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Abstract

Tool learning has generated widespread inter-
est as a vital means of interaction between
Large Language Models (LLMs) and the
physical world. Current research predomi-
nantly emphasizes LLMs’ capacity to utilize
tools in well-structured environments while
overlooking their stability when confronted
with the inevitable noise of the real world.
To bridge this gap, we introduce RoTBench,
a multi-level benchmark for evaluating the
robustness of LLMs in tool learning. Specifi-
cally, we establish five external environments,
each featuring varying levels of noise (i.e.,
Clean, Slight, Medium, Heavy, and Union),
providing an in-depth analysis of the model’s
resilience across three critical phases: tool
selection, parameter identification, and content
filling. Experiments involving six widely-used
models underscore the urgent necessity for
enhancing the robustness of LLMs in tool
learning. For instance, the performance of
GPT-4 even drops significantly from 80.00
to 58.10 when there is no substantial change
in manual accuracy. More surprisingly, the
noise correction capability inherent in the GPT
family paradoxically impedes its adaptability in
the face of mild noise. In light of these findings,
we propose RoTTuning, a strategy that enriches
the diversity of training environments to bolster
the robustness of LLMs in tool learning.
The code and data are available at https:
//github.com/Junjie-Ye/RoTBench.

1 Introduction

Tool learning has emerged as a critical
concept for empowering large language models
(LLMs) (Brown et al., 2020; Bai et al., 2022;
Touvron et al., 2023a) to interact with the real
world (Yang et al., 2023; Mialon et al., 2023; Qin
et al., 2023a; Ye et al., 2024b). In this context,
the external environment of an LLM contains

*Corresponding authors.

 Get_Weather : This tool is used for fetching information weather for 
 specified location.

 Parameters: 
    location  (string): Designated location, default is current location.

 Please tell me the weather in the New York.

 Get_Weather (location = "New York")

 ABC: This tool is used for fetching information weather for specified 
 location.

 Parameters:  
    location  (string): Designated location, default is current location.

 Please tell me the weather in the New York.

 I'm sorry, but as a language model, I don't have access to weather 
 information.

Figure 1: Example of noise affecting tool selection for
LLMs. Although the functionality of the tool remains
unaffected by its name, renaming “Get_Weather” as
“ABC” impedes LLMs from utilizing the tool properly.

an ensemble of integrated tools. Each tool is
uniquely identified by its name and is described by
a succinct paragraph that explains its functionality.
Similarly, every parameter within these tools is
characterized by its name, along with a description
that clarifies its purpose, its optionality, and other
pertinent details.

Recent research has centered on examining how
well LLMs can effectively employ tools within a
carefully designed and stable environment. From
one perspective, specific studies have scrutinized
the outcomes of LLMs’ tool usage, verifying both
the accuracy of tool selection and the efficacy of
the generated responses (Qin et al., 2023b; Huang
et al., 2023). This analysis involved evaluating
the relevance of the selected tools and the final
responses in fulfilling users’ requirements. On the
other hand, other investigations have delved into
the intricate process of tool utilization by LLMs,
striving for a more comprehensive assessment of
their performance in tool learning (Chen et al.,
2023d; Ye et al., 2024a). This includes an analysis
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of the diverse capabilities necessary for LLMs to
excel in tool learning while also identifying any
limitations they may have in this regard.

However, these studies fail to account for the
robustness of LLMs in the face of inevitable noise
in real-world scenarios (Chen et al., 2023b; Liu
et al., 2023). Using Figure 1 as a reference,
LLMs recognize the tool for querying weather
information when named “Get_Weather,” but not
when named “ABC,” despite the tool’s functionality
remaining unaffected by its name. Consequently, it
becomes imperative to investigate whether LLMs
can proficiently identify these tools and configure
parameters to meet user needs in noisy real-
world environments. This research is essential to
guarantee their reliability in practical applications.

To fill this gap, we introduce RoTBench, a multi-
level benchmark for evaluating the robustness
of LLMs in tool learning. Specifically, we
establish five external environments, which can
be categorized as Clean, Slight, Medium, Heavy,
and Union in ascending order of noise levels.
By evaluating the performance of LLMs across
three critical stages: tool selection, parameter
identification, and content filling, we aim to offer a
thorough and intricate analysis of the stability and
reliability of LLMs in tool utilization.

Through experiments conducted on six widely-
used LLMs, we observe that the performance
of these models is remarkably sensitive to noise.
For instance, the performance of GPT-4 even
drops significantly from 80.00 to 58.10 when
there is no substantial change in manual accuracy.
This underscores the pressing requirement to
enhance the robustness of LLMs in tool learning.
Interestingly, the GPT family of models’ inherent
noise correction capability appears to hinder its
performance in mildly noisy environments.

In light of these findings, we introduce RoTTun-
ing, a technique aimed at augmenting the adapt-
ability of LLMs to a wide range of environments
by introducing greater environmental diversity
during the training phase. Our experimental results
demonstrate that our approach yields an average
performance improvement of 16.10 points across
diverse environments.

The main contributions of our work are summa-
rized as follows:

• We introduce RoTBench, a benchmark de-
signed to evaluate the robustness of LLMs
in tool learning. This benchmark contains

five environments with different levels of
noise, enabling a comprehensive evaluation of
robustness throughout three pivotal phases of
model tool learning.

• The experimental analyses conducted on six
widely-used models underscore the imperative
of improving the robustness of LLMs in
tool learning. These analyses also reveal
conflicts between the inherent capabilities of
the models and their robustness.

• We introduce RoTTuning, a training method
for tool learning that focuses on augmenting
environmental diversity. Our experiments
demonstrate that this approach can effectively
enhance LLMs robustness.

2 Related Work

Analysis of Tool Learning Given their extensive
world knowledge and superior natural language
understanding, researchers have made attempts
to leverage LLMs for a wide range of everyday
applications (Ye et al., 2023). In order to push
the boundaries of their capabilities, some scholars
have proposed enhancing LLMs with external tools,
which has gained widespread acceptance (Schick
et al., 2023; Tang et al., 2023). As research
in this area has deepened, certain scholars have
summarized the progress made in tool learning
for LLMs (Mialon et al., 2023; Qin et al., 2023a),
sought to uncover developmental insights, and
trained more specialized LLMs for tool learning
based on these findings (Qin et al., 2023b; Zhuang
et al., 2023; Hao et al., 2023). Furthermore,
recognizing the complexity of tool learning, some
researchers have specialized in evaluating not only
the outcomes of tool learning (Huang et al., 2023)
but also the entire process (Chen et al., 2023d; Ye
et al., 2024a). However, it’s worth noting that all
of these current efforts primarily consider LLMs’
tool usage in controlled environments, neglecting
the inherent complexities of real-life scenarios.
Therefore, we have undertaken an in-depth analysis
of the robustness of LLMs in tool learning to
advance research in a real-world context.

Robustness Testing of LLMs Robustness is
a critical factor in determining the stability of
LLMs and plays a pivotal role in their practical
deployment in real-life applications, which has
garnered significant attention from scholars. In
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      dog_breed # Returns a list of dog breeds.
Param:
      query : Required[string] # The condition of the dog to be queried.

Tool:
      cat_breed # Returns a list of cat breeds.
Param:
      limit : Optional[string] # Limit the amount of results returned.
      delimiter : Optional[string] # Delimiter between different breeds, defaults is comma.
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  Tell me the breed of white dogs.

  cat_breed ( )

  deerb_god ( )  deerb_god (query = )

Tool
Selection

  Tell me three types of cat breeds.
Parameter

Identification

 cat_breed ( limit  = )
Content
Filling

  deerb_god (query ="white dogs")
Reversal

Exchange

Addendum

Substitution

Substitution

 cat_breed → cat t_breed s

cat_breed → c at_br eed

cat_breed → bat_bre od

 limit → limi it

limit → li mit

delimiter → d oliniter

dog_breed → deerb_god

dog_breed →  abcDF

query → yreuq

query → ejklq

                limit → delimiter
 delimiter → limit

     query → query, asd

dog_breed →  cat_breed
   cat_breed →  dog_breed

    dog_breed → deerb_god
-----------------------------

  query → ejklq

       cat_breed → cat t_breed s
   -----------------------------
               limit → delimiter
        delimiter → limit

  dog_breed → cat_breed
    cat_breed → dog_breed
-----------------------------

  limit → limit

Figure 2: The framework of RoTBench. RoTBench encompasses five environments (i.e., Clean, Slight, Medium,
Heavy, and Union), each introduces various noise to the tool and parameters, facilitating a thorough evaluation
of the robustness performance of LLMs throughout the three stages of tool usage (i.e., tool selection, parameter
identification, and content filling).

# Sce # Query # Cat # Subcat # Tool

7 105 41 95 568

Table 1: Statistics information of the data. “# Sce”, “#
Query”, “# Cat”, “# Subcat”, and “# Tool” correspond
to the count of scenarios, user queries, tool categories,
tool subcategories, and individual tools, respectively.

the early stages of research, some scholars con-
ducted tests to assess the robustness of ChatGPT
across various natural language processing tasks,
highlighting the substantial room for improvement
in the current robustness of LLMs (Wang et al.,
2023a; Chen et al., 2023c). Subsequently, other
researchers specialized in creating benchmarks,
such as PromptBench (Zhu et al., 2023), to examine
the consistency of LLM responses by introducing
noise into the prompts. Given that tool learning
is poised to extend the capabilities of LLMs and
its outcomes can directly impact the state of the
physical world (Ye et al., 2024a), it becomes
imperative to thoroughly evaluate its robustness.

3 RoTBench

As depicted in Figure 2, RoTBench encompasses
five environments, each characterized by varying
levels of noise, facilitating a thorough evaluation of
the robustness of LLMs throughout the three stages
of tool usage.

3.1 Data Collection

In order to thoroughly cater to real-world require-
ments and encompass commonly utilized tools, we
utilize ToolEyes (Ye et al., 2024a), an evaluation
system designed for tool learning. This system
defines seven real-world application scenarios.
Within each of these scenarios, we randomly
select 15 user queries for analysis. Since the raw
data offers tool information without standardized
invocation paths, we have manually labeled these
paths to facilitate the evaluation process. Detailed
statistics of the data can be found in Table 1.

3.2 Environments Construction

To comprehensively assess the resilience of LLMs
in tool learning, we reference the hierarchical
classification of noise in previous studies (Wang
et al., 2021; Zhu et al., 2023; Dong et al., 2023)
and design five distinct external environments.
These environments feature varying noise levels
that affect both the tool and its parameters.

Clean-level environment employs a runtime
framework developed by ToolEyes. This frame-
work furnishes essential information to LLMs for
comprehending tools, where the name of each
tool epitomizes its functionality and the names of
parameters signify their respective meanings. This
environment comprises a total of 105 test cases.
The remaining four environments are derivatives
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of this primary environment, each modified by
incorporating distinct levels of noise.

Slight-level environment encompasses three
types of noise: insertion, omission, and substitution.
These correspond to real-world occurrences such
as an excess of characters, missing characters, and
character errors when naming tools or parameters.
Specifically, we introduce noise in the following
ways: 1) We randomly select half of the available
tools within the environment. For these selected
tools, a random form of noise is applied, altering up
to 1/3 of the characters, resulting in the creation of
105 new data points. 2) For each tool, we randomly
select half of the parameters and introduce noise
into their names using the method described above,
generating an additional 105 new data entries.
By combining these two approaches, we create
a Slight-level environmental test set consisting of
210 test cases.

Medium-level environment introduces two
types of noise: reversal and nonsense. These
mirror real-world scenarios where names are
reversed or replaced with random strings, rendering
the information meaningless. To apply noise, we
follow these procedures: 1) We randomly select
half of the available tools. For these tools, there
is a 50% probability that their names will be
substituted with random strings, each containing
up to 10 characters. Additionally, there is a
50% chance that the names of these tools will be
reversed. This process yields 105 test cases. 2)
For each tool, half of the parameters are randomly
chosen. These parameters may undergo a 50%
chance of having their names substituted with
random strings, each containing up to 5 characters,
or a 50% chance of being reversed. This leads
to 105 test cases. It is worth noting that if the
reversal process does not alter the name, it will be
replaced with a random string. Consequently, we
have successfully generated 210 test cases for the
Medium-level environment.

Heavy-level environment encompasses two dis-
ruptive types of noise: exchange and addendum,
reflecting real-world occurrences of name swap-
ping and information supplementation. Noise is
introduced as follows: 1) All tool names within the
environment are randomly shuffled. This shuffling
disrupts the association between a tool’s name and
its functional description, challenging LLMs to
accurately comprehend the tool’s function despite
the disorganized name. This process yields 105 test
cases. 2) Half of the tools are randomly chosen,

and a new mandatory parameter is introduced
with a 50% probability. This parameter is given
a name consisting of a random string of up to
5 characters. LLMs are tasked with providing
a specific string of up to 3 characters for the
parameter based on its descriptive meaning. The
names of these parameters are randomly shuffled
with a 50% probability. For tools with fewer than
two parameters, noise is introduced by directly
adding new parameters. This process also results
in 105 test cases. In total, 210 Heavy-level
environmental test cases have been generated.

Union-level environment encompasses all previ-
ously mentioned noise categories. Given that the
prior noise environments already include noise for
both tools and parameters, we randomly choose
one noise generation method that impacts tool
names and another method that affects parameters
from the three previous environment levels. These
selected methods are simultaneously applied to
generate 105 test cases where both tool names and
parameters are subjected to noise injection.

3.3 Staged Evaluation

We evaluate the robustness performance of LLMs
at each of stages in tool learning and analyze their
respective variations.

Tool selection marks the initial phase of tool us-
age by LLMs. During this process, LLMs identify
suitable tools for addressing the user’s query by
interpreting the functional descriptions offered by
the external environment and subsequently output
the names of these tools. It should be emphasized
that the name of the tool is essentially a label; the
practical deployment of the tool is governed by its
functional description. In evaluating a test case, the
score for its tool selection is defined as follows:

sTS = I(t = t̂) (1)

Here, I(x) equals 1 if the condition x is true, and
0 otherwise. In this context, t represents the tool
chosen by the LLMs, while t̂ denotes the tool that
needs to be selected.

Parameter identification involves recognizing
the required parameters and outputting their re-
spective names based on their specified needs,
following the selection of the appropriate tool.
This process necessitates choosing the mandatory
parameters, while the optional ones are selected
based on actual requirements. Similar to tool
selection, the name of the parameter serves as
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Models
Open-Source LLMs Closed-Source LLMs

HumanToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 66.67 70.48 55.24 73.33 75.24 80.00 88.57
Slight 57.62 65.71 52.86 76.19 59.05 77.14 88.57
Medium 56.67 59.52 53.33 72.38 69.52 84.29 88.57
Heavy 43.33 46.67 44.29 62.38 56.19 60.00 85.71
Union 44.76 43.81 42.86 56.19 53.33 58.10 85.71

Parameter Identification

Clean 45.71 43.81 15.24 56.19 47.62 52.38 88.57
Slight 40.95 40.00 17.14 56.67 28.10 44.29 85.71
Medium 38.10 35.71 14.76 50.48 44.29 53.81 82.86
Heavy 28.10 27.14 10.00 37.62 24.29 32.86 80.00
Union 35.24 27.62 11.43 37.14 27.62 39.05 82.86

Content Filling

Clean 28.57 25.71 1.90 37.14 30.48 40.00 74.29
Slight 24.29 23.81 3.33 39.05 20.00 35.71 74.29
Medium 22.38 20.95 1.90 33.81 30.48 46.19 71.43
Heavy 14.29 14.76 0.95 30.00 16.19 25.24 68.57
Union 16.19 16.19 1.90 22.86 18.10 30.48 71.43

Table 2: Performance of various LLMs in different environments, with the best performance in each environment
highlighted in bold. “Human” signifies the average level of human performance.

an identifier; however, it is the description of the
parameter that truly defines its meaning. For each
given test case, its parameter identification score is
defined as follows:

sPI = sTS · I(P = P̂ ) (2)

In this equation, P denotes the set of parameters
identified by LLMs, and P̂ represents the set of
parameters that should be identified.

Content filling constitutes the concluding phase
in the tool usage process. Once the tool and
its corresponding parameters have been selected,
LLMs are tasked with breaking down the user-
provided information for populating the content
of these parameters. Upon accomplishing this
step, LLMs formally conclude the entire tool usage
cycle, paving the way to receive the tool’s output
phase and initiate a new interaction. For each test
case, we define a content filling score as follows:

sCF = sPI ·
N∏

i=1

I(ci = ĉi) (3)

Here, N represents the total number of parameters
required to be filled. ci is the content filled by
LLMs for the ith parameter, and ĉi refers to the
correct content for that parameter.

Source Models F Statistic P Value

Open-
Source

ToolLLaMA-2-7B-v1 2.47 4.36× 10−2

ToolLLaMA-2-7B-v2 3.28 1.10× 10−2

NexusRaven-13B-v1 0.76 5.55× 10−1

NexusRaven-13B-v2 6.01 9.13× 10−5

Closed-
Source

GPT-3.5-turbo 6.76 2.33× 10−5

GPT-4 5.31 3.19× 10−4

Human – 0.04 1 .00

Table 3: Welch’s ANOVA for sCF across the five
enviroments for various LLMs. A p-value below 0.05
indicate significant differences in the data.

4 Experiments

4.1 Model Selection

To evaluate the robustness of widely-used LLMs
with tool-use capabilities, we opt for testing
four open-source models (i.e., ToolLLaMA-2-
7B-v1 (Qin et al., 2023b), ToolLLaMA-2-7B-v2
(Qin et al., 2023b), NexusRaven-13B-v1 (team,
2023a), NexusRaven-13B-v2 (team, 2023b)) and
two closed-source models (i.e., GPT-3.5-turbo1,
GPT-4 (OpenAI, 2023)).2

1https://platform.openai.com/docs/models/
gpt-3-5

2The details of LLMs can be found in Appendix A.
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Figure 3: Absolute difference between the average per-
formance of LLMs in various noisy environments and
their average performance in Clean-level environment.

4.2 Main Results

As tool learning involves multiple turns of interac-
tion between LLMs and the environment (Qin et al.,
2023a; Ye et al., 2024a), with intricate intermediate
trajectories that cannot be easily compared, our
emphasis lies on evaluating the robustness of
various LLMs during their initial use of the tool
and present the results in Table 2.3 The resulting
data reveals intriguing observations.

The robustness of current LLMs in tool
learning presents considerable scope for en-
hancement. While human performance remains
relatively stable across different environments,
the performance of LLMs exhibits significant
fluctuations. For instance, when transitioning from
Clean-level environment to Union-level, human
performance in tool selection only decreases by
2.86 points, whereas the average performance
of all LLMs decreases by approximately 20.32
points. To gain a clearer understanding, we
employ Welch’s ANOVA (Bl, 1947) to analyze
the significance of LLMs’ performance during the
content-filling stage across various environments.
As illustrated in Table 3, our findings underscore
the consistency of human performance and the
noteworthy disparities in LLMs’ performance
across different environments. Consequently,
enhancing the robustness of LLMs in tool learning
is an area that requires significant attention.

Noise affecting tool names has a more pro-
nounced impact on LLM performance than
noise introduced to parameters. We compute the

3The results presented are averages across various
scenarios, with specific outcomes for each scenario detailed
in Appendix C.
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MediumHeavy
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First Turn Third Turn

Figure 4: The performance of GPT-4 during the content
filling phase in the first and third rounds of interaction.

absolute difference in average LLMs performance
for each type of noise added to tool names
or parameters, relative to their performance in
the Clean-level environment, respectively. The
results depicted in Figure 3 show that tool name
noise significantly affects LLMs’ tool learning
performance throughout the entire process. In
contrast, noise in the parameters has minimal
impact on the robustness of LLMs during the
tool selection stage and exerts less influence on
subsequent stages compared to tool name noise.
Notably, LLMs exhibit greater robustness in the
Union-level environment than in the Heavy (Tool)
environment, underscoring the substantial impact
of tool naming on model robustness.

Offering LLMs interactive examples
enhances their tool learning performance, yet
it does not bolster their robustness. As tool
learning entails multiple turns of interaction
between LLMs and external environments, we
initially provide the first two turns of interactions
for the test cases in each environment to evaluate
LLMs’ performance during the third turn of
interactions. Upon comparing GPT-4’s results in
the first and third turns of interactions (Figure 4), it
becomes evident that the provision of two turns
of interaction examples leads to a consistent
performance boost for GPT-4, resulting in an
average performance improvement of 22.91 points
across various environments. However, when
examining the performance variation values,
it is noteworthy that the standard deviation of
its performance across environments increased
from 8.14 in the first turn to 12.56 in the third
turn. This observation suggests that while its
performance improves, its robustness does not see
a corresponding enhancement.
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S1. Query Expansion

Queries

Could you give me some 
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different types.

Could you share a random 
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Queries (LLMs)
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piece of advice.

I would like to get some 
tips on 'parenting'.

I need some tips about 
'time management'.

I need suggestions related 
to 'stress management'.

S3. Environment Augmentation

S2. Trajectory Generation

S4. Generalizability Training

Tools
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random_advice

search_advice
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finish

GPT-4

Clean

GPT-4:  search_advice (query = 'parenting')

Tool: No advice slips found matching that 
search term.

GPT-4:  random_advice ( )

Tool: Walking is a valid solution to traffic 
congestion problems.

GPT-4:  finish (answer = 'Walking is a valid 
solution to traffic congestion problems.')

User: I would like to get some tips on 
'parenting'.

Trajectory

Medium

Slight

Heavy

Union

 GPT-4:  search_advice ( yreuq = 'parenting')

 GPT-4:  seah
 

ch_a
 

tvi se (query = 'parenting')

 GPT-4:  random_advice  (query = 'parenting')

 GPT-4:  random_advice  (yreuq = 'parenting')

 GPT-4:  search_advice (query = 'parenting')

GPT-4

Trajectory

Environments

LoRA

Clean

Slight

Heavy

Union

Medium

RoTLLaMA

LLaMA-2

Figure 5: Illustration of RoTTuning. RoTTuning encompasses four phases, aiming at bolstering the robustness of
LLMs in tool learning through increased environmental diversity.

Models Tool Selection Parameter Identification

GPT-3.5-turbo 33.72 33.85
GPT-4 29.17 22.83

Table 4: The percentage of error caused by noise
correction at different stages in GPT family of models.

4.3 Why do GPT family of models NOT
perform well in Slight-level environment?

A particularly intriguing finding is that, in contrast
to other LLMs, the GPT family of models exhibits
a lower performance in Slight-level environment
compared to Medium-level, despite the limited
validity of the information provided by the latter.
Our thorough investigation into the model outputs
has revealed that this phenomenon can be attributed
to the inherent noise correction capability of the
GPT family of models. For instance, when the
GPT family of models selects the tool labeled as
“predOict_aTge,” it automatically corrects the noise
within it and generates “predict_age” as the output,
consequently leading to an error. 4

Table 4 illustrates the proportions of total
error attributed to noise correction for the tool

4For more detailed examples, please refer to Appendix D.

selection and parameter identification phases of
the GPT family of models within the Slight-
level environment. Notably, these proportions are
exceptionally high, exceeding one-third for GPT-
3.5-turbo. Consequently, addressing the challenge
of mitigating capability degradation stemming
from the model’s inherent characteristics remains a
pressing research concern.

5 RoTTuning

It is evident that enhancing the robustness of LLMs
in tool learning is imperative. To tackle this
issue, we introduce RoTTuning, a novel approach
aimed at bolstering the robustness of LLMs through
increased environmental diversity.

5.1 Method

RoTTuning encompasses four phases: query
expansion, trajectory generation, environment aug-
mentation, and generalizability training (Figure 5).

Query Expansion To efficiently generate high-
quality user queries on a large scale, we employ
the self-instruct (Wang et al., 2023b) technique,
drawing from the 105 existing user queries.5

5The specific prompt can be found in Appendix G.
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Level Clean Slight Medium Heavy Union

sTS 76.19 72.38 70.48 65.24 63.81
sPI 55.24 50.00 50.48 39.05 44.76
sCF 42.86 36.19 34.29 28.10 28.57

Table 5: The score in different stages (%) of
RoTLLaMA in various Environments.

Specifically, we instruct GPT-4 to create seven
fresh user queries within the context of a subset of
tools, accompanied by three existing user queries
and two model-generated queries. To ensure
diversity in our dataset, we scrutinize the new
data for redundancy in relation to each provided
example and eliminate queries with Rouge-L
values surpassing 0.55. This process yields a total
of 4,077 new user queries.

Trajectory Generation Upon obtaining high-
quality user queries, we employ GPT-4 to produce
tool learning trajectories. To ensure the accuracy
of the generated trajectories, we leverage the
specifically designed function call feature of GPT-
4. Simultaneously, we guide GPT-4 in generating
the associated thought process by incorporating
a system prompt.6 Furthermore, we specify that
GPT-4’s tool usage is limited to a maximum of nine
turns. By considering each turn of interaction as a
distinct data point, this process results in a total of
12,247 pieces of training data.

Environment Augmentation To enhance the
variety of environments, we modify the trajectories
generated in the Clean-level environment to align
with the characteristics of noisy environments.
This strategy ensures data quality while addressing
the challenges of working in noisy settings. To
mitigate the potential drawbacks of data coupling,
we introduce randomness by augmenting 3000
trajectories for each of the Slight-, Medium-,
and Heavy-level environments, along with 1500
trajectories for Union-level environments. When
combined with the data from the Clean-level
environment, this approach yields a total of
22,747 trajectories, representing a diverse range
of environmental conditions.

Generalizability Training Utilizing the
diversity trajectories generated, we proceed with
the fine-tuning of LLaMA-2-7B-base (Touvron
et al., 2023b) and implement a position

6The specific prompt can be found in Appendix H.
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Figure 6: The means and standard deviations of our
model’s performance in the five environments.

interpolation (Chen et al., 2023a) technique
to extend its context length to 8096. Based on
previous research indicating that fine-tuning
with LoRA (Hu et al., 2022) achieves superior
generalization compared to full parametric
fine-tuning (Zeng et al., 2023), we opt for the
LoRA fine-tuning approach. We conduct 5
epochs of training to derive the ultimate model,
RoTLLaMA, which exhibits robust generalization
across multiple environments.

5.2 Experimental Results

We carry out a series of experimental analyses with
RoTLLaMA on RoTBench to verify its advantages
when facing various noise environments.7

Performance We analyze the performance of
RoTLLaMA in various environments, and the
results are presented in Table 5. The results reveal
that RoTLLaMA’s performance stability across
different environments significantly surpasses that
of GPT-4. Specifically, in the tool selection
phase, the extreme performance difference is only
12.38, whereas GPT-4 demonstrates a much higher
extreme difference of 21.90. Furthermore, in the
parameter recognition and content filling phases,
the extreme performance differences are 16.19 and
14.76, respectively, both of which are smaller than
GPT-4’s corresponding values of 20.95 and 20.95.

Ablation Study To evaluate the effectiveness of
various components within our approach, we con-
ducted ablation studies on RoTLLaMA. As shown
in Figure 6, when substituting full-parameter fine-
tuning for LoRA fine-tuning (i.e., w/o LoRA),
there is a slight decrease in model performance,
and standard deviations across environments re-

7More experiments can be found in Appendix E.
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main largely unchanged. This suggests that
employing LoRA enhances model performance
without significantly impacting its robustness.
On the other hand, if we omit environment
augmentation (i.e., w/o Augmentation), there is
a notable decrease in both mean performance and
a significant increase in standard deviation within
each environment. This underscores the crucial role
of environment augmentation in enhancing both
model performance and robustness. Furthermore,
exclusively utilizing full-parameter fine-tuning on
the model (i.e., w/o Both) leads to a degradation of
16.10 points in model performance.

6 Conclusion

In this paper, we introduce RoTBench, a multi-
level benchmark for evaluating the robustness of
LLMs in tool learning. RoTBench contains five
environments, each characterized by varying noise
levels, shedding light on the pressing need to
bolster the robustness of LLMs. Furthermore, we
present RoTTuning, an innovative approach that
significantly improves the robustness of LLMs
in tool learning by increasing the diversity of
environments during the training phase.

Limitations

While we introduce a multi-level benchmark
for evaluating the robustness of LLMs in tool
learning and a training method aimed at increasing
environmental diversity, our work does have some
limitations. On one hand, our primary focus is
on assessing the robustness of LLMs in a single
tool-use round, and we do not delve into whether
LLMs are able to self-correct their behavior in
response to environmental feedback. However, we
analyze the performance of GPT-4 based on the
interaction trajectories in the first two rounds and
find that this does not enhance model robustness.
On the other hand, While tool descriptions are
undoubtedly crucial for understanding tools, our
analysis centers on the noise present in tool names
and parameters. This choice is driven by our
discovery that LLMs’ comprehension of tools
primarily relies on tool and parameter names rather
than a nuanced understanding of the meanings
conveyed in tool documentation. Within this
framework, evaluating LLMs through RoTBench
can effectively measure their tolerance to noise in
these additional details, thus propelling research
endeavors aimed at improving LLMs’ tool learning

capabilities.
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A Details of LLMs

To evaluate the robustness of widely-used LLMs
with tool-use capabilities, we opt for testing four
open-source models and two closed-source models.

A.1 Open-Source LLMs
Among open-source LLMs, we have chosen four
models that have undergone dedicated training for
tool learning.

ToolLLaMA-2-7B-v1 ToolLLaMA-2-7B-v1, de-
veloped by Tsinghua University, is a tool-oriented
LLM that harnesses the power of 126,000 data
samples, including more than 16,000 APIs, through
supervised fine-tuning on LLaMA-2-7B-base. This
enables ToolLLaMA-2-7B-v1 to effectively utilize
various tools to meet diverse user requirements.

ToolLLaMA-2-7B-v2 ToolLLaMA-2-7B-v2 has
undergone fine-tuning from LLaMA-2-7B-base, by
assimilating an expansive dataset comprising over
120,000 solution paths and annotated chains of
thought. To the best of our knowledge, this model
stands as the most extensively trained tool-oriented
LLM, utilizing the largest dataset and the broadest
spectrum of tools among all available options.

NexusRaven-13B-v1 NexusRaven-13B-v1 is a
tool-oriented model that underwent fine-tuning
based on CodeLLaMA-13B. Distinguishing itself
from prior models, NexusRaven-13B-v1 employs
code nesting to invoke tools, generating the entire
inference path simultaneously instead of following
a step-by-step approach.

NexusRaven-13B-v2 NexusRaven-13B-v2 en-
hances the performance of NexusRaven-13B-v1
by generating single, nested, and parallel function
calls in various complex scenarios. Additionally,
NexusRaven-13B-v2 can generate inference paths
for the function calls it creates, thereby improving
overall generalization.

A.2 Closed-Source LLMs
Among closed-source LLMs, we have opted for
two of the most representative models from the
GPT family.

GPT-3.5-turbo GPT-3.5-turbo stands out as the
most potent and cost-efficient model within the
GPT-3.5 series. Tailored for conversations, it excels
in comprehending and generating natural language.
Furthermore, it exhibits strong tool invocation
capabilities.

GPT-4 GPT-4 represents OpenAI’s most robust
LLM, surpassing its predecessor in delivering safer
and more beneficial responses. Additionally, GPT-
4 offers formal support for multimodal inputs and
has an expanded capability to address a broader
spectrum of social requirements.

B Experimental Setup

Inference In accordance with Ye et al. (2024a),
we adopt the ReAct (Yao et al., 2023) format
for inference, employing a consistent prompt
template for both the ToolLLaMA-2-7B family of
models and the GPT family of models. However,
as NexusRaven-13B fmaily of models utilize
nested functions for output, we adhere to the
guidelines outlined on their official website, which
necessitate the use of a distinct set of template.8

Meanwhile, to evaluate human performance across
environments with different noise levels, we enlist
three university students. Each student receives
identical tool documentation and task descriptions.
Independently, they completes the questions and
the average score derived from their responses
served as the human performance benchmark.

Evaluation We score the performance of LLMs
and Human using the evaluation methods defined
in Section 3.3. In this system, each data point is
scored as 0 or 1 at each stage. This is because,
in the context of tool learning, tool calls either
succeed or fail, and even small errors can cause
the entire process to fail. In particular, In the
tool selection phase, an error in tool selection can
lead to overall failure, independent of parameter
accuracy. In the parameter identification phase,
missing necessary parameters or wrong parameter
selection can lead to failure. In the content
filling phase, incorrect content input can lead to
undesirable tool execution results.

C Results in Different Scenarios

We show the performance of each model in
different scenarios and document the results from
Table 6 to Table 12. From the results, we have the
following observations.

The variance in average performance of LLMs
across various study scenarios can be attributed
to the relevance of specific features of available
tools to each scenario. For instance, in both
application operations and personal life scenarios,

8The specific prompt can be found in Appendix F.
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LLMs may err due to the strict sequential order
in which tools are called (e.g., obtaining parame-
ter values for “list_properties” necessitates prior
execution of “search_locations”).

It’s notable that the model’s perception of
environmental complexity may diverge from
human intentions. For instance, in information
retrieval scenarios, LLMs exhibit inferior aver-
age performance in the slight-level environment
compared to the medium-level and heavy-level
environments, primarily due to limitations in noise
correction capabilities (Section 4.3).

Regarding the model itself, variations in train-
ing methods and data can lead to unexpected
performances in certain scenarios. For in-
stance, ToolLLaMA-7B-v1 demonstrates a per-
formance discrepancy between the clean-level
and union-level environments in the application
manipulation scenario, scoring 20 and 40, respec-
tively. This disparity arises from its ability to
perform better when only two tools are available
alongside “ask_to_user” and “finish,” whereas
GPT4 consistently prompts for API keys even when
unnecessary.

D Examples for Noise Correction

In Table 13, we present instances of noise cor-
rection observed during the tool selection and
parameter identification phases of the GPT family
of models.

E Further Studies about RoTTuning

We conduct additional comparative analysis to
further validate the effectiveness of RoTTuning
in improving the stability of LLMs in noisy
environments.

Robust Generalization of RoTTuning To val-
idate the robust generalization of RoTTuning
across different environments, we apply a single
environment augmentation and compare the results
to those without augmentation. As shown in
Table 14, even when training RoTTuning with data
from only one environment, it achieves superior
performance in other environments, demonstrating
its strong generalization capability.

The Number of Tool Hallucinations We com-
pare the number of tool hallucinations for each
LLM in all environments and find that our model
has significantly fewer hallucinations compared to

the GPT family of models (Table 15). This demon-
strates the effectiveness of our method in mitigating
interference from various sources of noise while
accurately acquiring environmental information.
It’s worth noting that the NexusRaven family of
models, which relies on CodeLLaMA (Rozière
et al., 2023) as a base, also exhibits low tool
hallucinations, suggesting that utilizing code-based
approaches for tool learning is a viable direction.

Performance of RoTToolLLaMA To confirm
the robustness of our method for enhancing
established tool-oriented LLMs, we proceed to
fine-tune ToolLLaMA-2-7B using our generated
trajectories and obtain RoTToolLLaMA. The
corresponding results presented in Table 16 illus-
trate that our method’s fine-tuning significantly
enhances the model’s tool learning capability
across all stages, while also bolstering its overall
robustness. For instance, across the three stages,
our method demonstrates performance extremes
of 12.33/13.33/9.53 in various environments, com-
pared to ToolLLaMA-2-7B-v2’s 26.67/16.67/10.95.
This further underscores the efficacy of our pro-
posed approach.

F Prompt Template for Inference

In the context of inference, both the ToolLLaMA-
2-7B family of models and the GPT family of
models utilize the same prompt (See Table 17),
whereas NexusRaven-13B-v1 and NexusRaven-
13B-v2 employ distinct prompts (See Table 18 and
Table 19).

G Prompt Template for Query Expansion

We use GPT-4 for query expansion based on
prompt in Table 20.

H Prompt Template for Trajectory
Generation

We use GPT-4 for trajectory generation based on
prompt in Table 21.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 60.00 73.33 20.00 53.33 86.67 86.67
Slight 46.67 60.00 30.00 56.67 73.33 83.33
Medium 36.67 50.00 30.00 70.00 73.33 90.00
Heavy 36.67 43.33 20.00 40.00 53.33 70.00
Union 40.00 26.67 26.67 46.67 60.00 46.67

Parameter Identification

Clean 60.00 60.00 6.67 40.00 60.00 73.33
Slight 40.00 46.67 13.33 40.00 36.67 53.33
Medium 33.33 40.00 10.00 50.00 40.00 63.33
Heavy 36.67 30.00 6.67 13.33 23.33 40.00
Union 40.00 13.33 13.33 40.00 26.67 33.33

Content Filling

Clean 26.67 26.67 6.67 33.33 60.00 73.33
Slight 16.67 13.33 10.00 33.33 36.67 53.33
Medium 13.33 10.00 6.67 36.67 40.00 63.33
Heavy 16.67 13.33 3.33 13.33 20.00 36.67
Union 20.00 0.00 6.67 33.33 26.67 33.33

Table 6: Performance of various LLMs in the text generation scenario, with the best performance in each environment
highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 80.00 80.00 80.00 80.00 86.67 86.67
Slight 63.33 80.00 70.00 83.33 63.33 73.33
Medium 60.00 73.33 66.67 80.00 83.33 93.33
Heavy 46.67 56.67 50.00 60.00 56.67 56.67
Union 40.00 53.33 46.67 60.00 60.00 86.67

Parameter Identification

Clean 60.00 40.00 26.67 33.33 40.00 66.67
Slight 50.00 43.33 26.67 36.67 26.67 60.00
Medium 50.00 46.67 16.67 30.00 40.00 66.67
Heavy 33.33 40.00 10.00 26.67 13.33 26.67
Union 20.00 46.67 6.67 20.00 13.33 60.00

Content Filling

Clean 46.67 33.33 0.00 20.00 26.67 53.33
Slight 33.33 40.00 0.00 23.33 16.67 53.33
Medium 30.00 40.00 0.00 16.67 30.00 56.67
Heavy 13.33 20.00 0.00 23.33 10.00 20.00
Union 13.33 40.00 0.00 13.33 6.67 46.67

Table 7: Performance of various LLMs in the data understanding scenario, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 66.67 60.00 40.00 86.67 73.33 93.33
Slight 60.00 50.00 36.67 80.00 60.00 80.00
Medium 63.33 46.67 43.33 76.67 73.33 90.00
Heavy 46.67 36.67 36.67 73.33 46.67 56.67
Union 53.33 46.67 26.67 66.67 60.00 73.33

Parameter Identification

Clean 60.00 46.67 6.67 73.33 53.33 53.33
Slight 53.33 43.33 6.67 66.67 36.67 40.00
Medium 46.67 40.00 10.00 60.00 53.33 53.33
Heavy 30.00 30.00 6.67 43.33 16.67 23.33
Union 40.00 33.33 6.67 40.00 33.33 40.00

Content Filling

Clean 33.33 20.00 0.00 33.33 20.00 33.33
Slight 30.00 20.00 0.00 30.00 20.00 30.00
Medium 16.67 10.00 0.00 26.67 30.00 40.00
Heavy 6.67 20.00 0.00 26.67 10.00 20.00
Union 13.33 13.33 0.00 6.67 26.67 40.00

Table 8: Performance of various LLMs in the real-time search scenario, with the best performance in each
environment highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 86.67 73.33 73.33 66.67 80.00 73.33
Slight 80.00 80.00 73.33 70.00 66.67 73.33
Medium 83.33 80.00 73.33 66.67 80.00 86.67
Heavy 60.00 50.00 70.00 66.67 70.00 63.33
Union 80.00 53.33 73.33 66.67 66.67 53.33

Parameter Identification

Clean 40.00 40.00 6.67 60.00 53.33 46.67
Slight 56.67 46.67 10.00 60.00 36.67 46.67
Medium 53.33 46.67 6.67 53.33 56.67 46.67
Heavy 36.67 20.00 13.33 50.00 40.00 43.33
Union 73.33 40.00 13.33 53.33 40.00 33.33

Content Filling

Clean 20.00 13.33 0.00 20.00 20.00 20.00
Slight 33.33 20.00 0.00 20.00 16.67 13.33
Medium 40.00 26.67 0.00 16.67 26.67 23.33
Heavy 20.00 6.67 0.00 26.67 16.67 13.33
Union 40.00 26.67 0.00 13.33 20.00 6.67

Table 9: Performance of various LLMs in the application manipulation scenatio, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 53.33 60.00 40.00 66.67 73.33 66.67
Slight 46.67 63.33 43.33 73.33 50.00 70.00
Medium 50.00 53.33 50.00 63.33 60.00 73.33
Heavy 23.33 40.00 43.33 50.00 50.00 50.00
Union 40.00 53.33 53.33 46.67 40.00 46.67

Parameter Identification

Clean 26.67 40.00 13.33 53.33 26.67 40.00
Slight 30.00 26.67 13.33 53.33 10.00 26.67
Medium 26.67 26.67 13.33 36.67 40.00 40.00
Heavy 6.67 16.67 3.33 30.00 16.67 26.67
Union 26.67 20.00 6.67 26.67 26.67 40.00

Content Filling

Clean 20.00 26.67 0.00 40.00 13.33 33.33
Slight 16.67 20.00 0.00 43.33 10.00 23.33
Medium 13.33 23.33 0.00 33.33 30.00 40.00
Heavy 6.67 10.00 0.00 26.67 10.00 26.67
Union 6.67 20.00 0.00 26.67 6.67 26.67

Table 10: Performance of various LLMs in the personal life scenario, with the best performance in each environment
highlighted in bold.

Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 60.00 80.00 73.33 73.33 46.67 73.33
Slight 50.00 63.33 66.67 83.33 43.33 73.33
Medium 43.33 56.67 63.33 76.67 53.33 73.33
Heavy 50.00 53.33 53.33 80.00 53.33 56.67
Union 26.67 33.33 46.67 53.33 40.00 40.00

Parameter Identification

Clean 26.67 33.33 26.67 53.33 40.00 40.00
Slight 16.67 20.00 23.33 60.00 30.00 36.67
Medium 16.67 16.67 30.00 60.00 43.33 50.00
Heavy 23.33 26.67 16.67 56.67 33.33 36.67
Union 20.00 13.33 20.00 40.00 40.00 40.00

Content Filling

Clean 20.00 26.67 0.00 46.67 26.67 33.33
Slight 13.33 16.67 6.67 56.67 23.33 30.00
Medium 16.67 13.33 3.33 53.33 33.33 46.67
Heavy 23.33 16.67 3.33 53.33 26.67 30.00
Union 13.33 6.67 0.00 33.33 33.33 33.33

Table 11: Performance of various LLMs in the information retrieval scenario, with the best performance in each
environment highlighted in bold.
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Models
Open-Source LLMs Closed-Source LLMs

ToolLLaMA-
2-7B-v1

ToolLLaMA-
2-7B-v2

NexusRaven-
13B-v1

NexusRaven-
13B-v2

GPT-3.5-
turbo GPT-4

Tool Selection

Clean 46.67 53.33 53.33 73.33 66.67 66.67
Slight 43.33 50.00 43.33 73.33 43.33 73.33
Medium 46.67 43.33 40.00 66.67 50.00 70.00
Heavy 26.67 36.67 36.67 53.33 50.00 53.33
Union 20.00 26.67 26.67 46.67 33.33 46.67

Parameter Identification

Clean 33.33 33.33 20.00 66.67 60.00 40.00
Slight 26.67 40.00 23.33 66.67 20.00 46.67
Medium 26.67 23.33 16.67 56.67 36.67 50.00
Heavy 16.67 16.67 13.33 33.33 26.67 23.33
Union 13.33 13.33 13.33 33.33 13.33 26.67

Content Filling

Clean 33.33 33.33 6.67 60.00 46.67 33.33
Slight 26.67 36.67 6.67 60.00 16.67 46.67
Medium 26.67 23.33 3.33 46.67 23.33 46.67
Heavy 13.33 16.67 0.00 33.33 20.00 23.33
Union 6.67 6.67 6.67 26.67 6.67 26.67

Table 12: Performance of various LLMs in the financial transactions scenario, with the best performance in each
environment highlighted in bold.
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Models Stage Query Noisy Part Model Output

GPT-3.5-
turbo Tool Selection

I have a list of names:
Maria, Juan, and Car-
los. Can you predict
their ages?

Tool: predOict_aTge
Description: Predicts the ages
of one or more people given
their names.
Parameters: ...

Tool: predict_age

GPT-3.5-
turbo

Parameter
Identification

I want to know
what will be the
output if we run these
commands sequentially
in bash: ‘cd
/home/user/documents’,
‘ls -a.’

Tool: execute_bash_code
Description: ...
Parameters: Nommands (Re-
quired)
Param Description: The com-
mand string to be executed.

Parameters: commands

GPT-4 Tool Selection

Is there any social
event available which
requires high accessi-
bility and is free of
cost?

Tool: get_activty_by_ye
Description: Find a random
activity with a given type.
Parameters: ...

Tool: get_activity_by_type

GPT-4 Parameter
Identification

Get me quotes for
symbols AAPL, MSFT,
and GOOGL from US.

Tool: get_quotes
Description: ...
Parameters: ymbols (Re-
quired)
Param Description: The value
of symbol field returned in
auto-complete endpoint. Sep-
arated by comma for multiple
entities.

Parameters: symbols

Table 13: Examples for noise correction of GPT family of models.

Approaches w/o Augmentation w/ Aug.Slight w/ Aug.Medium w/ Aug.Heavy w/ Aug.Union

Tool Selection

Clean 74.29 70.48 72.38 75.24 71.43
Slight 65.24 71.90 62.38 69.05 64.29
Medium 61.90 68.57 65.71 70.95 66.67
Heavy 50.48 51.90 49.52 60.48 55.24
Union 40.00 53.33 51.43 53.33 55.24

Parameter Identification

Clean 60.95 57.14 59.05 59.05 60.95
Slight 47.14 53.81 46.19 48.10 46.19
Medium 42.86 51.90 48.57 48.57 52.38
Heavy 14.29 18.10 15.24 33.81 26.67
Union 21.90 32.38 28.57 31.43 36.19

Content Filling

Clean 45.71 43.81 48.57 44.76 42.86
Slight 31.90 40.00 31.90 35.24 30.95
Medium 30.48 38.10 36.67 36.67 38.57
Heavy 10.48 12.86 10.48 24.76 19.05
Union 12.38 19.05 17.14 21.90 27.62

Table 14: Performance of the LLMs trained by data augmented from single environment, compared with the model
trained using LoRA without augmentation. The best performance in each environment is highlighted in bold.
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ToolLLaMA-2- NexusRaven- GPT- RoTLLaMA7B-v1 7B-v2 13B-v1 13B-v2 3.5-turbo 4

53 65 6 0 50 23 3

Table 15: The number of tool hallucinations for each LLM in all environments.

Level Clean Slight Medium Heavy Union

sTS 69.52 69.05 70.95 64.76 56.19
sPI 52.38 45.24 50.95 40.95 39.05
sCF 38.10 32.38 34.76 31.43 28.57

Table 16: The score in different stages (%) of RoTToolLLaMA in various Environments.

System
You are an expert in using tools to handle real-time queries from users.
First I will give you the task description, and your task start.
At each step, your task is to give your thought to analyze the current state, decide the next step, with a
function call to actually execute your step.
After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After many (Thought-call) pairs, you finally perform the task, then you can give your final answer.

Desired format:
Thought: ⟨ The thought⟩
Action: ⟨ The tool you decide to use⟩
Action Input: ⟨ The parameters for the tool⟩

Remember:
1. You should ALWAYS think about what to do, but all the thought is short, at most in 3 sentences.
2. The action to take should be one of the given tools below.
3. The “Action Input” needs to provide a dict similar to {parameter_1: value_1, parameter_2: value_2} to
call action.
4. Always use the “finish” tool upon task completion. The final answer should be comprehensive enough
for the user. If the task is unmanageable, use the “finish” tool and respond with “I cannot handle the task.”

Task description: You should use tools to help handle the real time user queries. Specifically, you have
access of the following tools:
{Tool Document}

Let’s Begin!

User
{Query}
Begin!

Table 17: The prompt used for ToolLLaMA-2-7B family of models and GPT family of models, where “{Tool
Document}” represents the tool documentation given to LLMs and “{Query}” represents the query given by the
user.

331



User
{Tool Document}

User Query: Question: {Query}

Please pick a function from the above options that best answers the user query and fill in the appropriate
arguments.

Table 18: The prompt used for NexusRaven-13B-v1, where “{Tool Document}” represents the tool documentation
given to LLMs and “{Query}” represents the query given by the user.

User
{Tool Document}

User Query: {Query}

Table 19: The prompt used for NexusRaven-13B-v2, where “{Tool Document}” represents the tool documentation
given to LLMs and “{Query}” represents the query given by the user.

System
As an expert, your assignment is to utilize the comprehensive documentation of various tools to develop
a series of problem scenarios that these tools can resolve. Ideally, each scenario should necessitate the
sequential use of multiple tools for its resolution.

Remember:
1. The tools employed to address a problem should be a subset of the tools detailed in the provided
documentation; ideally, each problem should require the use of more than one tool.
2. The parameter values needed by each tool can either be directly extracted from the query or obtained
by invoking the specified other tool.
3. The problem scenario should be expressed in a way that is understandable to humans, while also
showcasing the diverse functions of the provided tools and their interrelationships.

Here is the documentation of various tools: {Tool Document}

User
Please generate 12 diverse queries according to the documentation.

Examples:
{Examples}

Table 20: The prompt for query expansion, where “{Tool Document}” represents the tool documentation given to
LLMs and “{Examples}” represents the examples for LLMs.
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System
You are an expert in using tools to handle real-time queries from users.
At each step, your task is to give your thought to analyze the current state, decide the next step, with a
function call to actually execute your step.
After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After a series of these thought-action pairs, you will complete the task and provide the final answer.

Remember:
1. You must ALWAYS select a specific function to execute your idea at each step.
2. Before calling any function, you should ALWAYS give your thought, but limit it to a maximum of three
sentences.
3. ALWAYS use the “finish” tool upon task completion. The final answer should be comprehensive
enough for the user. If the task is unmanageable, use the “finish” tool and respond with “I cannot handle
the task”.

Let’s begin!

User
{Query}
Begin!

Table 21: The prompt for trajectory generation, where “{Query}” represents the query given by the user.
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