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Abstract
Previous studies on multi-party dialogue gener-
ation predominantly concentrated on modeling
the reply-to structure of dialogue histories, al-
ways overlooking the coherence between gen-
erated responses and target utterances. To ad-
dress this issue, we propose a Reinforcement
Learning approach emphasizing both Topic and
Rhetorical Coherence (RL-TRC). In particular,
the topic- and rhetorical-coherence tasks are
designed to enhance the model’s perception
of coherence with the target utterance. Sub-
sequently, an agent is employed to learn a co-
herence policy, which guides the generation
of responses that are topically and rhetorically
aligned with the target utterance. Furthermore,
three discourse-aware rewards are developed to
assess the coherence between the generated re-
sponse and the target utterance, with the objec-
tive of optimizing the policy. The experimental
results and in-depth analyses on two popular
datasets demonstrate that our RL-TRC signif-
icantly outperforms the state-of-the-art base-
lines, particularly in generating responses that
are more coherent with the target utterances.

1 Introduction

In a two-party dialogue, a response is always gen-
erated for the last utterance in the dialogue history.
This contrasts with multi-party dialogue, which
always involves multiple participants and each ut-
terance can be uttered by any participant and reply
to any participant else (Gu et al., 2022b). In a multi-
party dialogue, the position of the target utterance
(replied utterance) is not fixed. Figure 1 illustrates
a multi-party dialogue involving four participants.
In this example, the bot of Multi-party Dialogue
Generation (MDG) is required to assume the role
of participant P1 and generate an appropriate re-
sponse to target utterance U2.

Previous studies (Hu et al., 2019; Li and Zhao,
2023; Gu et al., 2022a, 2023b) on MDG have pri-
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motivation:
以往的研究多关注对历史结构的reply-to
结构建模，忽略了回复中的说什么，和
如何说。

我们从篇章的角度出发，通过话题结构
和修辞结构对说什么和如何说分别建模。

firefox use 95 megs of ram at startup with 
a blank page ! ! ! ! ! ! !

Participant

U1 : firefox use 95 megs of ram at startup with a blank 
page ! ! ! ! ! ! !

P1 

U2 : yeah , 's why i use opera

U3 : you use opera ? emacs doesnt supply your every 
intenet need ?

U4 : granted , but ubuntu philosophy does n't embrace 
that idea wholly , not that i am using ubuntu atm

U5 : he probably uses cron to periodically mv trashbin 
FILEPATH

P2 

P3 

P4 

U6 : unfortunately , i do n't always use text ( internet  
is the thing there )

P2 

P2 

Reply to

what does opera consume at startup ?
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i use opera, but i don't use it 

 i do n't use opera , i use firefox
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Figure 1: An example of multi-party dialogue from the
Hu (Hu et al., 2019) dataset. EMMDG (Li and Zhao,
2023) and MADNet (Gu et al., 2023b) are two SOTA
baselines.

marily focused on leveraging the reply-to struc-
ture within dialogue history to enhance generation.
However, these methods do not adequately guaran-
tee the coherence between the generated response
and the target utterance.

Firstly, the modeling of reply-to structures does
not guarantee that the model will comprehend the
topics of the dialogue history, which is of the ut-
most importance for generating responses that align
with the topic of the target utterance. Multi-party
dialogue always has multiple entangled parallel di-
alogue flows, covering different topics. As shown
in Figure 1, the example primarily concerns two
topics, among which U1, U2, and U7 (human re-
sponse) discuss the browsers (Firefox and Opera)
selection and resource usage, while U3, U4, U5, and
U6 primarily discuss the usage of Emacs. Since the
reply-to structure does not unravel the entangled
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topics in a multi-party dialogue, it is challenging
for the model to consistently generate a response
that aligns with the target utterance’s topic. As illus-
trated by the response generated by EMMDG (Li
and Zhao, 2023) in Figure 1, the response’s topic
does not relate to the target utterance U2, despite
EMMDG modeling the reply-to structure. Sec-
ondly, modeling reply-to structures does not guar-
antee logical and meaningful interactions between
the generated response and the target utterance. As
illustrated in Figure 1, while the response generated
by MADNet (Gu et al., 2023b) remains relevant to
the topic (Opera) of the target utterance, its inter-
nal contradictions undermine the logical coherence
between it and the target utterance.

To address these challenges, we propose a Re-
inforcement Learning approach emphasizing both
Topic and Rhetorical Coherence (RL-TRC), guid-
ing the generation of responses that are both top-
ically and logically consistent with the target ut-
terance. We initially design tasks for topic and
rhetorical coherence, utilizing the target utterance
to predict the topic of the generated response and
its rhetorical relation with the target utterance. Sub-
sequently, our reinforcement learning agent learns
a coherence policy to guide the model in gener-
ating responses that are topically and rhetorically
consistent with the target utterance. To optimize
this policy, we meticulously design two local re-
wards and one global reward. The local rewards
guide policy learning by scoring the topic coher-
ence and rhetorical coherence between the gener-
ated response and the target utterance, respectively.
The global reward guides policy learning by mea-
suring whether the target utterance in the dialogue
history can be correctly recognized based on the
generated response.

We conduct extensive experiments on two popu-
lar Ubuntu IRC channel datasets, and results from
both automated and manual evaluations indicate
that our RL-TRC significantly outperforms pre-
vious SOTA baselines. In-depth analysis reveals
that RL-TRC can generate responses for target ut-
terances that are more coherent in both topic and
rhetoric.

2 Related Work

Multi-party Dialogue Generation Most previ-
ous studies on MDG have focused on modeling
complex reply-to structures within dialogue his-
tories. Hu et al. (2019) proposed a graph struc-

ture neural network that treated utterances as nodes
and reply-to relations as edges to model the di-
alogue history. Gu et al. (2022a) introduced a
heterogeneous graph-based neural network to si-
multaneously model the semantics of utterances
and participants using two types of nodes and six
types of node-edge relations. Li and Zhao (2023)
and Gu et al. (2023b) proposed the adoption of
the Expectation-Maximization (EM) algorithm to
model the reply-to structure of dialogue history.

Furthermore, some studies have explored en-
hancing MDG from a discourse perspective.
Chernyavskiy and Ilvovsky (2023) suggested using
dialogue action planning to improve the consis-
tency and quality of dialogue generation. Mean-
while, Chernyavskiy et al. (2024) proposed lever-
aging various fine-grained linguistic inputs, includ-
ing Abstract Meaning Representation, discourse
relations, sentiment, and grounding information,
to facilitate multi-party dialogue generation. Re-
cently, with the advent of Large Language Mod-
els (LLMs), Tan et al. (2023) evaluated the perfor-
mance of ChatGPT and GPT-4 on MDG. Despite
significant progress in MDG, incoherence between
the generated response and the target utterance re-
mains a challenge that needs to be addressed.

Dialogue Coherence Modeling Dialogue coher-
ence modeling is primarily applied in persona-
based dialogue systems, aiming to help models gen-
erate responses that are consistent with the given
persona (Chen et al., 2024). Most previous work
has focused on minimizing contradictions between
responses and personas using natural language in-
ference models (Song et al., 2021; Chen et al.,
2023), conditional VAE (Lee et al., 2022), and
over-sampling followed by post-evaluation (Zhou
et al., 2023).

Unlike previous work on the coherence between
the generated response and the persona, we seek
to enhance the coherence between the generated
response and the target utterance in multi-party
dialogues. Uniquely, we model coherence from
the perspectives of topic and rhetoric, addressing
the multiple topic flows and logical structures in
multi-party dialogues.

3 Method

We propose an approach RL-TRC for MDG, il-
lustrated in Figure 2, that begins with using the
dialogue history to initialize the sequence state of
the Reinforcement Learning (RL) agent, which is
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Figure 2: Framework of our method. The parameters of
both decoders are shared.

encoded by a dialogue encoder. Then, the topic and
rhetorical coherence tasks are devised to enhance
the model’s awareness of coherence with the target
utterance. The coherence semantics are treated as
action candidates for the coherence policy and are
fed into the decoder to generate a trigger sequence
that updates the state. The policy is optimized by
evaluating the coherence between the generated
response and the target utterance using carefully
designed rewards.

3.1 Problem Formulation
Given a multi-party dialogue history C =
{(p1, u1), ..., (pi, ui), ..., (pn, un)}, where pi and
ui are participant and utterance, respectively, the
model requires to assume the role of a speaker pr
to generate an appropriate response y to the target
utterance ut, which is formulated as

y = argmax

m∑

t=1

logP (yt|y<t, C, pr, ut; θ) (1)

where θ is the trainable parameters, yt and y<t are
the t-th token and the previous t-1 tokens of the
response y, respectively, and m is the length of y.

3.2 Encoder
Following Li and Zhao (2023) and Gu et al.
(2023b), we use BART (Lewis et al., 2020) as

encoder. The dialogue history is fed into the en-
coder in the form of “[CLS][SEP]p1u1[SEP]p2u2
· · · [SEP][RT] ptut · · · [SEP]pnun[SEP]pr” to ob-
tain the hidden state H ∈ Rl×d, where l and d are
the sequence length and the dimension of hidden
state, respectively, and [RT] is the target utterance
marker. We denote the semantic representation of
the utterance as hui, which is derived from [SEP]
preceding each utterance.

3.3 Topic Coherence Task
The purpose of the topic coherence task is to enable
the model to be aware of the topic coherence with
the target utterance when generating responses. To
this end, we first construct the topic coherence ma-
trix between the target utterance and the golden
response. Subsequently, the target utterance and
the topic coherence matrix are combined in order to
predict the topic of the generated response, thereby
ensuring coherence between the target utterance
and the generated response.

To construct the topic coherence matrix, we cal-
culate the Pointwise Mutual Information (PMI)
(Church and Hanks, 1990) scores between the tar-
get utterance and the golden response keywords,
and higher PMI scores are associated with stronger
topic coherence. Specifically, we first extract the
keywords of each utterance by using ChatGPT,
which has shown a great topic understanding abil-
ity (Fan et al., 2024). The prompt is shown in
Appendix A. Given two keywords wi and wj , the
PMI score of keyword pairs is calculated as

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(2)

where p(wi/wj) is the co-occurrence frequency
between wi in the golden response and wj in the
target utterance, p(wi) and p(wj) are the frequency
of wi and wj , respectively. For each keyword
wj in the target utterance, the wi with the top 10
PMI(wi, wj) scores is adopted to construct the
topic coherence matrix. It is worth noting that all
utterance pairs with the reply-to relation are uti-
lized to calculate PMI scores.

After obtaining the topic coherence matrix,
we first deduce the coherence keywords Cck =
{w1, w2, · · · , wk} from the topic coherence matrix
according to the keywords of the target utterance,
where k is the number of inferred coherence key-
words. The semantics Eck of the coherence key-
words is obtained by feeding them into the dialogue
encoder, where Eck ∈ Rk×d. Then, the semantics
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of the target utterance hut and Eck are fused by
the attention mechanism (Bahdanau et al., 2015) to
predict the keywords of the generated response as

ha
ut = MLP (hut) (3)

hti = softmax(Wvtanh(Wqha
ut+

WmEck + b))Eck)
(4)

Pa = softmax(Wtihti) (5)

where MLP is a multi-layer perceptron, Wv ∈ Rd,
Wq ∈ Rd×d, Wm ∈ Rd×d and Wti ∈ Rd are
trainable parameters, and b is bias term. Pa is
the probability of keywords prediction, which is
supervised by the keywords ykws = {wi}fi=1 in the
golden response with the cross-entropy loss as

Lt = − 1

f

f∑

i=1

logPa(wi) (6)

3.4 Rhetorical Coherence Task
The task of rhetorical coherence primarily enables
the model to maintain rhetorical coherence with the
target utterance when generating responses. Given
that rhetorical relations can explicitly reveal and
enhance the understanding of logical and seman-
tic coherence between utterances in multi-party
dialogues (Asher and Lascarides, 2003), we uti-
lize a discourse parsing tool (Wang et al., 2021)
to analyze the dialogue and identify the rhetorical
relation between the golden response and the target
utterance. Details can be found in Appendix B.
Similar to the topic coherence task, we feed hut

into another MLP to perform the discourse relation
prediction task as

hb
ut = MLP (hut) (7)

Pb = softmax(Wubhb
ut) (8)

where Wub ∈ Rd is the trainable parameter, and
Pb is the probability of relation prediction, which
is supervised by the discourse relation r between
the target utterance and the golden response with
the cross-entropy loss as

Lr = −logPb(r) (9)

3.5 Discourse-aware Reinforcement Learning
The RL agent is built upon the actor-critic frame-
work (Konda and Tsitsiklis, 1999; Ye et al., 2020).
In this section, we provide a detailed introduction
to each component, including state, action, policy,
and reward.

3.5.1 State
The dialogue history C is regarded as the
initial state of the RL process denoted as s1.
At the step k, the policy updates the state
by selecting the topic or rhetorical coherence
semantics to generate the trigger sequence τk
and the observed state is denoted as sk =
{(p1, u1), ..., (pn, un), (pτ1 , τ1), ..., (pτk−1, τk−1)}.
Then, sk is fed into the dialogue encoder to
obtain the dialogue semantics hsk derived from
the [CLS] token. Finally, the final semantics
representation of the current state sk is obtained
by concatenating all the historical state semantics,
denoted sek = [hs1 : · · · : hsk].

3.5.2 Action
At the step k, the actor requires to take action ak
to select the topic coherence semantics (ha

ut) or
rhetorical coherence semantics (hb

ut), where ak ∈
A = {0, 1} (0 for the topic coherence semantics
and 1 for the rhetorical coherence semantics). Then,
the selected coherence semantics are fed into the
BART decoder as a context embedding to generate
the trigger sequence τk.

3.5.3 Policy
In addition to using a dialogue encoder as a se-
mantic encoding policy network, we design a co-
herence policy network based on the actor-critic
framework. The actor learns a coherence policy
πθ(sk, ak), which takes the appropriate action ak
to select the coherence semantics based on the cur-
rent state sk. The critic guides the actor to take
the appropriate action ak by evaluating the value
Qϕ(sk) of state sk. The actor-critic network is as

ok = ELU(ELU(sekWo
1)W

o
2) (10)

πθ(ak|sk) = softmax(okWθ) (11)

Qϕ(sk) = okWϕ (12)

where ELU is the activation function,Wo
1 ∈

R(d×k)×(d×k/2), Wo
2 ∈ R(d×k/2)×d, Wθ ∈ Rd×2,

and Wϕ ∈ Rd×1 are weight matrices.

3.5.4 Reward
To guide the policy learning, we measure the dis-
course coherence between the generated response
and the target utterance. The rewards we designed
include two local rewards and one global reward.
The local rewards measure the topic and rhetori-
cal coherence between the generated response and
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the target utterance, and the global reward mea-
sures whether the target utterance can be recog-
nized based on the generated response.

Topic-coherence Reward The purpose of the
topic-coherence reward is to guide the generation
of responses by measuring the topic coherence be-
tween the generated response y with its keywords
ykws

1 and the target utterance ut with its keywords
ut_kws. We reconstruct the Hu dataset (Hu et al.,
2019) to construct the coherent pair (ut, y) and in-
coherent pair (ut, yneg), in which yneg is an utter-
ance randomly selected from the current dialogue
not reply to target utterance. Then, the topic evalu-
ator ftc is trained on these coherent and incoherent
pairs by using RoBERTa-base (Liu et al., 2019),
achieving 84% accuracy. More details are in Ap-
pendix C. We adopt the topic evaluator to evalu-
ate the coherence between the generated response
and the target utterance and treat the coherence
probability as a topic-coherence reward, which is
formulated as

Rtc = ftc([ut;ut_kws], [yt; ykws]) · e(n/|ykws|−1)
(13)

where n is the number of words in ykws that can be
deduced through the topic coherence matrix using
ut_kws.

Rhetorical-coherence Reward Rhetorical-
coherence reward is used to measure the similarity
of the probability distribution of the rhetorical
relation between (ut, y) and (ut, y

∗), where ut is
the target utterance, y is the generated response,
and y∗ is the golden response. Since the Hu
dataset did not annotate rhetorical relations, we
reconstruct the Molweni dataset (Li et al., 2020) to
construct the target utterance and golden response
pairs, and then trained a relation classifier frc
with the accuracy of 65%. More details are
in Appendix C. We treat the KL divergence
score between frc(ut, y) and frc(ut, y

∗) as the
rhetorical-coherence reward as

Rrc = −KL(frc(ut, y
∗)||frc(ut, y)) (14)

Reply-to Reward Reply-to reward aims to mea-
sure the similarity between the probability distri-
bution of recognizing the target utterance based on
the generated response and the probability distri-
bution of recognizing the target utterance on the

1The keywords of the generated response are extracted
according to the vocabulary of the topic coherence matrix.

Dataset #Train #Valid #Test
Hu 311725 5000 5000
Ou5 461120 28570 32668

Table 1: Statistics of the two datasets evaluated in this
paper.

golden response. We train a reply-to model frt on
Hu dataset (Hu et al., 2019) by using RoBERTa-
base with the accuracy of 91%. More details are
in Appendix C. Similar to the rhetorical-coherence
reward, we adopt the KL score Rrt as the reply-to
reward as

Rrt = −KL(frt(C, y
∗)||frt(C, y)) (15)

where C is the dialogue history.

Total Reward Finally, we weighted sum all the
rewards as

r = wtcRtc + wrcRrc + wrtRrt (16)

where wtc, wrc, and wrt are weight coefficient.

3.6 Training
During training, we mainly optimize the parame-
ters, including the RL agent, response generation,
and coherence task learning. To optimize the learn-
ing of the RL agent, we maximize the expected
cumulative reward J(δ) = Eδ[

∑K
k=1 ϵ

krk], where
δ is the parameters of actor-critic network, ϵ is the
discount coefficient, which reduces the importance
of rewards received in the future, and K is the op-
timization steps, indicating that taking K actions
with one iteration of optimization. The agent is
optimized by the following loss:

Lag = −Eδ[log πθ(ak|sk)(
K∑

k=1

ϵkrk−

Qϕ(sk))].

(17)

To optimize the learning of the response genera-
tion, we feed the semantics sek of the state sk into
the BART decoder as the context embedding to
generate the response, which is optimized by the
following loss:

Lgen = −
m∑

t=1

logP (yt|y<m, sek) (18)

In addition, the topic and rhetorical coherence
tasks are optimized by Lt and Lr in Equations 6
and 9, respectively.
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Model B1 B2 B3 B4 M RL

LLMs-based ChatGPT† (Tan et al., 2023) 11.21 4.44 2.49 1.76 5.38 10.48
RNN-based GSN (Hu et al., 2019) 10.23 3.57 1.70 0.97 4.10 9.91

BART-based

BART (Lewis et al., 2020) 11.25 4.02 1.78 0.95 4.46 9.90
HeterMPC (Gu et al., 2022a) 12.26 4.80 2.42 1.49 4.94 11.20
EMMDG (Li and Zhao, 2023) 12.31 5.39 3.34 2.45 5.52 11.71
MADNet (Gu et al., 2023b) 12.73 5.12 2.64 1.63 5.31 11.74
RL-TRC (Ours) 13.66* 6.58* 4.10* 2.93* 6.20* 12.72*

Table 2: Automatic evaluation results on the Hu dataset where * denotes that the improvements are statistically
significant (t-test with p-value < 0.05) comparing with the SOTA baselines EMMDG and MADNet, and † represents
that we reproduced the performance by running the publicly available code.

Model B1 B2 B3 B4 M RL

LLMs-based ChatGPT† (Tan et al., 2023) 11.17 4.06 2.53 1.24 4.42 9.59
RNN-based GSN (Hu et al., 2019) 6.32 2.28 1.10 0.61 3.27 7.39

BART-based

BART (Lewis et al., 2020) 11.13 3.95 2.11 1.44 4.45 10.20
HeterMPC (Gu et al., 2022a) 11.40 4.29 2.43 1.74 4.57 10.44
EMMDG† (Li and Zhao, 2023) 11.67 4.73 2.64 1.81 5.12 10.43
MADNet (Gu et al., 2023b) 11.82 4.58 2.65 1.91 4.90 10.74
RL-TRC (Ours) 12.52* 5.41* 3.34* 2.45* 5.45* 11.31*

Table 3: Automatic evaluation results on the Ou5 dataset.

In training, we first pre-train the model with Lgen.
Then, we jointly train the model as

L = Lag + Lgen + Lt + Lr (19)

4 Experimentation

4.1 Datasets
To verify the effectiveness of our RT-TRC, we
conduct experiments on two Ubuntu IRC channel
datasets, Hu (Hu et al., 2019) and Ou5 (Ouchi and
Tsuboi, 2016), following previous work (Gu et al.,
2023b). The data statistics are shown in Table 1.

4.2 Baselines
we compare our method with the following base-
lines. ChatGPT (Tan et al., 2023): It directly uses
ChatGPT for MDG. We re-ran their publicly avail-
able code and used the latest version of GPT-4o-
2024-05-13. Notably, we used the same evalua-
tion code as previous work(Gu et al., 2023b) for a
fair comparison. GSN (Hu et al., 2019): it adopts
the homogeneous graph to model the structure of
dialogue history. BART (Lewis et al., 2020): it
directly uses the BART-base model for MDG. Het-
erMPC (Gu et al., 2022a): it models the com-
plicated interactions between utterances and inter-
locutors in dialogue history with a heterogeneous
graph. EMMDG (Li and Zhao, 2023): it proposes

an expectation-maximization approach that itera-
tively performs the expectation steps to generate
addressee labels, and the maximization steps to op-
timize a response generation model. MADNet (Gu
et al., 2023b): it maximizes addressee deduction ex-
pectation in heterogeneous graph neural networks
for MDG.

4.3 Implementation Details

The pre-trained model we adopt is the BART-base
2 version. The maximum length of the dialogue
history and generated response is set to 512 and 50,
respectively. The epoch of pre-training and multi-
task training are set to 3 and 10, respectively. The
strategy of greedy search was adopted for decoding.
The batch size is set to 128. The optimization step
K of the RL agent is set to 2, which is obtained by
using the grid search in {1, 2, 3, 4, 5}. The reward
weights wtc, wrc, wrt are set 0.5, 0.5, 1, respec-
tively, which is obtained by using the grid-search
in {0.5, 1}. The discount coefficient ϵ is set to 0.99.
The Adam (Loshchilov and Hutter, 2018) optimizer
with an initial learning rate of 2e-5 is adopted and
the linear warmup step is set to 200.

2https://huggingface.co/facebook/bart-base
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4.4 Metrics

We follow previous work (Li and Zhao, 2023; Gu
et al., 2022a, 2023b) for automatic and human eval-
uation. The automatic metrics include BLEU-1
(B1), BLEU-2 (B2), BLEU-3 (B3), BLEU-4 (B4),
METEOR (M), and ROUGEL (RL). For human
evaluation, the quality of the generated responses
is assessed from three independent dimensions: 1)
fluency, 2) informativeness, and 3) relevance. Each
human evaluator assigns three binary scores for
each response, which are then summed to produce
a final score ranging from 0 to 3. Importantly, for
the relevance dimension, we specifically measure
the alignment of the generated response with the
target utterance.

4.5 Results

Tables 2 and 3 present the automated results of
our RL-TRC and baselines. It can be observed that
the LLMs-based model ChatGPT can only achieve
comparable performance to the other baselines, in-
dicating that MDG still faces great challenges. Ad-
ditionally, compared with the BART model, Het-
erMPC, EMMDG, and MADNet significantly en-
hance dialogue generation quality by incorporating
reply-to structures. However, these methods still
suffer from incoherence between the generated re-
sponses and the target utterances. Our RL-TRC
outperforms all baselines in terms of all metrics,
demonstrating its effectiveness in improving gen-
eration quality by enhancing discourse coherence
between generated responses and target utterances.

Table 4 presents the results of the human eval-
uation on the Hu dataset. We randomly sampled
200 examples from the test set and recruited three
computer science master students familiar with
Ubuntu and Linux to score each response. The
results demonstrate that all models exhibit compa-
rable performance to humans in terms of fluency,
indicating that generating fluent responses is no
longer a significant challenge. Furthermore, our
RL-TRC model demonstrates comparable perfor-
mance to MADNet in terms of informativeness,
although there remains a gap when compared to
human performance. Notably, our RL-TRC model
significantly improves the relevance score, gener-
ating responses that are more aligned with target
utterances. This further substantiates the efficacy
of our model.

Model Flu Infor Rel Overall
Human 0.95 0.94 0.84 2.73

EMMDG 0.94 0.71 0.58 2.23
MADNet 0.97 0.81 0.63 2.41
RL-TRC 0.95 0.83 0.73 2.51

Table 4: Human evaluation results of our RL-TRC and
two SOTA baselines on a randomly sampled test set of
Hu, where Rel, Flu, and Inf are short for Relevance, Flu-
ency, and Informativeness, respectively. The agreement
rate of the human evaluation outperforms 85% demon-
strating the reliability of the human evaluation.

5 Analysis

In this section, we focus on an in-depth analysis on
the Hu dataset, and the results on the Ou5 dataset
are presented in Appendix E, G, and H.

5.1 Ablation Study
We perform ablation experiments to investigate the
impact of each component within our RL-TRC.
The results in Table 5 demonstrate that the dis-
card of any component leads to a decline in per-
formance, underscoring the significance of each
part. A comparison between coherence tasks (TC
vs. RC) reveals that discarding the topic coher-
ence task causes a more substantial performance
drop. This indicates the importance of understand-
ing the topics of target utterances, as multi-party di-
alogues often involve multiple parallel topic flows.
Furthermore, an analysis of coherence rewards
(TCR vs. RCR vs. RTR) shows that the topic-
coherence reward has a more pronounced impact
on performance. Importantly, removing the coher-
ence rewards tends to result in greater performance
degradation compared to removing the coherence
tasks, highlighting the effectiveness of reinforce-
ment learning in enhancing coherence between gen-
erated responses and target utterances. It is note-
worthy that the improvement of rhetorical coher-
ence is less than that of topic coherence, primarily
due to the low accuracy of the discourse parser.

5.2 Analysis of Topic Coherence
To evaluate whether our RL-TRC can generate re-
sponses that are more relevant to the topic of the
target utterance compared to the baselines, we con-
duct a pairwise evaluation. Given that GPT-4 has
been widely used for pairwise evaluations (Zheng
et al., 2023; Dubois et al., 2024), we employ GPT-4
as a judge to determine which response is more rel-
evant to the topic of the target utterance. Detailed
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Model B1 B2 B3 B4 M RL

RL-TRC 13.66 6.58 4.10 2.93 6.20 12.72
w/o TC -1.04 -0.96 -0.72 -0.56 -0.60 -1.07
w/o RC -0.16 -0.09 -0.06 -0.05 -0.06 -0.14
w/o TCR -1.30 -1.24 -0.99 -0.82 -0.66 -1.44
w/o RCR -0.23 -0.12 -0.25 -0.17 -0.24 -0.32
w/o RTR -0.78 -0.54 -0.42 -0.33 -0.31 -0.45

Table 5: Ablation results on the Hu dataset. TC and RC refer to the topic-coherence and rhetorical-coherence tasks,
respectively. TCR, RCR, and RTR stand for topic-coherence, rhetorical-coherence, and reply-to reward, respectively.
’-’ represents degraded performance.

Pair-wise Evaluation Dataset Win Tie Lose

RL-TRC v.s. EMMDG
Hu 75 70 55
Ou5 71 77 52

RL-TRC v.s. MADNet
Hu 65 80 55
Ou5 69 74 57

Table 6: Pairwise evaluation results of GPT-4 in terms
of topic coherence.

information is provided in Appendix F.
Table 6 presents the pairwise evaluation results.

Compared to EMMDG, RL-TRC wins 75 and 71
on the Hu and Ou5 datasets, respectively, while
losing 55 and 52. Compared to MADNet, RL-TRC
wins 65 and 69 on Hu and Ou5, respectively, while
losing 55 and 57. These results further demonstrate
that our approach generates responses more rele-
vant to the target utterance topic, benefiting from
our topic coherence task and reward.

5.3 Analysis of Rhetorical Coherence
To verify whether our RL-TRC can generate a more
rhetorically coherent response with the target ut-
terance, we present the accuracy of the rhetorical
relation between the generated response and the tar-
get utterance. We first employ a trained discourse
parser (Wang et al., 2021) to predict the rhetori-
cal relation between the golden response and the
target utterance, which is treated as the golden rela-
tion. Then, we use the parser to predict the relation
between the generated response and the target utter-
ance and calculate the relation accuracy, as shown
in Table 7.

Notably, over 98% (4935 out of 5000) of the
relations in the Hu dataset are classified as Com-
ment, Question-Answer Pair, Continuation, or Clar-
ification Question. Our RL-TRC model achieved
accuracies of 59.17% on the Hu dataset, reflecting
a significant improvement compared to the per-
formances of EMMDG and MADNet. This sug-
gests that our approach generates responses that

Relation Golden EMMDG MADNet RL-TRC
#Comment 1817 1321 1355 1390

#QAP 1057 844 863 880
#Cont 504 209 210 195

#Clar_Q 1557 351 402 455
Total 4935 2725 2830 2920

Accuracy 55.22 57.35 59.17

Table 7: Accuracy of the relations between the gener-
ated response and the target utterance on the Hu dataset,
where QAP, Cont, and Clar_Q are short for the rela-
tions Question-answer Pair, Continuation, and Clarifica-
tion_question, respectively.

Model Hu Ou5
Golden 95.68 84.09

EMMDG 78.89 66.13
MADNet 81.02 70.80
RL-TRC 85.38 75.51

Table 8: Accuracy of target utterances that are recog-
nized based on the generated response, where we adopt
the MPC-BERT (Gu et al., 2021) as the evaluator.

exhibit greater rhetorical coherence with the target
utterances, attributable to the incorporation of our
rhetorical coherence task and reward.

5.4 Analysis of Target Utterance Recognition

We analyze the performance of correctly recog-
nizing the target utterance in the dialogue history
based on the generated response. Intuitively, the
stronger the coherence between the generated re-
sponses and the target utterance, the higher the
performance. As shown in Table 8, the golden re-
sponses achieve the highest performance, with an
accuracy of 95.68% and 84.09% for Hu and Ou5,
respectively, demonstrating strong coherence be-
tween the golden response and the target utterance.
In addition, our RL-TRC achieves an accuracy of
85.38% and 75.51% on Hu and Ou5, respectively,
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Epoch
Accuracy of Topic

Reward Model
B1 B2 B3 B4 M RL

1 72% 13.17 6.21 3.86 2.68 5.99 12.39
2 79% 13.54 6.48 3.96 2.89 6.18 12.58
3 84% 13.66 6.58 4.10 2.93 6.20 12.72

Table 9: Impact of varying performances of topic coherence reward model on dialogue generation in the Hu dataset.

Epoch
Accuracy of Rhetorical

Reward Model
B1 B2 B3 B4 M RL

1 50% 13.48 6.46 3.97 2.77 6.04 12.37
2 59% 13.60 6.54 4.07 2.80 6.07 12.69
3 65% 13.66 6.58 4.10 2.93 6.20 12.72

Table 10: Impact of varying performances of rhetorical coherence reward model on dialogue generation in the Hu
dataset.

significantly surpassing the current SOTA baselines.
This demonstrates the effectiveness of our method
in enhancing the coherence between the generated
responses and the target utterances, thereby facili-
tating multi-party dialogue generation.

5.5 Importance of Accuracy in Topic and
Rhetorical Reward Models

We analyzed the impact of varying performances
of the topic coherence and rhetorical coherence re-
ward models on dialogue generation. The results
for the Hu dataset are presented in Tables 9 and 10,
respectively. In these tables, ’epoch’ refers to the
number of training iterations for the reward mod-
els. The experimental setup remains consistent
with our state-of-the-art (SOTA) model, with the
only modification replacing the topic coherence
or rhetorical coherence reward model at different
training epochs. Our observations indicate that
the improved performance of both the topic and
rhetorical coherence reward models correlate with
enhanced generation performance. This suggests
that more effective reward models are better at eval-
uating the coherence between generated responses
and target utterances, thereby promoting a more
coherent response to the target utterance.

5.6 Case Study

We conduct a case study to showcase the effec-
tiveness of our RL-TRC model in Table 11. The
dialogue history is depicted in Figure 1, with the
target utterance being U2. We observe that the
topic coherence between the response generated
by EMMDG and U2 is not strong. U2 pertains to
“opera” but the response generated by EMMDG is

Model Response
Golden what does opera consume at startup?

EMMDG i do n’t use firefox at all
MADNet i use opera, but i don’t use it
RL-TRC i do n’t use opera , i use firefox

Table 11: Responses generated by our model and two
SOTA baselines. The dialogue history is shown in Fig-
ure 1.

about “Firefox”, which is more topically coherent
with U1. Additionally, although the response gen-
erated by MADNet is related to “opera”, it lacks
a logical connection with the target utterance. In
contrast, our RL-TRC produces a response that is
both topic-related and logical, further demonstrat-
ing the effectiveness of our approach. In addition,
we explore the impact of different topic extraction
methods, as shown in Appendix H.

6 Conclusion

In this paper, we propose a reinforcement learning
method based on discourse coherence for multi-
party dialogue generation. By designing tasks cen-
tered on topic coherence and rhetorical coherence,
we enable the model to perceive coherence with
the target utterance. Furthermore, a reinforcement
agent is employed to guide the model to gener-
ate responses that are topically and rhetorically
aligned with the target utterances. To optimize the
agent, three types of discourse-aware rewards are
designed to guide the model to maintain coherence
with the target utterance. Experimental results val-
idate the effectiveness of our method. Our future
work will focus on how to optimize rhetorical co-
herence.
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Limitations

We discuss the limitations of RL-TRC as fol-
lows: 1) Our limited computational resources pre-
vented us from verifying the effectiveness of our
method on larger model sizes. Despite conduct-
ing parameter-efficient fine-tuning on LLaMA, the
results were not satisfactory. As large language
models continue to gain prominence, we aim to
perform full parameter fine-tuning in the future. 2)
Rhetorical coherence does not contribute to multi-
party dialogue generation as significantly as topic
coherence. The main reason may be the low per-
formance of the discourse parser. Thus, optimizing
rhetorical coherence to facilitate multi-party dia-
logue generation is a challenge that needs to be
addressed. 3) The inherent complexity of reinforce-
ment learning algorithms can lead to instability and
a tendency to get stuck in local optima during train-
ing. Consequently, careful tuning and adjustment
of hyperparameters are essential.
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Relation Description
Comment Arg2 comments Arg1.
Clarification question Arg2 clarifies Arg1.
Question-answer pair Arg1 is a question and Arg2 is the answer of Arg1.
Continuation Arg2 is the continuation of Arg1.
Acknowledgement Arg2 acknowledges Arg1.
Q-Elab Arg1 is a question and Arg2 tries to elaborate Arg1.
Result Arg2 is the effect brought about by the situation described in Arg1.
Elaboration Arg2 elaborates Arg1.
Explanation Arg2 is the explanation of Arg1.
Correction Arg2 corrects Arg1.

Contrast
Arg1 and Arg2 share a predicate or property and a difference on
shared property.

Conditional Arg1 is the condition of Arg2 or Arg2 is the condition of Arg1.
Background Arg2 is the background of Arg1.
Narration Arg2 is the narration of Arg1.
Alternation Arg1 and Arg2 denote alternative situations.
Parallel Arg2 and Arg1 are parallel and present almost the same meaning.

Table 12: Discourse relations and their descriptions, cited from Li et al. (2020).

Reward #Train #Valid #Test
Topic 2775454 44644 44520

Rhetoric 70454 3880 3911
Reply-to 311725 5000 5000

Table 13: Number of samples for training the reward
models.

A Prompt of Extracting Topics with
ChatGPT

We feed the dialogue to ChatGPT3 and ask Chat-
GPT to extract no more than five keywords for each
utterance, the prompt is as follows:

The following is a conversation with mul-
tiple participants. Please extract the key
words from each utterance. The number of
key words should not exceed five, and each
key word should consist of only one word.
Please return a dictionary, where the key is
the index of the utterance and the value is
a list of key words. Do not return anything
else.
U1:
U2:
· · ·
Un

3The version is ’gpt-3.5-turbo-0301’.

B Details of Discourse Parsing Tool

In this paper, we adopted the discourse parser
trained by Wang et al. (2021) and provide golden
links to parser to predict discourse relations. There
are mainly 16 types of discourse relations, the rela-
tion types and descriptions are shown in Table 12.

C Reward Model

Topic-coherence model The topic-coherence
model is a binary classifier that determines whether
an utterance pairs is coherent or not. We re-
constructed the Hu dataset (Hu et al., 2019) to
construct the coherent pair (ut, y) and incoher-
ent pair (ut, y

neg), in which ut and y are tar-
get utterance and golden response, respectively,
yneg is an utterance randomly selected from the
current dialogue not reply to target utterance,
the statistics are shown in Table 13. We feed
the utterance pair and their keywords into the
BART-base (Lewis et al., 2020) in the form of
"[CLS]ututkws[SEP ]yykws[SEP ]". To train the
classifier, we adopted the Trainer function of trans-
former library 4. The epoch, batch size, learning
rate, and weight decay are set to 3, 192, 2e-5, and
0.02, respectively, and other hyperparameters are
set default.

4https://huggingface.co/docs/transformers/index
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Model Flu Infor Rel Overall
Human 0.87 0.95 0.78 2.60

EMMDG 0.73 0.63 0.48 1.84
MADNet 0.73 0.78 0.50 2.01
RL-TRC 0.75 0.81 0.57 2.13

Table 14: Human evaluation results of our RL-TRC and
two SOTA baselines on a randomly sampled test set of
Ou5. Rel, Flu, and Inf are short for Relevance, Fluency,
and Informativeness, respectively. The agreement rate
of the human evaluation outperforms 75% on all three
metrics.

Rhetorical-coherence model The rhetorical-
coherence model is a multi-class classifier that rec-
ognizes the rhetorical relation between an utterance
pair. We extract the utterance pairs with a rhetorical
relation from the Molweni (Li et al., 2020) dataset
and the data statistics are shown in Table 13. All
hyperparameters are set to the same value as the
topic-coherence model.

Reply-to model Given a multi-party dialogue
history C = {(p1, u1), ..., (pi, ui), ..., (pn, un)},
where pi and ui are participant and utterance, re-
spectively, the reply-to model aims to recognize
a target utterance ut for the generated response y,
where 1 < t ≤ n. Following the previous work
(Gu et al., 2023a), we trained the reply-to model
on the Hu (Hu et al., 2019) dataset, and the data
statistics are shown in Table 13. The pre-trained
model we adopted is RoBERTa-base. The epoch,
batch size, learning rate and weight decay are set
to 3, 32, 2e-5, and 0.02, respectively.

D Human evaluation results on the Ou5
Dataset

The human evaluation results on the Ou5 dataset
is shown in Table 14. Similarly, our RL-TRC can
significantly improve the relevance score, demon-
strating the effectiveness of our method in enhanc-
ing the coherence between generated responses and
target utterances.

E Ablation results on the Ou5 Dataset

Ablation results on the Ou5 (Ouchi and Tsuboi,
2016) dataset is shown in Table 15. The phe-
nomenon on the Ou5 dataset is consistent with that
on the Hu dataset, i.e., topic coherence task and
reward have a more pronounced effect on perfor-
mance.

F Pairwise Evaluation with GPT-4

To evaluate which of the responses generated by
the two models is more relevant to the target utter-
ance in terms of topic, we follow previous work
(Zheng et al., 2023; Dubois et al., 2024) to conduct
pairwise evaluation using GPT-4 5. The 200 sam-
ples evaluated are the same as those used in human
evaluation of Section 4.5. GPT-4 is instructed to
compare the outputs of two models and determine
which one exhibited a stronger relevance with the
topic of the target utterance in the dialogue his-
tory. The model names remained anonymous, and
the positions of the model outputs were randomly
swapped. The prompt is as follows:

This is a conversation history consisting of
multiple speakers.
[The beginning of dialogue history]
U1

U2

· · ·
ut
· · ·
Un

[The end of dialogue history]

Here are two bots generating two responses
to target utterance Ut.

A: response1

B: response2

Please determine which of the above two
responses is more closely related to the
target utterance Ut in terms of topic.

Please return the option directly.

G Relation Performance on the Ou5
Dataset

The relation accuracy on the Ou5 (Ouchi and
Tsuboi, 2016) dataset is shown in Table 18. Our
RL-TRC achieves an accuracy of 55.92%, sig-
nificantly outperforming EMMDG and MADNet,
which suggests that our method can further en-
hance the rhetorical coherence between generated
response and the target utterance.

5The GPT-4 version is gpt-4-0613.
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Model B1 B2 B3 B4 M RL

RL-TRC 12.52 5.41 3.34 2.45 5.45 11.31
w/o TC -1.04 -1.35 -1.42 -1.40 -0.54 -0.88
w/o RC -0.27 -0.08 -0.15 -0.46 -0.16 -0.53

w/o TCR -1.26 -1.31 -1.40 -1.33 -0.78 -1.39
w/o RCR -0.61 -0.77 -1.05 -1.07 -0.28 -0.77
w/o RTR -0.75 -0.88 -1.01 -0.98 -0.33 -1.00

Table 15: Ablation results on the Ou5 (Ouchi and Tsuboi, 2016) dataset. TC and RC means the topic and rhetorical
coherence tasks, respectively. TCR, RCR, and RTR stand for topic-coherence, rhetorical-coherence, and reply-to
reward, respectively.

Method B1 B2 B3 B4 M RL

ChatGPT 13.66 6.58 4.10 2.93 6.20 12.72
KeyBERT 12.42 5.38 3.17 2.10 5.48 11.25
Rule-based 13.00 5.99 3.60 2.50 5.84 11.89

Table 16: Results comparison of topic extraction methods on the Hu dataset.

Method B1 B2 B3 B4 M RL

ChatGPT 12.52 5.41 3.34 2.45 5.45 11.31
KeyBERT 11.44 5.00 2.90 2.06 5.19 10.38
Rule-based 11.87 5.06 2.06 2.38 5.24 10.62

Table 17: Results comparison of topic extraction methods on the Ou5 dataset.

Relation Golden EMMDG MADNet RL-TRC
#Comment 13821 9767 9518 9879

#QAP 3642 2340 2497 2629
#Cont 2903 1106 1163 1232

#Clar_Q 12065 4131 4265 4395
Total 32431 17344 17443 18135

Accuracy 53.48 53.78 55.92

Table 18: Accuracy of the relation between the gener-
ated response and the target utterance on the Ou5 (Ouchi
and Tsuboi, 2016) dataset. QAP, Cont and Clar_Q are
short for Question-answer Pair, Continuation, and Clari-
fication_question, respectively.

H Comparison of Topic Extraction
Methods

Since the extracted topic serves as the foundation
for enhancing topic coherence, we investigate the
impact of various topic extraction methods on gen-
eration. The results for the Hu and Ou5 datasets
are presented in Tables 16 and 17. KeyBERT6

leverages BERT embeddings to extract keywords
most similar to a document, while the rule-based
method (Tang et al., 2019) combines TF-IDF and
part-of-speech features to score word salience. Our

6https://github.com/MaartenGr/KeyBERT

findings indicate that ChatGPT achieves the best
performance, demonstrating its strong generaliza-
tion ability in topic extraction. Additionally, Key-
BERT performs worse than the rule-based method,
likely due to its limited generalization capabilities,
which hinder its effectiveness in extracting topics
from the Ubuntu operating system corpus.
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