94.65 96.05 80.23 91.75 96.25 91.85 96.10 92.90 96.87 93.25(+4.96)

N=200
Baseline 95.71 95.05 95.45 74.83 92.83 94.20 89.95 97.70 89.19 94.25 91.92

+WAP 97.10 96.55 97.48 85.63 95.53 95.18 91.84 96.73 92.81 96.66 94.55(+2.63)
N=500

Baseline 97.18 96.74 97.29 87.85 96.16 97.35 94.46 98.21 91.64 96.10 95.30
+WAP 98.10 97.79 98.12 90.76 97.82 97.36 96.05 98.22 94.07 97.13 96.54(+1.24)

Table 2: Coverage score output by GPT-4. The range of the score is [0.0, 100.0]. The average score is reported for
each translation direction. Higher scores are highlighted in bold.

Translation Quality
Hallucination Omission

No Small Partial Full No Small Partial Full
Baseline 11.33% 64.00% 21.00% 11.33% 3.66% 56.00% 25.33% 13.66% 4.33%

+WAP 39.66% 75.66% 17.33% 7.00% 0.00% 80.00% 16.66% 5.33% 0.00%

Table 3: Human evaluation on “zh-en” when N=100. Translation quality is the measured by ratio of examples where
WAP beats the baseline. The remaining columns present the ratio of examples in which the corresponding degree of
hallucination or omission occurs. Better model is highlighted with bold fonts.

more relatively easy instances are included in the
subset. This is another evidence that WAP provides
gains particularly for hallucination and omission in
MT. The specific numeric results and the overall
results for the entire test set are shown in §C.

6.2 Direct evaluation of hallucination and
omission by GPT-4

In addition to improving BLEU and COMET in
hard examples prone to hallucination and omission,
direct evaluations are also necessary to confirm the
effectiveness of WAP. In §5.2 we have verified the
usefulness of GPT-4 as an evaluator with experi-
ments. In this section, we prompt GPT-4 to directly
predict a coverage score as a metric for hallucina-
tion and omission. The results are demonstrated
in Table 2. The reported number is the average of
the coverage scores in hard examples. The results
show that WAP outperforms the baseline in all di-
rections except en ↔ is. In the overall average
score across all translation directions, WAP outper-
forms the baseline model by 4.96, 1.63 and 1.24
when N=100, 200 and 500, respectively. The trend
is similar to that in §6.1, directly indicating that the
LLM-based MT model avoids hallucination and
omission with the word-aligned preference.

6.3 Human evaluation

Although the validity of GPT-4 as evaluator for
hallucination and omission has been demonstrated

in §5.2 and Table 1, we conduct a human evalua-
tion to further verify our findings, as LLM could
still be unreliable. The subset of “N=100” on “zh-
en” is selected. Three volunteers who speak Chi-
nese and English are asked to assess the quality
of the translation and the degree of hallucination
and omission for the baseline and our model, with-
out knowing which model generates the transla-
tions. Table 3 demonstrates the results. In general,
our model generates better translation in 39.66%
of the examples, while the percentage for ALMA
is 11.33%. Furthermore, it is observed that with
DPO on word-alignment preferred data fine-tuning,
the degree of both hallucination and omission de-
creases. Specifically, the percentage of “no hallu-
cination” increases from 64% to 75.66%, and that
of “small, partial, and full hallucination” decreases
accordingly. The decrease in omission is more
distinct, in which the percentage of “no omission”
increase by 24%. Notably, for both hallucination
and omission, the percentage of “full hallucination
and omission” has decreased to 0 for our model.
These results indicate that omission is more fre-
quent than hallucination, and WAP can mitigate
them in the LLM-based MT model.

6.4 Ablation study

In this section, we conduct in-depth investigation
for our word alignment preference, as we use the
same training data as our baseline ALMA, i.e., hu-

3230



N=100 N=200 N=500

15.0

17.5

20.0

22.5
BL

EU
ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(a) Hard instances

N=100 N=200 N=500

27.5

30.0

32.5

35.0

BL
EU

ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(b) Easy instances

N=100 N=200 N=500
56.0

60.0

64.0

68.0

CO
M

ET

ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(c) Hard instances

N=100 N=200 N=500
74.0

78.0

82.0

86.0

CO
M

ET

ALMA
FT_reject
FT_prefer

Ours
Ours > FT_prefer

(d) Easy instances

Figure 7: Ablation study. Results in BLEU is demonstrated. Higher BLEU is better. For fair comparison the range
of y-axis are the same for hard instances and easy instances.

man translation, but extra translations from DeepL
and ChatGPT are included to conduct our prefer-
ence data. To investigate where the improvement
comes from, we introduce two variants without
preference tuning to compare with WAP.

• FT_reject: directly fine-tuning ALMA with
the rejected translations in the dataset.

• FT_prefer: directly fine-tuning ALMA with
the preferred translations in the dataset.

The comparison is demonstrated in Figure 7.

Does the preferred data truly contribute more
to training? It is observed that FT_prefer sig-
nificantly outperforms FT_reject in both hard and
easy instances. This suggests that WAP effectively
selects samples, improving translation quality. It
highlights the importance of selecting high-quality
training data, as even human-annotated data can be
flawed (Xu et al., 2024a).

Is DPO preference tuning necessary? The filled
area highlights the necessity of preference tuning
with DPO. While FT_prefer performs competi-
tively in hard instances, it significantly underper-
forms WAP and ALMA in easy instances, limiting
its practicality. The possible reason for the dif-
ferent performance in the hard and easy instances
can be the direct fine-tuning, which focusing solely

on preferred data without comparing it to rejected
examples can lead to overfitting to word-aligned
preferences, neglecting overall translation quality.

7 Conclusion

The problem of hallucination and omission, a long-
standing problem in MT, could become more se-
vere when an LLM is used because an LLM it-
self could hallucinate or omit in nature. In this
paper, our aim is to mitigate this problem in LLM-
based MT by optimizing the model toward a pref-
erence for better word alignment. We construct
preference datasets by collecting translations us-
ing multiple MT tools and selecting the preference
pair with a higher coverage score output by a word
aligner. DPO is then utilized to optimize the model
towards the word-aligned preference. As evalua-
tion of hallucination and omission is challenging,
we design experiments that include selecting hard
instances and using GPT-4 to directly predict cover-
age score, ensuring an effective evaluation, which
indicates that the proposed WAP mitigates halluci-
nation and omission, especially in hard instances.
On the other hand, although WAP shows promise in
mitigating hallucination and omission, the overall
performance of MT in different language directions
remains mixed, with slight increases in BLEU and
decreases in COMET.
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Limitation

The first limitation of our method stems from the
imperfections of the word alignment model. Within
our approach, it is inevitable to encounter some
alignment errors, which we address through a fil-
tering method. However, this solution adds com-
plexity and clutter to the method. Additionally, the
effectiveness of our method is diminished for low-
resource language translations due to the limited
number of parallel sentences available. From the
perspective of experiments, we only evaluate the
methods in English-centric translation pairs due to
the lack of Non-English data, in which hallucina-
tion and omission could happen more frequently.
In particular, the WMT-2024 General Machine
Translation Task (Kocmi et al., 2024) has adopted
non-English language pairs, such as Czech-to-
Ukrainian and Japanese-to-Chinese, which could
expand our work in the future. Moreover, our re-
liance on the GPT-4 API to evaluate the results
introduces a significant cost factor. In future work,
our objective is to find a cost-free alternative to this
evaluation process. Lastly, although WAP shows
promise in mitigating hallucination and omission,
the overall performance of MT in different lan-
guage directions remains mixed, with slight in-
creases in BLEU and decreases in COMET.

Ethical Statement

All datasets and checkpoints used in this paper
are copyright-free for research purposes. Previous
studies are properly cited and discussed. This re-
search aims to improve LLM-based machine trans-
lation models with word alignment preference data,
and the preference is made by an automatic word
aligner. We do not introduce additional bias to par-
ticular communities. We have obtained the consent
of the annotation volunteers for this study.
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A Experimental setup

The implementation from alignment-handbook11

is used for the training of DPO. The learning rate
is searched based on performance on development
set and set to 5e-6. LoRA (Hu et al., 2021) is used.
r is set as 16 and β is set as 0.1. We train the model
for 1 epoch and fix the random seed to 42. The
model is trained on 4 × Nvidia A100 80G and the
total batch size is 64. For evaluation, we use the
implementation of ALMA12 to calculate the BLEU
and COMET scores.

B Example analysis

B.1 Examples of the preference dataset
Table 4 includes three examples in our dataset, in
which the source sentence, the chosen and rejected
translations are shown. Refer to §4 for a detailed
construction of the dataset. Example 1: the re-
jected translation is from human annotation, in
which it repeats the term of “I think” unnaturally.
The possible reason could be the resource of the
parallel data, e.g., direct collection from transcrip-
tions. Example 2: “Fuller” is omitted by human
annotation while translated by DeepL. Example
3: the chosen translation is from gpt-3.5-turbo that
completely translates the source sentence. In con-
trast, the translation by DeepL omits the first half.

B.2 Translation examples
Table 5 shows illustrative comparison between
translations from the baseline and our model. Ex-
ample 1: “in HBO’s ’The Gilded Age’" in the
source sentence is omitted by the baseline. In
contrast, our model successfully translate the cor-
responding part into Chinese. Example 2: the
baseline generates “卡扣 (fastening)” infinitely in
translation. This type of hallucination also occurs
in other LLM applications, which emphasizes the
need to address the hallucination issue in LLM-
based MT models. Example 3: “等到什么时候
(when to wait)” is omitted by the baseline model
while our model translate that into “how long I
have to wait” properly.

On the other hand, WAP could also fail in some
cases. Example 4: Although the baseline omits
“pictures” and “box,” which our model successfully
translates, the translation of our model is not fully

11https://github.com/huggingface/
alignment-handbook

12https://github.com/fe1ixxu/ALMA

correct. The source is “in the box with frame,” but
our model’s translation is “画框在盒子里 (frame
in the box).” Example 5: Although our model
translates “pot (锅)” that is omitted by the base-
line, the meaning of the sentence is incorrect. The
source means "This pot is a good buy," but our
translation is "This pot is worth buying." In gen-
eral, our model performs well in terms of cover-
age, which is more related to hallucination and
omission; however, the translation quality does not
necessarily improve accordingly. The study of pref-
erence signals for both overall translation quality
and reducing hallucination and omission is worth
exploring.

C Overall MT Performance

Table 6 shows the numeric results in Figure 5, in
which boxes on a blue background highlight the
cases where our model outperforms the baseline by
a margin > 1.0, and the boxes in red are the oppo-
site. Boxes without background indicate the cases
when our model and the baseline have competitive
performance where the margin < 1.0.

In addition to the main findings in §6.1 that our
model generally performs better in harder instances,
from the results it can also be observed that our
model particularly performs worse on “en-is” than
in other translation directions. The reason could be
that Icelandic is a low-resource language and we
used external tools such as WSPAlign and Google
Translate to build the training data. Hence, the
relatively unreliable performance of external tools
on low-resource languages can induce noises in our
training data. This could be a future direction for
building more reliable word alignment signals and
particular research on low-resource languages.

Table 6 reports the overall performance when we
do not split the dataset into the hard and easy sub-
set. The results show that our model and ALMA
have generally competitive performance. Specif-
ically, if we only consider the margin larger than
1.0, our model outperforms ALMA on de-en and
is-en in BLEU while ALMA performs better on
en-is in both BLEU and COMET. In particular,
a significance test is conducted to investigate nu-
meric degradation when all instances are included.
We utilize bootstrap sampling from example-wise
COMET scores with 100,000 iterations and cal-
culate the p-value. Based on the results of the
significance test, there is no statistical significance
when the margin is greater than 0.25, indicated by
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Example 1 (Chinese-English) Coverage Score
source “我想，在考虑重播时，可以解决这个问题”，Coker 说

道。
–

chosen (gpt-3.5) "I think, when considering replay, this issue can be resolved,"
Coker said.

94.03

rejected (human) "<<<I think that when I think about>>> the replay, <<<I think
that>>> we can probably work it out," Coker said.

79.87

Example 2 (Chinese-English) Coverage Score
source <<<富勒>>>在政变图谋失败后 –
chosen (deepl) <<<Fuller>>> after the failed coup attempt 83.76
rejected (human) After the failure of the attempted coup, 59.59
Example 3 (English-Chinese) Coverage Score
source <<<Originally a one-bedroom property with a convoluted lay-

out - you had to walk through the kitchen to get to the bed-
room>>> - Joanne wanted to add storage space and a mezzanine
to make the most of the generous ceiling height.’

–

chosen (gpt-3.5) <<<最初是一个一居室的房产，布局错综复杂-你必须穿
过厨房才能到达卧室>>> -然而乔安妮想要增加存储空间
和一个夹层，以充分利用宽敞的天花板高度。

83.76

rejected (deepl) 乔安妮希望增加储藏空间和一个夹层，充分利用宽敞的
天花板高度。

69.97

Table 4: Examples in the preference dataset. The hallucination in rejected examples and omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted in the rejected example are
highlighted with <<< >>> in the chosen example. The coverage is calculated by word aligner, refer to §3 for
details.

a p-value larger than 0.05. This suggests that our
approach does not degrade the general performance
by a margin of 0.25 or more, while improving that
on hard instances by a large margin of 3.47. Note
that the focus of this work is the problem of hal-
lucination and omission, general metrics for MT
are only partially related to our evaluation. The
evaluation by LLM and humans is also important,
as we discussed in §5.2.
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Example 1 (English-Chinese) Coverage Score
Source Sunday Best: Enter 1880s New York <<<in HBO’s "The

Gilded Age">>>
–

Translation (Baseline) 周日最佳：进入1880年代的纽约 70.0
Translation (Ours) 周日最佳：进入1880 年代的纽约<<<，在HBO 的

《金碧辉煌时代》>>>
100.0

Example 2 (English-Chinese) Coverage Score
Source Liner Fastening and Hanging Tabs Inner tabs are provided

to keep a loose liner in position, corresponding in position
with the tabs we provide on our liners.

–

Translation (Baseline) 粘贴和悬挂<<<卡扣的内部卡扣用于保持卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣卡扣
卡扣卡扣>>>

0.0

Translation (Ours) 内固定和悬挂标签内固定和悬挂标签用于保持薄膜
在位，与我们提供的标签对应。

60.0

Example 3 (Chinese-English) Coverage Score
Source 不知道要<<<等到什么时候>>> –
Translation (Baseline) I don’t know when 90.0
Translation (Ours) I don’t know <<<how long I have to wait>>> 100.0

Example 4 (English-Chinese)
Source <<<Pictures come in>>> a sturdy carded envelope <<<in

the box with the frame.>>>
Translation (Baseline) 画框附带一个坚固的卡片盒。

Translation (Ours) 画框<<<在盒子里，图片>>>放在一个坚固的卡片盒
里。

Example 5 (Chinese-English)
Source 这个<<<锅>>>买得好值。
Translation (Baseline) It’s a good buy.
Translation (Ours) This <<<pot>>> is worth buying.

Table 5: Translation Examples. The hallucination in translation by the baseline and the omission in the source
sentence are highlighted with <<< >>>. The corresponding contents that are omitted from the baseline are
highlighted with <<< >>> in our translation. The coverage is calculated by GPT-4, refer to §5.2 for details.
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Model-Metric de-en cs-en is-en zh-en ru-en en-de en-cs en-is en-zh en-ru Avg.
N=100

Easy instances
ALMA-BLEU 31.38 45.79 38.14 25.64 41.25 32.09 31.95 27.57 40.05 29.37 31.39
Ours-BLEU 32.50 46.32 40.13 25.23 40.80 31.22 31.55 26.00 39.55 29.01 31.33

ALMA-COMET 85.57 87.71 87.82 81.38 86.26 86.84 90.90 87.61 87.14 88.80 78.12
Ours-COMET 85.50 87.67 87.71 81.24 86.17 86.02 89.84 85.80 86.39 87.89 77.63

Hard instances
ALMA-BLEU 12.25 29.49 21.72 1.95 15.73 15.71 12.79 17.51 14.59 15.45 14.17
Ours-BLEU 15.56 35.93 27.72 4.62 19.77 16.15 16.67 17.13 19.49 15.54 17.30

ALMA-COMET 62.73 67.08 72.62 49.94 62.64 58.50 60.80 70.02 59.07 62.31 56.34
Ours-COMET 65.98 71.16 75.12 58.99 67.19 60.90 67.90 71.57 62.03 65.16 60.08

N=200
Easy instances

ALMA-BLEU 31.96 47.11 39.94 26.22 42.13 32.50 32.75 28.54 41.08 30.22 32.22
Ours-BLEU 33.10 47.41 41.60 25.79 41.43 31.52 32.20 26.91 40.48 29.79 32.04

ALMA-COMET 86.34 88.61 88.72 82.31 87.02 87.76 91.85 88.67 87.97 89.67 78.92
Ours-COMET 86.16 88.40 88.43 81.98 86.89 86.75 90.77 86.94 87.12 88.73 78.34

Hard instances
ALMA-BLEU 17.46 30.39 24.17 6.00 20.03 19.11 14.83 19.02 18.61 15.43 16.96
Ours-BLEU 19.31 35.04 29.25 7.55 23.70 19.96 18.16 18.29 21.52 15.95 19.28

ALMA-COMET 67.24 71.82 76.62 57.84 67.59 64.30 67.13 74.56 65.46 67.59 61.26
Ours-COMET 69.85 74.82 78.52 63.87 70.22 66.77 70.37 74.13 67.50 68.78 63.60

N=500
Easy instances

ALMA-BLEU 34.36 50.81 46.92 28.50 45.16 34.61 35.28 31.79 43.91 32.13 35.13
Ours-BLEU 35.33 50.59 47.25 27.82 44.16 33.25 34.07 30.00 42.92 31.67 34.54

ALMA-COMET 88.08 90.54 91.04 84.29 88.62 89.59 93.66 91.08 89.79 91.47 80.67
Ours-COMET 87.80 90.10 90.50 83.86 88.40 88.55 92.48 89.57 88.79 90.61 80.00

Hard instances
ALMA-BLEU 21.31 35.46 28.66 13.08 25.4 22.53 19.82 22.52 24.81 19.78 21.36
Ours-BLEU 23.09 37.91 32.66 14.04 27.32 22.89 22.38 21.32 26.58 19.78 22.82

ALMA-COMET 73.56 78.24 81.55 67.07 74.39 72.74 76.38 80.61 73.38 75.29 67.79
Ours-COMET 74.77 79.75 82.41 69.56 75.63 73.24 77.34 79.19 74.12 74.97 68.60

Overall performance, i.e., N=infinite when all instances are included.
ALMA-BLEU 30.73 44.68 36.46 24.15 40.37 31.37 31.12 26.67 39.05 28.76 30.46
Ours-BLEU 31.93 45.60 38.85 23.94 40.09 30.64 30.91 25.22 38.76 28.43 30.59

ALMA-COMET 84.42 86.29 86.30 79.70 85.09 85.45 89.42 85.85 85.76 87.50 76.83
Ours-COMET 84.50 86.53 86.45 80.05 85.22 84.78 88.75 84.38 85.19 86.77 76.59

Table 6: Specific results on 10 translation directions. The size of models are 13B. BLEU and COMET are reported.
Cells where the difference is larger than 1.0 are highlighted with colored background. Blue indicates ours model
outperforms ALMA and red indicates the opposite.
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