
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3267–3280
November 12-16, 2024 ©2024 Association for Computational Linguistics

Neuron-Level Knowledge Attribution in Large Language Models

Zeping Yu Sophia Ananiadou
Department of Computer Science, National Centre for Text Mining

The University of Manchester
{zeping.yu@postgrad. sophia.ananiadou@}manchester.ac.uk

Abstract

Identifying important neurons for final predic-
tions is essential for understanding the mecha-
nisms of large language models. Due to com-
putational constraints, current attribution tech-
niques struggle to operate at neuron level. In
this paper, we propose a static method for
pinpointing significant neurons. Compared
to seven other methods, our approach demon-
strates superior performance across three met-
rics. Additionally, since most static methods
typically only identify "value neurons" directly
contributing to the final prediction, we propose
a method for identifying "query neurons" which
activate these "value neurons". Finally, we ap-
ply our methods to analyze six types of knowl-
edge across both attention and feed-forward
network (FFN) layers. Our method and anal-
ysis are helpful for understanding the mecha-
nisms of knowledge storage and set the stage
for future research in knowledge editing. The
code is available on https://github.com/
zepingyu0512/neuron-attribution.

1 Introduction

Transformer-based large language models (LLMs)
(Brown et al., 2020; Ouyang et al., 2022; Chowd-
hery et al., 2023) possess remarkable capabilities
for storing factual knowledge, which is important
for downstream tasks including question answer-
ing (Jiang et al., 2021) and reasoning (Rajani et al.,
2019). While recent studies (Dai et al., 2021; Meng
et al., 2022; Geva et al., 2023; Yu et al., 2023; Chen
et al., 2024) have made significant progress in un-
derstanding knowledge localization and the infor-
mation flow from inputs to predictions, it is still
hard to identify exact parameters for knowledge
storage in LLMs due to several reasons. Firstly, ex-
isting studies often depend on causal tracing (Pearl,
2001; Vig et al., 2020) and integrated gradients
(Sundararajan et al., 2017) for knowledge attribu-
tion. However, many studies (Stolfo et al., 2023;
Zhao et al., 2024; Wu et al., 2024a) point out that

the computational complexity of forward and back-
ward operations in these methods restricts their ap-
plicability to millions of neurons in LLMs, which
are proved as fundamental units for storing knowl-
edge (Geva et al., 2020; Dai et al., 2021; Geva et al.,
2022; Nanda et al., 2023b). Secondly, while a few
studies (Dar et al., 2022; Geva et al., 2022) have
devised methods for analyzing neurons, they often
lack comparisons with other methods. Therefore,
how to identify important neurons in LLMs is still
unclear. Lastly, existing methods typically concen-
trate on either attention or feed-forward network
(FFN) module, often lacking evaluation of the other
module. It is crucial to quantitatively compare the
importance of both attention and FFN layers.

Paris

The capital of France is

(b)

(a)

(c)

(a) FFN query neurons

(b) attention neurons

(c) FFN value neurons

Figure 1: (a) Query neurons in shallow FFN layers. (b)
Attention query/value neurons in attention heads. (c)
Value neurons in deep FFN layers.

In this paper, we focus on neuron-level attribu-
tion methods. We analyze the distribution change
caused by each neuron and discover that both the
neuron’s coefficient score and the final prediction’s
ranking, when projecting this neuron’s subvalue
into vocabulary space, play significant roles. Based

3267

https://github.com/zepingyu0512/neuron-attribution
https://github.com/zepingyu0512/neuron-attribution

on this finding, we employ log probability increase
as importance score, enabling the identification of
neurons that contribute significantly to final pre-
dictions. Compared with seven other static meth-
ods, our proposed method achieves the best per-
formance on three metrics. Furthermore, since the
identified neurons directly contribute to the final
predictions’ probability, we also develop a static
method to identify "query neurons" that aid in ac-
tivating these "value neurons". Specifically, we
calculate the inner products between the query neu-
rons and value neurons as importance scores.

Based on our proposed methods, we analyze six
types of knowledge in both attention and FFN lay-
ers, yielding numerous valuable insights (Figure 1):
1) Both attention and FFN layers can store knowl-
edge, and all important neurons directly contribute
to knowledge prediction are in deep layers. 2) In
attention layers, knowledge with similar semantics
(e.g. language, country, city) tends to be stored in
the same heads. Knowledge with distinct semantics
(e.g. country, color) is stored in different heads. 3)
While numerous neurons contribute to the final pre-
diction, intervening on a few value neurons (300)
or query neurons (1000) can significantly influ-
ence the final prediction. 4) FFN value neurons are
mainly activated by medium-deep attention value
neurons, while these attention neurons are mainly
activated by shallow/medium FFN query neurons.

Overall, our contributions are as follows:
a) We design a static method for neuron-level

knowledge attribution in large language models.
Compared with seven static methods, our method
achieves the best performance under three metrics.

b) As the identified neurons usually directly con-
tribute to the final predictions, we design a static
method to identify the "query neurons" activating
these "value neurons".

c) We analyze the localization of six types of
knowledge in both attention and FFN layers. Our
analysis is helpful for understanding the mecha-
nisms of knowledge storage in language models.

2 Related Work

2.1 Attribution Methods for Transformers

Determining how to attribute the important pa-
rameters for final predictions is a crucial ques-
tion. Gradient-based methods (Sundararajan et al.,
2017; Kindermans et al., 2019; Miglani et al., 2020;
Lundstrom et al., 2022) and causal tracing methods
(Pearl, 2001; Vig et al., 2020; Meng et al., 2022;

Goldowsky-Dill et al., 2023; Zhang and Nanda,
2023; Wu et al., 2024b; Hase et al., 2024) are
widely utilized for this purpose. The core idea
is calculating how much an internal module affects
the final predictions, requiring multiple forward
and/or backward operations (Wu et al., 2024a).
Due to the computational overhead, these meth-
ods are usually applied on hidden states (Meng
et al., 2022; Geva et al., 2023; Stolfo et al., 2023),
rather than neurons. Another type of studies tend
to require only one forward pass for each sentence,
typically relying on saliency scores such as atten-
tion weights (Vig, 2019; Jaunet et al., 2021; Yeh
et al., 2023; Wang et al., 2023; Li et al., 2023) and
FFN neurons’ coefficient scores (Geva et al., 2022;
Lee et al., 2024). However, the validity of attribu-
tions is challenged by many studies (Serrano and
Smith, 2019; Jain and Wallace, 2019; Wiegreffe
and Pinter, 2019; Mohankumar et al., 2020; Etha-
yarajh and Jurafsky, 2021; Bai et al., 2021). Lack
of evaluation methods results in an ongoing debate
about the faithfulness of saliency score methods.

2.2 Mechanistic Interpretability

Mechanistic interpretility (Olah, 2022; Nanda et al.,
2023a) aims to reverse engineer the circuits from
inputs to the final prediction. An essential tech-
nology involves projecting internal vectors into the
vocabulary space, where numerous studies have dis-
covered interpretable results (Nostalgebraist, 2020;
Geva et al., 2020, 2022; Dar et al., 2022; Pal et al.,
2023). Most studies focus on analyzing the atten-
tion heads’ roles in different cases and tasks (El-
hage et al., 2021; Olsson et al., 2022; Wang et al.,
2022; Hanna et al., 2023; Lieberum et al., 2023;
Conmy et al., 2023; Gould et al., 2023). Also,
superposition (Elhage et al., 2022; Nanda et al.,
2023b; Gurnee et al., 2023) and dictionary learning
(Bricken et al., 2023; He et al., 2024) are important
for understanding neurons in transformers.

3 Methodology

In this section, we aim to locate important neurons
for specific predictions. We introduce the back-
ground in Section 3.1, and analyze the distribution
change caused by neurons in Section 3.2. Based on
the analysis, we introduce our proposed method for
locating the "value neurons" that contribute to the
final predictions directly in Section 3.3, and pro-
pose a static method to locate the "query neurons"
that activate these "value neurons" in Section 3.4.

3268

3.1 Background
First, we introduce the inference pass from inputs
to the final prediction. Given an input sentence
X = [t1, t2, ..., tT] with T tokens, the model gen-
erates the next token’s probability distribution y
over B tokens in vocabulary V . The embedding
matrix E ∈ RB×d transforms each ti at position i
into a word embedding h0i ∈ Rd. Then the word
embeddings are transformed by L+ 1 transformer
layers (0th − Lth), each has a multi-head self-
attention layer (MHSA) and a FFN layer. The layer
output hli (position i, layer l) is the sum of the layer
input hl−1

i (previous layer’s output), the attention
output Al

i, and the FFN output F l
i :

hli = hl−1
i +Al

i + F l
i (1)

Finally, the last position’s Lth layer output is used
to compute the final probability distribution y by
multiplying the unembedded matrix Eu ∈ RB×d:

y = softmax(Eu h
L
T) (2)

Specifically, the attention layer’s output is com-
puted by a weighted sum over H heads on T posi-
tions, and the FFN layer’s output is computed by a
nonlinear function σ on two linear transformations.

Al
i =

H∑

j=1

ATTN l
j(h

l−1
1 , hl−1

2 ..., hl−1
T) (3)

F l
i = W l

fc2σ(W
l
fc1(h

l−1
i +Al

i)) (4)

where W l
fc1 ∈ RN×d and W l

fc2 ∈ Rd×N are two
matrices. Geva et al. (2020) find FFN output can
be represented as a weighted sum of FFN neurons:

F l
i =

N∑

k=1

ml
i,kfc2

l
k (5)

ml
i,k = σ(fc1lk · (hl−1

i +Al
i)) (6)

The FFN output F l
i is computed by a weighted sum

of fc2 vectors. fc2lk is the kth column of W l
fc2

(named FFN subvalue), and its coefficient score
ml

i,k is computed by non-linear σ on the inner prod-
uct between the residual output hl−1

i +Al
i and fc1lk

(named FFN subkey), the kth row of W l
fc1. Simi-

larly, the attention output Al
i can be represented as

a sum of head outputs, each being a weighted sum
of value-output vectors on all positions:

Al
i =

H∑

j=1

T∑

p=1

αl
i,j,pW

o
j,l(W

v
j,lh

l−1
p) (7)

αl
i,j,p = softmax(W q

j,lh
l−1
i ·W k

j,lh
l−1
p) (8)

where W q
j,l,W

k
j,l,W

v
j,l,W

o
j,l ∈ Rd×d/H are the

query, key, value and output matrices of the jth
head in the lth layer. The query and key matrices
compute the attention weight αl

i,j,p on the pth posi-
tion, then calculate the softmax function across all
positions. The value and output matrices transform
the pth position input vector into the pth value-
output vector. Each head output is the weighted
sum of value-output vectors on all positions.

Definition of "neuron". As discussed in Eq.5-
6, the kth FFN neuron is the kth subvalue fc2lk,
whose coefficient score ml

i,k is calculated by its
corresponding subkey fc1lk. In Eq.7, each attention
output can be represented as a direct addition of
T × H vectors, when taking the position value-
output vector W o

j,l(W
v
j,lh

l−1
p) as fundamental units.

Moreover, the position value-output vector can also
be regarded as a weighted sum of attention neurons.
Similar to the definition of FFN neurons, we regard
the kth column of W o

j,l in Eq.7 as the kth attention
subvalue in this head, whose subkey is the kth
row of W v

j,l. When taking the attention neurons as
fundamental units, the final output is the sum of
L× (T ×H × d/H +N) + 1 vectors.

3.2 Distribution Change Caused by Neurons
The final vector hLT has important information for
predicting the final token. As it is computed by
a direct sum of various neuron-level vectors, the
relevant information for making the final prediction
must be stored in one or many neurons. The final
vector hlT can be regarded as the sum of one neuron
v and another vector x = hlT − v. We consider the
probability change p(w|x+v)−p(w|x) caused by
v for prediction token w. We aim to explore which
components of v are significant for amplifying the
probability change. This allows us to develop static
methods for locating crucial neurons.

As the probability change is nonlinear, analyzing
the exact contribution of neuron v is challenging.
For a more concise analysis, we term the score ew·x
vector x’s bs-value (before-softmax value) on token
w, where ew is the wth row of the unembedded
matrix Eu. A token’s bs-value directly corresponds
to the probability of this token. Bs-values of all
vocabulary tokens on vector x are:

bs(x) = [bsx1 , bs
x
2 , ..., bs

x
w, ..., bs

x
B] (9)

For vector x, if bsxw is the largest among all the
bs-values, the probability of word w will also be

3269

the highest. The probability of each token for x
and x+ v can be computed by all the bs-values:

p(w|x) = exp(bsxw)

exp(bsx1) + ...+ exp(bsxB)
(10)

p(w|x+ v) =
exp(bsx+v

w)

exp(bsx+v
1) + ...+ exp(bsx+v

B)
(11)

where bs-value bsx+v
w is equal to bsxw + bsvw:

bs(x+ v) = bs(x) + bs(v) (12)

Although the probability change is nonlinear,
the change on each token’s bs-value is linear. In
order to analyze which components of v is im-
portant, we design several bs(x) and bs(v) and
compute the distribution change. Assume there
are four tokens in vocabulary space, and bs(x) =
[1, 2, 3, 4]. The probability distribution of x is
[0.03, 0.09, 0.24, 0.64]. We design several v and
compute the probability distribution of p(x + v).
The details are shown in Table 1.

bs(v) bs(x+ v) p(x+ v)

[1, 1, 1, 3] [2, 3, 4, 7] [0.01, 0.02, 0.05, 0.93]

[3, 1, 1, 1] [4, 3, 4, 5] [0.20, 0.07, 0.20, 0.53]

[6, 4, 4, 4] [7, 6, 7, 8] [0.20, 0.07, 0.20, 0.53]

[6, 2, 2, 2] [7, 4, 5, 6] [0.64, 0.03, 0.09, 0.23]

−[6, 2, 2, 2] [−5, 0, 1, 2] [0.00, 0.09, 0.24, 0.67]

Table 1: Probability distribution of p(x+ v).

Existing studies (Geva et al., 2022; Lee et al.,
2024) state that p(w|x+ v) ∝ exp(ew · v). How-
ever, based on the examples provided in Table 1,
not only the bs-value of token w, but also the bs-
values of all the tokens affect the probability. For
example, bs(v) = [3, 1, 1, 1] and [6, 4, 4, 4] result
in the same distribution, although the bs-value of
each token is enlarged.

An intuitive observation is that v aids in mag-
nifying the token with the largest bs-value. For
instance, [1, 1, 1, 3] is conducive to increasing the
probability of the last token, and [3, 1, 1, 1] can
amplify the probability of the first token. This ob-
servation may elucidate why many neurons exhibit
human-interpretable concepts when projected into
the vocabulary space. Given that the vocabulary
size B is typically large (often exceeding 30,000),
probabilities of tokens with the largest bs-values
are likely to be augmented.

Another significant finding is that both the coef-
ficient score and the neuron’s bs-values play sub-
stantial roles. Compared with [3, 1, 1, 1], [6, 2, 2, 2]
can can both amplify and diminish the probability
change of [3, 1, 1, 1]. The probability increase of
the first token is magnified, while the decrease in
probability of the last token is more pronounced.
When the coefficient score’s sign is changed (e.g.
−[6, 2, 2, 2]), the effect on the first token’s proba-
bility changes from increasing to decreasing.

3.3 Importance Score for "Value Neurons"

Based on the analysis in Section 3.2, an intu-
itive importance score of a neuron mv is |m| ×
|1/rank(w)|, where m is the coefficient score and
rank(w) denotes the ranking of the final token
when projecting v into vocabulary space. Another
intuitive importance score is calculating the prob-
ability p(w|mv) on token w. If these scores are
large, v will contain much information of w.

However, these methods have two potential prob-
lems. On one hand, they only consider the ef-
fect of v, overlooking the varying importance
of v under different x conditions. On the other
hand, we usually hope to analyze the importance
of different modules’ combination. Therefore, it
is better that the importance score Imp satisfies
Imp(x+ v) ≈ Imp(x) + Imp(v).

To address these problems, we design log proba-
bility increase as importance score for both layer-
level and neuron-level vectors. If vl is a vector in
lth attention layer, the importance score of vl is:

Imp(vl) = log(p(w|vl+hl−1))−log(p(w|hl−1))
(13)

where the probability of each vector is computed
by multiplying the vector with Eu (see Eq.2). If
vl is a vector in lth FFN layer, we compute the
importance score by replacing hl−1 as hl−1+Al in
Eq.13. In Eq.13, vl is not the only element control-
ling the importance score. Also, it is convenient for
analyzing the combination of different modules.

3.4 Importance Score for "Query Neurons"

As discussed in Section 3.3, the proposed attribu-
tion methods can effectively identify the "value
neurons" containing crucial information for the fi-
nal prediction. However, in addition to these "value
neurons", there exist "query neurons" that aid in
activating these neurons, even if they may not di-
rectly contain information about w. In this section,
we propose a static method to identify these "query

3270

neurons" based on Eq.1, Eq.5, and Eq.6. Since the
fc2 vectors do not change, the coefficient scores
are the only varying element in different cases. For
each "value neuron", we can compute the inner
product between its subkey (see Eq.6) and each
neuron/subvector within the residual output (see
Eq.1). Despite the presence of a nonlinear function
σ for computing the coefficient score, it usually
does not affect the relative value between different
neurons/subvectors. Therefore, if a "query" neu-
ron/subvector exhibits a larger inner product with
the subkey compared to another one, it is more
helpful for activating the "value neuron".

4 Experiments

In this section, we compare our neuron-level attri-
bution method with seven other methods in Section
4.1. Then we analyze the localization of six types
of knowledge using our method in Section 4.2.

4.1 Comparison of Attribution Methods
We compare the proposed method in Eq.13 with
seven other methods. For each sentence, we apply
every method to identify top10 FFN neurons, and
evaluate the attributed neurons using three metrics.

Dataset. We extract query-answer pairs with six
types of answer tokens (language, capital, country,
color, number, month) from TriviaQA (Joshi et al.,
2017). To explore the mechanism of knowledge
storage, we extract all the sentences where the cor-
rect token ranks within the top10 predictions and
higher than other words in the same knowledge in
GPT2-large (Radford et al., 2019) and Llama-7B
(Touvron et al., 2023). There are 1,350 sentences
for GPT2-large and 3,141 sentences for Llama-7B.

Models. To compare the differences between
large and small models in terms of knowledge stor-
age, we conduct experiments on Llama-7B and
GPT2-large. Llama-7B consists of 32 layers, with
each attention layer comprising 32 heads, each
head containing 128 neurons and each FFN layer
containing 11,008 neurons. GPT2-large has 36 lay-
ers with 20 heads per attention layer, 64 neurons
per head, and 5,120 neurons per FFN layer.

Attribution methods. We compare our method
with seven static methods. We use each method to
attribute the FFN neurons with top10 scores for the
correct knowledge token w. Similar to Eq.5, each
neuron mv is the product of the coefficient score
m and fc2 vector vl. Here are the methods:

a) (proposed method) log probability increase:
log(p(w|mvl+Al+hl−1))− log(p(w|Al+hl−1))
b) log probability: log(p(w|mvl)), attributing the
same neurons with p(w|mvl). This is similar to
direct logit attribution (DLA) in Wang et al. (2022).
c) probability increase: p(w|mvl +Al + hl−1)−
p(w|Al + hl−1)
d) norm: |vl|
e) coefficient score: |m|
f) ranking in vocabulary space: 1/rank(w)
g) |m| × |vl|, introduced in Geva et al. (2022).
h) |m| × 1/rank(w)

Metrics. We devise three metrics to evaluate the
attribution methods. After attributing the top10
FFN neurons by each method, we intervene on
these neurons by setting the top10 neurons’ param-
eters to zero. Subsequently, we rerun the model
and compute the Mean Reciprocal Rank (MRR)
score of the correct token w, the probability of w
(prob), and the log probability of w (logp). An
attribution method is considered superior when it
exhibits greater decreases in these metrics.

GPT2-large Llama-7B
MRR prob logp MRR prob logp

o) 0.361 7.1 -3.15 0.551 21.5 -2.24
a) 0.201 3.4 -4.06 0.312 9.2 -3.91
b) 0.214 3.6 -3.91 0.339 10.8 -3.35
c) 0.219 3.7 -3.92 0.345 10.0 -3.57
d) 0.363 7.1 -3.14 0.549 21.3 -2.25
e) 0.439 8.6 -3.10 0.529 22.9 -2.35
f) 0.306 5.8 -3.40 0.493 18.1 -2.49
g) 0.394 8.1 -3.06 0.523 22.6 -2.39
h) 0.232 4.0 -3.80 0.389 13.0 -3.06

Table 2: Results of attribution methods on two models.

Results and analysis. The results of the origi-
nal model (first line) and eight attribution methods
are shown in Table 1. In comparison with the other
seven methods, our attribution method (second line)
attributes more important neurons, resulting in the
most significant reduction across all metrics in both
GPT2 and Llama. Specifically, when only interven-
ing ten FFN neurons, the probability of the cor-
rect knowledge token reduces from 7.1% to 3.4%
in GPT2, and from 21.5% to 9.2% in Llama-7B.
This indicates that there are several neurons storing
much important information for knowledge storage,
and our method can locate these neurons.

The attribution methods of norm vl (d) and
m×|vl| (g) are not useful, which indicates the norm

3271

of neurons is not important for attribution. Using
|m| × 1/rank(w) (h) has good results, which is
better than 1/rank(w) (f). The ranking of tokens
in vocabulary space for projected neurons is a good
saliency score, and the coefficient score can en-
large the distribution change, aligning our analysis
in Section 3.2. Only using coefficient score (e) is
not helpful for attribution. The role of coefficient
score is to enhance the probability change caused
by the neuron, but whether the neuron is useful
for the selected token depends on the neuron it-
self. There are other tokens competing with the
correct knowledge token, so the neurons with large
coefficient scores may be related to these tokens.

Figure 2: Neuron distribution on all layers in Llama-7B.

Compared to log probability (b), employing log
probability increase (a) can attribute more impor-
tant neurons. This aligns with the analysis in Sec-
tion 3.2 and 3.3: not only neuron v, but also x
affects p(w|x+v)−p(w|x). Compared with proba-
bility increase (c), log probability increase achieves
better results. We analyze the distribution of neu-
rons across all layers in Llama attributed by log
probability increase, log probability, and probabil-
ity increase, as depicted in Figure 2. GPT2 has sim-
ilar results, detailed in Appendix A. The neurons
attributed by probability increase are on deepest
layers (23th− 31th), while other two methods can
attribute neurons among 17th to 31th layers.

To delve into the reason of this phenomenon,
we analyze the difference of importance score
when adding the same vector v on different x.
As discussed in Eq.13, the importance score of
v is computed by log(p(w|x+ v))− log(p(w|x)).
Therefore, the importance score is related to the
curve of F (a) = log(p(w|a)). To analyze this
curve, we compute the final vector hLT and the 0th
layer input vector h0T on each sentence, and divide
hLT − h0T into 61 segments, where each segment is
SegS = h0T + S(hLT − h0T)/60 (S is the segment

index from 0 to 60). Then we compute the probabil-
ity p(w|SegS) and log probability log(p(w|SegS))
at each segment index for every sentence. The av-
erage score on Llama-7B is shown in Figure 3.

Figure 3: Curves of log probability increase (left) and
probability increase (right) on Llama-7B.

The curve of log probability increase exhibits an
approximately linear shape from 0 to 40 segments,
while the curve of probability increase shows a lin-
ear trend from 40 to 60 segments. This observation
elucidates the findings in Figure 2: employing prob-
ability increase is more inclined to attribute neurons
in the deepest layers, whereas log probability in-
crease tends to attribute neurons in medium-deep
layers. Despite the slower slope of the log proba-
bility increase curve in very deep layers, it still ef-
fectively attributes neurons in very deep layers (as
depicted in Figure 2). This maybe because neurons
in very deep layers contain substantial information,
and even when the importance score decreases, it
remains relatively large. In later sections, we use
log probability increase as importance score for
exploration, as this method can identify the impor-
tant neurons in both medium-deep layers and very
deep layers, and its experimental results are the
best. Nevertheless, reproducing the importance of
the deepest layers may be a prospective avenue for
developing improved attribution methods.

4.2 Exploration on Different Knowledge

We take log probability increase as importance
score, and analyze six types of knowledge: lan-
guage (lang), capital (capi), country (cnty), color
(col), number (num), and month (mon). We eval-
uate the knowledge storage in attention and FFN
layers at layer-level, head-level, and neuron-level.
We also compute the storage of query layers and
query neurons.

Layer-level knowledge storage. We compute
the sum of importance score of each attention and
FFN layer in GPT2 (G-A, G-F) and Llama (L-A, L-
F), shown in Table 3. Also, we calculate the top10

3272

lang capi cnty col num mon

G-A 7.46 6.61 6.62 4.10 2.75 4.82
G-F 0.63 1.89 1.67 3.51 4.70 2.81

L-A 6.28 5.03 6.42 3.81 2.22 5.10
L-F 1.74 4.30 2.90 4.02 5.60 3.05

Table 3: Contribution of attention and FFN layers.

layer for each knowledge in Table 4, where al and
fl means lth attention and FFN layer. For a clearer
display, we illustrate the importance (darker color
means larger importance) of top10 layers in Figure
4 (GPT2) and Figure 5 (Llama).

Both attention and FFN layers have ability to
store knowledge, and all the top10 layers are in
deep layers. Information with analogous semantics
(e.g., language, capital, country) tends to be stored
within similar layers/modules. For instance, a26,
a30, a28, and a22 in GPT2 ranks top for language,
capital and country, and a23 in Llama-7B ranks
the first for these knowledge. Data with dissimilar
semantics (e.g., language, color, month) typically
resides in distinct layers/modules.

top10 important layers

lang a26, a30, a32, a22, a31, a28, a23, a27, a19, a23
capi a26, a28, a30, a25, a22, f26, f28, a19, f27, f30
cnty a26, a30, a28, a22, f29, a31, f26, a32, a25, a19
col a32, f32, a33, f29, f31, a31, a26, f33, f28, a22

num f29, f23, f27, f30, f31, f26, f32, a23, a22, f28
mon a27, a26, f26, a25, f30, a28, a24, a22, a30, f27

lang a23, a21, f21, a19, a18, a31, a25, a16, f20, f19
capi a23, f21, f22, a18, a25, a21, f19, f20, a16, f24
cnty a23, a21, a25, f22, a18, a19, a16, f21, f31, a31
col f29, a20, f22, f20, a19, a28, a16, a29, a18, f28

num f31, f26, f29, f27, a26, f23, f24, a28, f17, f30
mon a21, a19, f19, a16, f31, a23, a28, f30, f17, f18

Table 4: Top10 important layers in GPT2 (first block)
and Llama (second block).

Figure 4: Top10 important "value layers" in GPT2.

Head-level knowledge storage. We compute the
importance score of each head (detailed in Ap-
pendix B) and find that many heads have ability to
store similar knowledge. In GPT2, a630 (30th layer
6th head), a1726, a

11
32, a

13
25 and a1722 rank top8 for lan-

guage, capital and country. Similarly, a1223, a
31
19, a

25
31,

Figure 5: Top10 important "value layers" in Llama.

and a2525 rank top5 for these knowledge in Llama.
To evaluate how much knowledge the top heads

store, we intervene the top 1% heads (top7 in GPT2
and top10 in Llama) by setting the heads’ parame-
ters to zero. Intervening each knowledge’s heads re-
sult in a MRR/probability decrease of 44.5%/53.3%
in GPT2, and 32.8%/48.2% in Llama (shown in
Appendix B). But semantic-unrelated knowledge
only reduce 7.1%/9.5% in GPT2 and 3.8%/8.7%
in Llama. Therefore, the identified "knowledge
heads" contain much semantic-related knowledge.

lang capi cnty col num mon

(attn) all 6.7 5.5 6.9 4.0 2.4 5.4
positive 30.5 29.4 30.5 32.0 24.8 29.2
top100 3.5 3.0 3.6 2.8 2.0 2.8
top200 5.0 4.4 5.0 4.1 3.0 4.1

(FFN) all 2.5 5.1 3.6 4.9 6.5 2.8
positive 77.4 77.6 69.8 90.6 71.6 69.1
top100 6.4 6.3 5.5 6.1 6.6 7.0
top200 8.2 8.0 7.0 8.0 8.5 8.5

Table 5: Importance of top neurons in attention (first
block) and FFN (second block) layers in Llama-7B.

Neuron-level knowledge storage. For attention
and FFN layers in Llama, we compute the sum
of importance score for all neurons, all positive
neurons (score larger than 0), top100 neurons, and
top200 neurons, as illustrated in Table 5. Similar
results of GPT2 is shown in Appendix C.

In both models, the sum score of top200 neurons
in attention layers and top100 neurons in FFN lay-
ers are similar to that of all neurons. Additionally,
we intervene the top neurons to evaluate how much
final predictions are affected, detailed in Appendix
C. When intervening the top200 attention neurons
and top100 FFN neurons for each sentence, the
MRR and probability decreases 96.3%/99.2% in
GPT2, and 96.9%/99.6% in Llama. In comparison,
randomly intervening the same number of neurons
only decreases 0.22%/0.14%. Hence, even though
there are many neurons contribute to the final pre-
diction, intervening a few neurons (300) affects the
final prediction much. This conclusion holds signif-
icance for future studies delving into neuron-level
knowledge editing.

3273

top10 query layers for FFN neurons

lang a26, a22, a19, f26, a17, f25, f27, f23, a25, a23
capi a26, a22, a19, a17, f25, a23, a18, f26, f21, a28
cnty a26, a22, a17, a19, a23, f18, a20, a18, f21, f25
col f26, f29, a26, f28, f25, a22, f27, a17, a24, f23

num f26, f23, f27, a22, f25, a17, f19, f21, a23, f0
mon a17, a22, f23, a26, f26, f24, a19, a20, f20, f21

lang f21, a16, a19, f18, a18, a21, a17, f30, f19, a14
capi a18, a16, f23, a19, f17, a14, f22, a21, f26, f19
cnty a16, a18, a21, a19, f21, a14, f19, a17, a31, f20
col f20, f21, a15, a17, a18, a20, f19, f22, f17, a16

num f19, f21, f22, f16, a18, a22, a24, f14, a12, a25
mon a16, a19, f18, a21, a17, a14, f29, f19, f17, a18

Table 6: Top10 query layers for top100 FFN neurons in
GPT2 (first block) and Llama (second block).

Figure 6: Top10 important "query layers" in GPT2.

Important query layers for FFN value neurons.
The "value" FFN neurons are activated by last po-
sition’s residual stream. We evaluate which "query
layers" activate the top100 FFN neurons, shown
in Table 6. We also illustrate the importance of
top10 important "query layers" in Figure 6 (GPT2)
and Figure 7 (Llama). The medium-deep atten-
tion layers play large rules. Compared Figure 6-
7 with Figure 4-5, we find that several attention
"query layers" also contribute to final predictions
(e.g. a19, a22, a26 in GPT2 and a16, a18, a19, a21
in Llama for country/capital/language). These
medium-deep attention layers’ neurons are very
important, working as both "value" and "query".

Important query neurons for attention value
neurons. We compute the important query lay-
ers activating the top200 "value" attention neurons.
finding the shallow and medium FFN layers play
main roles (detailed in Appendix D). To identify
the important query FFN neurons, we weighted
sum the inner product between each attention neu-
ron’s subkey and each FFN neuron on every po-
sition’s residual stream, as query FFN neurons’
scores. When intervening top1000 shallow neurons

Figure 7: Top10 important "query layers" in Llama.

lang capi cnty col num mon

G 91/96 98/99 89/94 95/97 96/96 83/88
L 78/92 84/93 91/98 85/93 90/96 94/98

Table 7: MRR/probability decrease (%) when interven-
ing 1,000 query neurons in GPT2 (G) and Llama (L).

for each sentence, both MRR and probability drops
very much (92%/95% in GPT2 and 87%/95% in
Llama), shown in Table 7. In comparison, ran-
domly intervening 1,000 neurons only result in a
decrease of 0.8%/1.1%. Hence, our method can
locate the important query neurons in these layers.

Figure 8: Query neuron distribution in GPT2 and Llama.

Then we count the number of queryvalue (both
in top1000 query and top1000 value) and queryonly
(only in top1000 query) FFN neurons, shown in
Figure 8. In both models, the number of queryonly
neurons, which is much larger than that of query-
value neurons, starts to drop at 60% layer. This
observation indicates that the shallow and medium
FFN neurons are important for activating the at-
tention "value neurons". A difference is that the
very shallow FFN layers play large roles in GPT2,
and we defer this exploration to future research.
Overall, our analysis learns the information flow at
neuron level: features in shallow/medium FFN neu-
rons are extracted, then activate the deep attention
and FFN neurons related to final predictions.

lang capi cnty col num mon

G-query 5 51 26 17 104 81
G-value 48 71 64 57 121 137
L-query 1 1 1 9 39 44
L-value 13 18 21 23 84 95

Table 8: Shared neurons in GPT2 (G) and Llama (L).

Shared Value and query neurons in each knowl-
edge. We compute how many "shared" query neu-
rons and value neurons rank top300 in more than

3274

50% sentences in each knowledge, shown in Ta-
ble 8. On average, there are 27.6% shared value
neurons in GPT2 and 14.1% in Llama. Query neu-
rons, with 15.7% shared neurons in GPT2 and 5.2%
in Llama, exhibit a more dispersed distribution
than value neurons. To explore the neurons’ inter-
pretability, we project them into vocabulary space.
We find most value neurons (first block in Table 9)
are related to predicted tokens. However, we do
not observe much interpretability in query neurons.
We only find a few query neurons (second block
in Table 9) related to the final words. Hence, to
explore the interpretability of query neurons may
be a valuable direction in future works.

neuron top10 tokens in vocabulary space

f29-3771
(GPT2,v)

Chile,Nicaragua,Finland,Ireland,Belarus,
Norway,Slovakia,Latvia,Australia

a1223-70
(Llama,v)

German,Greek,Netherlands,Dutch, Ger-
many,Greece,Holland,Norwegian

f0-2947
(GPT2,q)

Lion, Bull, Liver, riot, Gladiator, Red,
uct, Ant, Les

f7-8744
(Llama,q)

Belgium,Ireland,Vienna,Czech,Kas,
Kansas,Netherlands,Iowa,wings,Spanish

Table 9: Interpretable neurons in vocabulary space.

5 Conclusion

In this study, we propose a method based on log
probability increase to identify the important "value
neurons". We also develop a method based on inner
products to locate the "query neurons" activating
these "value neurons". Our method and analysis on
six types of knowledge are helpful for exploring
and understanding the mechanism of LLMs.

6 Limitations

The first limitation of our study is that it focuses on
six specific types of knowledge, while other types
of knowledge are also important. Secondly, our
experiments are conducted using GPT2-large and
Llama-7B models. It is essential to compare the
similarities and differences in knowledge storage
across different models. Lastly, our study employs
static methods for neuron-level knowledge attribu-
tion. Although our experiments demonstrate the
correctness and robustness of our designed method,
it is also important to compare static methods with
other attribution methods, such as causal mediation
analysis and gradient-based methods. We plan to
explore these areas in future work.

A potential risk of our work is that people can
utilize our method to identify important neurons
and edit them to change the models’ outputs. For
instance, if they identify the toxicity neurons and
gender bias neurons and increase these neurons’
coefficient scores, the model will be more likely
to generate toxicity and gender bias words. But
this potential risk depends on how people utilize
our method. Our method can be utilized for reduc-
ing hallucinations, toxicity, and bias in LLMs by
identifying and intervening/editing these neurons.

7 Acknowledgements

We thank Kailai Yang, Zhiwei Liu, and John Mc-
Naught for helpful feedbacks and constructive sug-
gestions. This work is supported by the project
JPNP20006 from New Energy and Industrial Tech-
nology Development Organization (NEDO). This
work is supported by the computational shared fa-
cility and the studentship from the Department of
Computer Science at the University of Manchester.

References
Bing Bai, Jian Liang, Guanhua Zhang, Hao Li, Kun

Bai, and Fei Wang. 2021. Why attentions may not
be interpretable? In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data
mining, pages 25–34.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume,
Shan Carter, Tom Henighan, and Christopher
Olah. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yuheng Chen, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2024. Journey to the center of the knowl-
edge neurons: Discoveries of language-independent
knowledge neurons and degenerate knowledge neu-
rons. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, pages 17817–17825.

3275

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318–16352.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2022. Analyzing transformers in embedding space.
arXiv preprint arXiv:2209.02535.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, et al. 2022. Toy models of superposition.
arXiv preprint arXiv:2209.10652.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Kawin Ethayarajh and Dan Jurafsky. 2021. Attention
flows are shapley value explanations. arXiv preprint
arXiv:2105.14652.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual asso-
ciations in auto-regressive language models. arXiv
preprint arXiv:2304.14767.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas
Sato, and Aryaman Arora. 2023. Localizing
model behavior with path patching. arXiv preprint
arXiv:2304.05969.

Rhys Gould, Euan Ong, George Ogden, and Arthur
Conmy. 2023. Successor heads: Recurring, inter-
pretable attention heads in the wild. arXiv preprint
arXiv:2312.09230.

Wes Gurnee, Neel Nanda, Matthew Pauly, Kather-
ine Harvey, Dmitrii Troitskii, and Dimitris Bert-
simas. 2023. Finding neurons in a haystack:
Case studies with sparse probing. arXiv preprint
arXiv:2305.01610.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2024. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. Advances
in Neural Information Processing Systems, 36.

Zhengfu He, Xuyang Ge, Qiong Tang, Tianxiang Sun,
Qinyuan Cheng, and Xipeng Qiu. 2024. Dictio-
nary learning improves patch-free circuit discovery in
mechanistic interpretability: A case study on othello-
gpt. arXiv preprint arXiv:2402.12201.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. arXiv preprint arXiv:1902.10186.

Theo Jaunet, Corentin Kervadec, Romain Vuillemot,
Grigory Antipov, Moez Baccouche, and Christian
Wolf. 2021. Visqa: X-raying vision and language
reasoning in transformers. IEEE Transactions on Vi-
sualization and Computer Graphics, 28(1):976–986.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo,
Maximilian Alber, Kristof T Schütt, Sven Dähne,
Dumitru Erhan, and Been Kim. 2019. The (un) relia-
bility of saliency methods. Explainable AI: Interpret-
ing, explaining and visualizing deep learning, pages
267–280.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Watten-
berg, Jonathan K Kummerfeld, and Rada Mihalcea.
2024. A mechanistic understanding of alignment al-
gorithms: A case study on dpo and toxicity. arXiv
preprint arXiv:2401.01967.

Zongxia Li, Paiheng Xu, Fuxiao Liu, and Hyemi Song.
2023. Towards understanding in-context learning
with contrastive demonstrations and saliency maps.
arXiv preprint arXiv:2307.05052.

Tom Lieberum, Matthew Rahtz, János Kramár, Geoffrey
Irving, Rohin Shah, and Vladimir Mikulik. 2023.
Does circuit analysis interpretability scale? evidence
from multiple choice capabilities in chinchilla. arXiv
preprint arXiv:2307.09458.

3276

Daniel D Lundstrom, Tianjian Huang, and Meisam
Razaviyayn. 2022. A rigorous study of integrated
gradients method and extensions to internal neuron
attributions. In International Conference on Machine
Learning, pages 14485–14508. PMLR.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Vivek Miglani, Narine Kokhlikyan, Bilal Alsallakh,
Miguel Martin, and Orion Reblitz-Richardson. 2020.
Investigating saturation effects in integrated gradients.
arXiv preprint arXiv:2010.12697.

Akash Kumar Mohankumar, Preksha Nema, Sharan
Narasimhan, Mitesh M Khapra, Balaji Vasan Srini-
vasan, and Balaraman Ravindran. 2020. Towards
transparent and explainable attention models. arXiv
preprint arXiv:2004.14243.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023a. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint arXiv:2301.05217.

Neel Nanda, Senthooran Rajamanoharan, Janos Kramar,
and Rohin Shah. 2023b. Fact finding: Attempting
to reverse-engineer factual recall on the neuron level.
In Alignment Forum, page 6.

Nostalgebraist. 2020. Interpreting gpt: the logit lens.

Chris Olah. 2022. Mechanistic interpretability, vari-
ables, and the importance of interpretable bases. In
Transformer Circuits Thread.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wal-
lace, and David Bau. 2023. Future lens: Anticipating
subsequent tokens from a single hidden state. arXiv
preprint arXiv:2311.04897.

Judea Pearl. 2001. Direct and indirect effects. Proba-
bilistic and Causal Inference: The Works of Judea
Pearl, page 373.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. arXiv preprint arXiv:1906.02361.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? arXiv preprint arXiv:1906.03731.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal
mediation analysis. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7035–7052.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jesse Vig. 2019. Bertviz: A tool for visualizing mul-
tihead self-attention in the bert model. In ICLR
workshop: Debugging machine learning models, vol-
ume 3.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. Advances
in neural information processing systems, 33:12388–
12401.

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2022. In-
terpretability in the wild: a circuit for indirect ob-
ject identification in gpt-2 small. arXiv preprint
arXiv:2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023. Label
words are anchors: An information flow perspective
for understanding in-context learning. arXiv preprint
arXiv:2305.14160.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not
not explanation. arXiv preprint arXiv:1908.04626.

Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng
Shi, Fan Yang, Tianming Liu, Xiaoming Zhai, Wenlin
Yao, Jundong Li, Mengnan Du, et al. 2024a. Usable
xai: 10 strategies towards exploiting explainability in
the llm era. arXiv preprint arXiv:2403.08946.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christo-
pher Potts, and Noah Goodman. 2024b. Interpretabil-
ity at scale: Identifying causal mechanisms in alpaca.
Advances in Neural Information Processing Systems,
36.

3277

Catherine Yeh, Yida Chen, Aoyu Wu, Cynthia Chen,
Fernanda Viégas, and Martin Wattenberg. 2023. At-
tentionviz: A global view of transformer attention.
IEEE Transactions on Visualization and Computer
Graphics.

Qinan Yu, Jack Merullo, and Ellie Pavlick. 2023. Char-
acterizing mechanisms for factual recall in language
models. arXiv preprint arXiv:2310.15910.

Fred Zhang and Neel Nanda. 2023. Towards best prac-
tices of activation patching in language models: Met-
rics and methods. arXiv preprint arXiv:2309.16042.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology, 15(2):1–38.

3278

A Neuron Distribution in GPT2

The neuron distribution of GPT2-large is similar to
Llama-7B, which is shown in Figure 9. Also, the
curve of importance score in GPT2-large is similar
to that in Llama-7B, illustrated in Figure 10.

Figure 9: Neuron distribution on all layers in GPT2.

Figure 10: Curves of log probability increase (left) and
probability increase (right) on GPT2.

B Head-Level Storage in GPT2/Llama

The top10 heads are shown in Table 10, where
ajl is short for the jth head in lth attention layer.
Knowledge with similar semantics is stored in the
same heads (e.g. a630 in GPT2 and a1223 in Llama).

type top10 heads

lang a630, a
17
26, a

7
26, a

11
32, a

0
19, a

9
31, a

13
25, a

17
22, a

13
28, a

2
29

capi a726, a
6
30, a

17
26, a

17
22, a

13
25, a

13
28, a

0
19, a

10
19, a

2
29, a

11
32

cnty a726, a
6
30, a

17
22, a

13
28, a

17
26, a

11
32, a

0
19, a

13
25, a

9
31, a

10
19

col a533, a
1
34, a

7
26, a

19
24, a

18
23, a

13
32, a

1
30, a

8
22, a

14
32, a

2
28

num a1822, a
3
17, a

8
23, a

2
19, a

3
30, a

19
25, a

3
20, a

0
30, a

2
12, a

3
25

mon a227, a
7
26, a

11
25, a

10
19, a

2
30, a

4
28, a

18
23, a

17
17, a

1
33, a

3
17

lang a1223, a
31
19, a

25
31, a

25
25, a

5
16, a

1
18, a

9
21, a

22
29, a

17
21, a

23
18

capi a1223, a
22
29, a

25
25, a

25
31, a

31
19, a

1
18, a

15
16, a

5
16, a

9
21, a

23
18

cnty a1223, a
31
19, a

25
25, a

9
21, a

25
31, a

15
16, a

1
18, a

5
16, a

22
29, a

19
28

col a2229, a
19
28, a

27
20, a

15
16, a

27
17, a

21
28, a

14
25, a

28
18, a

1
24, a

3
14

num a1928, a
24
26, a

10
23, a

13
30, a

29
21, a

24
13, a

24
18, a

22
29, a

23
17, a

1
19

mon a1021, a
0
16, a

22
21, a

18
23, a

16
28, a

20
19, a

6
31, a

1
19, a

3
14, a

13
20

Table 10: Top10 important heads in GPT2 (first block)
and Llama (second block).

The MRR decrease (%)/probability decrease (%)
when intervening the top 1% heads for each knowl-
edge is shown in Table 11. When intervening the
top 1% heads for each knowledge, similar knowl-
edge (language, capital and country) is affected a
lot, while other knowledge (month, color, number)
is not affected much.

lang capi cnty mon col num

lang 44/51 33/52 38/56 3/0 6/5 1/2
capi 32/38 42/53 39/54 15/11 18/12 0/1
cnty 39/44 40/54 44/60 3/0 10/5 2/3
mon 19/24 14/19 13/19 55/63 24/23 5/4
col 6/6 1/0 2/4 13/12 49/59 5/7

num 11/14 2/10 7/11 17/21 19/16 33/34

lang 24/42 17/35 13/33 0/0 6/15 1/1
capi 38/58 28/50 22/53 1/0 7/16 0/0
cnty 42/61 31/54 28/58 0/0 10/21 2/6
mon 7/14 4/11 7/13 51/66 8/13 3/8
col 3/12 6/16 6/14 13/25 33/42 1/10

num 0/0 1/4 1/2 2/9 3/13 33/31

Table 11: MRR decrease (%)/probability decrease (%)
in GPT2 (first block) and Llama (second block) when
intervening top 1% heads for different knowledge.

C Neuron-Level Storage in GPT2/Llama

The sum score of top neurons and all neurons in
GPT2 are shown in Table 12. The sum importance
score of top200 attention neurons and top100 FFN
neurons are similar to those of all neurons.

lang capi cnty col num mon

all 7.3 6.7 6.6 3.6 2.3 4.3
positive 28.8 27.4 27.5 24.7 18.2 23.3
top100 4.0 3.7 3.5 2.7 1.6 2.5
top200 5.7 5.3 5.1 4.0 2.5 3.7

all 0.0 1.9 1.4 2.5 4.0 1.9
positive 70.1 69.4 69.1 72.0 62.3 66.6
top100 4.2 4.6 4.3 4.3 4.1 4.7
top200 6.0 6.3 5.9 6.1 5.7 6.4

Table 12: Imporatnce of top neurons in attention (first
block) and FFN (second block) layers in GPT2.

The MRR decrease (%) / probability decrease
(%) when intervening the top 200 attention neurons
and top100 FFN neurons are shown in Table 13.
The MRR score and probability score decreases
around 91.1%/98.7% in GPT2, and 88.4%/97.1%
in Llama. Therefore, our method can identify the
important "value neurons" in both attention and
FFN layers.

3279

lang capi cnty col num mon

G 96/99 96/99 97/99 97/99 96/98 96/99

L 97/99 97/99 97/99 98/99 96/99 97/99

Table 13: MRR decrease (%) and probability decrease
(%) when intervening the top200 attention neurons and
top100 FFN neurons in GPT (G) and Llama (L).

D Important Query Layers for Attention
Neurons in GPT2/Llama

We evaluate which layers have large inner product
with top200 attention neurons, shown in Table 14.
For every knowledge, the shallow and medium FFN
layers play larger roles than attention layers.

top10 query layers for attention neurons

lang f0, f1, a0, f2, f19, f20, f3, f17, f18, f21
capi f0, f1, a0, f2, f3, f20, f5, f4, f19, f17
cnty f0, f1, f19, a0, f18, f2, f3, f21, f20, f17
col f0, f1, f2, f23, f20, f21, f22, f24, a0, f3

num f0, f18, f1, f19, f22, f16, f21, f2, f12, f20
mon f0, f1, f19, f2, f9, f22, f10, f21, a0, f18

lang f20, f19, a16, f16, f15, f18, f14, f21, f12, f21
capi f20, f24, f22, f23, f19, a16, a23, f28, f18, f25
cnty f18, f21, f19, a18, f22, a14, a16, f17, a21, a19
col f15, f18, f20, f16, f19, f13, f17, f22, f24, f14

num f24, f17, f19, f23, f22, f20, f18, f2, f25, f21
mon f14, a16, f19, a19, f18, f20, f13, f17, f15, f22

Table 14: Top10 query layers for top200 attention neu-
rons in GPT2 (first block) and Llama (second block).

3280

