
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3355–3371
November 12-16, 2024 ©2024 Association for Computational Linguistics

QUIK: Towards End-to-end 4-Bit Inference
on Generative Large Language Models

Saleh Ashkboos* 1 Ilia Markov* 2 Elias Frantar2 Tingxuan Zhong3 Xingchen Wang3 Jie Ren4

Torsten Hoefler1 Dan Alistarh 2,5

1ETH Zurich, 2Institute of Science and Technology Austria,
3Xidian University, 4KAUST, 5Neural Magic, Inc.

*Equal contribution, Correspondence: saleh.ashkboos@inf.ethz.ch

Abstract
Large Language Models (LLMs) from the GPT
family have become extremely popular, lead-
ing to a race towards reducing their inference
costs to allow for efficient local computation.
However, the vast majority of existing work fo-
cuses on weight-only quantization, which can
reduce runtime costs in the memory-bound one-
token-at-a-time generative setting, but does not
address costs in compute-bound scenarios, such
as batched inference or prompt processing. In
this paper, we address the general quantization
problem, where both weights and activations
should be quantized, which leads to compu-
tational improvements in general. We show
that the majority of inference computations for
large generative models can be performed with
both weights and activations being cast to 4 bits,
while at the same time maintaining good accu-
racy. We achieve this via a hybrid quantization
strategy called QUIK that compresses most of
the weights and activations to 4-bit, while keep-
ing a small fraction of “outlier” weights and
activations in higher-precision. QUIK is that
it is designed with computational efficiency in
mind: we provide GPU kernels matching the
QUIK format with highly-efficient layer-wise
runtimes, which lead to practical end-to-end
throughput improvements of up to 3.4x relative
to FP16 execution. We provide detailed stud-
ies for models from the OPT, LLaMA-2 and
Falcon families, as well as a first instance of
accurate inference using quantization plus 2:4
sparsity. Anonymized code is available here.

1 Introduction

Large language models (LLMs) from the Genera-
tive Pretrained Transformer (GPT) family (Radford
et al., 2019) are extremely popular. One surprising
property is the ability to quantize them, e.g., (Fran-
tar et al., 2022; Dettmers et al., 2022; Lin et al.,
2023; Yuan et al., 2023), enabling efficient local
generative inference for these models, even on per-
sonal computers. The vast majority of work on
LLM quantization can be categorized as follows:

• Weight-only quantization methods (Frantar et al.,
2022; Dettmers et al., 2022; Lin et al., 2023;
Dettmers et al., 2023; Lin et al., 2023; Kim et al.,
2023) that help reduce the massive memory-
transfer costs of LLM inference. Yet, these
methods do not reduce computation, and cannot
provide significant speedup for computationally-
bound settings, such as prompt processing.

• Joint weight-activation quantization methods,
which can provide computational improvements,
but either focus exclusively on 8-bit weights and
activations (8W8A) (Xiao et al., 2022; Dettmers
et al., 2022), or execute with large amounts of ac-
curacy loss relative to their uncompressed coun-
terparts (Yuan et al., 2023; Shao et al., 2023).

Thus, there is still a significant gap between
compressed formats supported by hardware—
specifically, NVIDIA GPUs natively support accel-
erated 4bit matrix multiplication on both the Am-
pere and Lovelace architectures (NVIDIA, 2023)—
and quantization algorithms which would allow
accurate inference on hardware-supported formats.

Contribution. In this paper, we look to bridge
this gap, and show that a large fraction of the com-
putation in modern LLMs such as OPT (Zhang
et al., 2022), LLaMA-2 (Touvron et al., 2023) and
Falcon (TII UAE, 2023) can be performed accu-
rately and efficiently using 4-bit activations and
weights (4W4A).

On the algorithmic side, we show significantly
improved results relative to prior work on joint
quantization of weights and activations to 4 bits,
via a hybrid scheme for QUantization to INT4 with
GPU Kernel support, called QUIK. In QUIK, ma-
trices are split into “base” weights and activations,
which are processed exclusively at 4-bit precision,
and a small number of “outlier” weights and activa-
tions, which are processed at higher precision such
as INT8 or FP16. Using this approach, as well as
additional insights into layer sensitivity, we build a

3355

mailto:saleh.ashkboos@inf.ethz.ch
https://anonymous.4open.science/r/QUIK-Example-5CE5/README.md


�� 	�� ���
	����

���

��

���

��

��

�

���


�
��
��
��
��
��
��
�
��
��
��
��

��	���������

��	�
���������
�����������
���������	
�����������

2.61x

3.4x

2.48x speedup

Figure 1: Accuracy and speedups for QUIK at different
model sizes, on the LLaMA family of models. QUIK
achieves up to 3.4x speedup with minor accuracy degra-
dation on LLaMA-2 models.

framework which can recover accuracy within 0.3–
0.5 perplexity points across model sizes, while exe-
cuting a large fraction of the inference in INT4. For
illustration, for the sensitive LLaMA2 model with
70B parameters, we can recover accuracy within
0.5 perplexity, while executing 70% of the linear
layer computations in INT4, leading to 3.4x end-
to-end speedups (see Figure 1). We consider our
work orthogonal to KV-Cache quantization.

On the performance side, the key feature of
QUIK is that it can be implemented efficiently via
GPU kernels with low runtime and memory over-
heads relative to GPU-native INT4 matrix multipli-
cation (MatMul). We demonstrate this via a general
implementation leading to per-layer speedups and
end-to-end throughput improvements relative to
both FP16 and INT8 baselines. Specifically, we
show that supporting a limited number of feature
and weight outliers can have negligible overhead
by fusing the quantization and dequantization op-
erations into the MatMul and by mitigating their
costs in linear layers via additional optimizations.

Overall, QUIK leverages quantization for sig-
nificant end-to-end speedups and memory reduc-
tions. For example, for processing a sequence of
2048 tokens on a commodity RTX 3090 GPU, we
achieve end-to-end speedups between 3.1x, for the
OPT-66B and Falcon-180B models, and 3.4x for
LLaMA2-70B, relative to a theoretical optimum of
≈4x. In addition, QUIK requires much less GPU
memory, and therefore, less GPUs, relative to FP16.
For instance, QUIK provides 3.6x memory reduc-
tion for OPT-66B, and 3x compression for accurate
execution of LLaMA2-70B, executing the latter in
less than 50GB of GPU memory.

0 1 10 100 1000
Arithmetic Intensity, FLOP/byte

1

16.3

Pe
rf

or
m

an
ce

, T
FL

O
P/

s

Memory bound
Compute bound
Input size 1

Input size 16
Input size 128

Input size 256
Input size 1024

Figure 2: Roofline analysis of a standard LLM MatMul
operation, for a matrix of size 8K x 8K, in FP32, on an
NVIDIA GPU. Markers denote the results of profiling
with different token counts (from 1 to 1024). Small
counts (1 and 16) are memory-bound, whereas larger
counts (from 128 to 1024) are compute-bound.
2 Motivation

Roofline Analysis. To motivate our focus on the
compute-bound case, we begin an analysis of the
basic computational operation in the context of
LLMs, a matrix multiplication for different num-
bers of tokens. We profile a linear layer of stan-
dard size (11K x 4K, corresponding to the MLP
in LLaMA-7B (Touvron et al., 2023)), using the
NVIDIA NSight Toolkit (NVIDIA), from a single
token to 16, 256 and 1024 tokens.

Figure 2 clearly shows that the case of few to-
kens (1 and 16) the operation is bound by memory
transfer, whereas the it becomes compute-bound
for token counts larger than 64-128. A realistic end-
to-end LLM deployment would need to consider
optimizing both scenarios, as the prompt process-
ing “prefill” case falls into the large token count
scenario, whereas generating one-token-at-a-time
falls into the former case. Moreover, running a
“batched” version of the single-token workload, i.e.
for multiple users, would again result in large token
counts, returning to the compute-bound case.

Notice that existing methods for weight-only
quantization (Frantar et al., 2022; Dettmers and
Zettlemoyer, 2022; Lin et al., 2023) only reducing
the amount of data which needs to be transferred
per operation, but still perform the computation in
the original precision. Thus, they do not help in
the compute-bound case, and in fact even slightly
increase the amount of computation per operation,
due to the de-quantization overheads.

Speedup Potential. Given our focus on the
compute-bound case, it is natural to investigate
the available hardware options leading to potential
speedups. Quantization is a natural approach given
that NVIDIA GPUs have native support for INT4

3356



and INT8 data types, providing major throughput
improvements across matrix sizes (see Figure 9 in
Appendix A). Specifically, INT8 provides through-
put improvements that can be slightly higher than
2x relative to FP16, whereas INT4 almost dou-
bles over INT8. However, to leverage these hard-
ware operations, both layer inputs (activations) and
layer weights must be quantized. We will there-
fore focus on accurate post-training quantization of
accurate pre-trained LLMs, by compressing both
weights and activations, primarily to INT4.

3 Method
3.1 Background
We focus on accelerating linear layers within Large
Language Models (LLMs) by employing 4-bit
quantization for both the weight matrix W and
the input matrix X. Following the PyTorch defini-
tion (Paszke et al., 2019), a linear layer with a bias
vector b, can be written as XWT + b. We now
describe the technique in detail.

Outliers in Input Quantization. Activation ma-
trices are notoriously hard to quantize accurately
(Dettmers et al., 2022; Xiao et al., 2022; Yuan et al.,
2023), mainly due to the presence of outlier fea-
tures in these matrices, where some of the columns
have up to 100x larger magnitudes. LLM.int8()
(Dettmers et al., 2022) identifies and extracts the
outlier columns of X during the forward pass and
quantizes the rest of the elements with 8-bit. How-
ever, LLM.int8() is not efficient at runtime due to
the added computational cost of determining out-
liers on-the-fly. Recently, Xiao et al. (2022) showed
that outlier features are fixed for each layer across
datasets, which means that we can extract outlier
indices offline using a small calibration set.

Weight Quantization. GPTQ (Frantar et al.,
2022) is a weight-only quantization method which
involves the quantization of W while retaining acti-
vations X in FP16. GPTQ iterates over each weight
column from left to right, quantizing all column
elements simultaneously. Once a certain weight
column is quantized, GPTQ adjusts the remaining
unquantized columns, to the right, by using second-
order information to compensate for the introduced
quantization error in the current step. This pro-
cess naturally accumulates the quantization errors
towards the last columns.

3.2 QUIK Quantization
Overview. At a high level, QUIK works as fol-
lows. First, note that, during the linear transforma-

X W

W

Step 1: The outlier columns are
characterized based on the inputs.

Step 2: The
outlier columns
will be pushed
toward the end. 

        W

INT4 FP16

X

Step 3: GPTQ quantizes
the majority of the weights
using the re-ordered
Hessian matrix and
accumulates the errors in
the outlier columns.

Figure 3: Outlier-aware quantization with QUIK. Out-
lier weight columns are extracted based on outlier
columns in the input. We permute the outlier columns
toward the end of the matrix before applying GPTQ
quantization (using the re-ordered Hessian matrix) to
accumulate the quantization errors in the FP16 columns.

tion XWT, the outlier columns in X, by which
we mean the columns with large average values
defined previously, will always be multiplied by
certain columns in WT, as illustrated in Figure 3.
We leverage this observation to improve the qual-
ity of GPTQ quantization, in a setting where we
quantize (part of) the activations as well.

Since the outlier columns are fixed across
datasets, we begin by extracting the indices of the
outlier columns by means of a calibration set. Then,
we rearrange the weight columns (and their corre-
sponding input columns), to shift the outliers to-
ward the end. Finally, we perform quantization on
the weight columns up to the index of the outliers.
This circumvents quantization of these “difficult”
columns. It also helps GPTQ quantization by 1)
aggregating the quantization errors to the columns
we keep in FP16, and 2) removing potential weight
outliers from the 4bit quantization scale.

Sensitivity-Based Partial Quantization. Accu-
rately selecting outlier columns is key for QUIK.
Following Xiao et al. (2022); Dettmers et al. (2022),
we select the columns with the largest ℓ∞ norm as
outliers. Since finding these columns dynamically
at runtime is costly, we follow Xiao et al. (2022)
in identifying a predefined set of outliers for each
layer via a calibration set (see Section 4), and quan-
tize the weights offline. We use the same outlier
indices for extracting the input outlier columns dur-
ing the forward pass.

3357



This approach is sufficient for accurate quanti-
zation of models such as OPT (Zhang et al., 2022)
(see Section 4). However, highly-accurate mas-
sive models such as LLaMA2-70B present a fur-
ther challenge due to their FeedForward layers,
which involve three linear transformations along
with element-wise multiplication, as well as the
use of the Sigmoid Linear Unit (SiLU) activations.
Specifically, our ℓ∞ norm analysis illustrated in
Figure 11, suggests that the Downproj layers are
much more sensitive to quantization. (Li et al.
(2023) arrived at a similar observation.) Thus, we
extend our scheme to improve accuracy by quantiz-
ing the Downproj layers to 8 bits instead of 4, with-
out other changes to our method. We illustrate the
outlier selection procedure in detail in Section 4.3.
We present a detailed analysis of our overall FLOP
breakdown in Figure 10.

3.3 Efficient GPU Inference

We now provide a high-level description of how
models in the QUIK format are executed efficiently
on GPU. We illustrate the workflow in Figure 4
and provide detailed pseudocode in Appendix Al-
gorithm 1. The first and most important step in
QUIK is splitting the input matrix of shape (#to-
kens, #features) column-wise, so across features,
into two sub-sets, a small “full precision” part (usu-
ally half or bfloat16) and a large base part, which
will be quantized (see line 2 in the pseudocode).
The full-precision part is multiplied with the corre-
sponding (full-precision) part of the weight matrix
in standard fashion, while the rest goes through the
quantized matrix multiplication pipeline.

The quantized MatMul pipeline consists of three
parts: 1) dynamically quantizating the activations,
2) actually performing the MatMul of quantized
activations and weights, and 3) dequantizing the
result back to floating point format.

Quantization. In general, we quantize weights
symmetrically (only scale) per column and quan-
tize activations asymmetrically (scale and zero) per
token. The former is done offline, while the latter
must be done online based on the current activation
values. Specifically, we first scan the activations to
determine the per-token min- and max-value, from
which we calculate the scale and zero point (line 9).
These are then used to turn the floating point acti-
vations into integers, which are written out again
as signed (hence the halfRange subtraction in line
12) INT4 or INT8 values (see lines 10-13).

Matrix Multiplication. The actual MatMul
is performed using the NVIDIA CUTLASS li-
brary (NVIDIA, 2023), which allows us to effec-
tively utilize the hardware’s INT8/INT4 tensor-
cores for fast low-precision calculations, while ac-
cumulating results in the INT32 format.

Dequantization. As the MatMul was carried out
purely with quantized INT values, we need to
convert back to a floating point format in order
to properly integrate scale and zero information.
Concretely, we need to multiply each output el-
ement oij by its corresponding input token scale
scaleAct and output weight scale scaleWeight
(line 16). Additionally, we also need to account
for the activation zero-point zeroAct. To do this,
we consider a scalar product ⟨w, x⟩ (representing a
single output value in our overall matmul) where a
constant z is added to each xi:

y =
∑

i

wi(xi + z) =
∑

i

wixi + z ·
∑

i

wi. (1)

Consequently, we must shift by z times the sum
over relevant weights, the latter of which is static
and can thus be precomputed as wReduced; the
signed to unsigined INT conversion must be con-
sidered as well (lines 17-21). Finally, we add these
dequantized values to the original outlier result,
yielding the final output (line 7).

3.4 Performance Optimizations

The main operation in the QUIK kernel is the low-
precision CUTLASS MatMul. However, the mixed
precision nature of the algorithm imposes the use
of auxiliary functions, such as input data splitting,
metadata computation, quantization and dequanti-
zation, which must be carefully optimized.

Quantization Fusion. A naive implementation
of splitting and quantization would require one
read-and-write pass for the outlier-part, another
read-and-write pass for the base-part, two read
passes to determine per-token min-max values and
one more read-and-write pass for actually carrying
out quantization. Many of these slow memory-
bound operations can be optimized away via care-
ful operator fusion in the form of bespoke kernels.

Specifically, we assign each input row to a
CUDA block and perform 3 passes over it: re-
duction (finding meta information) over the non-
outliers elements, quantization of them, and mov-
ing the outliers to a separate piece of memory. This
eliminates two costly reads (min-max calculation

3358



Outlier Columns

X

4-bit Per-Token
Quantization

INT4 MatMul

Outlier Extraction

Quantizable Columns

Dequantize and
cast to FP16

FP16
Outlier Weights

FP16 MatMul

Y

Quantized 
Weights

INT4

  W

Transpose View

Transpose View

Weight Matrix  Input Matrix 

Figure 4: Schematic for the forward pass of a linear
layer (XWT ) with QUIK-4B. In the first step, the input
outlier features are extracted based on the pre-defined
indices and the rest of the input values will be quantized
using per-token quantization. The INT4 MatMul will be
applied using the quantized weights, calculated offline
(see Figure 3). Finally, the output will be dequantized,
cast to FP16, and added to the result of FP16 MatMul.

and base-part splitting) and one write pass (base-
part splitting), and kernel launches overheads.

Parallelization Tuning. For the above quantiza-
tion procedure to be efficient on a modern GPU,
we have to ensure optimal parallelization via care-
ful tuning of CUDA blocks and threadcounts. The
most critical tuning parameter is the number of
rows we process with one CUDA block. Mapping
one block per each row brings additional launch-
ing overheads, while mapping too many rows per
block results in block over-subscription and lower
occupancy of the GPU. Hence, we optimized the
appropriate number of rows per block for differ-
ent matrix sizes (usually values between 8 and 32).
This improved quantization speed by up to 30%.

Dequantization Epilogue. CUTLASS first accu-
mulates MatMul results in registers before com-
mitting them to global memory. We can avoid an
unnecessary write and read pass of intermediate
INT32 matmul results by directly performing de-
quantization in a custom epilogue that is applied be-
fore the global memory commit, which we further
directly accumulate into the results of the outlier
MatMul. This interleaves two expensive operations
and saves additional kernel calls and memory trips.

Performance Impact. To separate out the im-
pact of these optimizations, we mark them as dif-
ferent versions of our kernel: version 1 has unfused
quantization / dequantization; version 2 has fused

quantization and unfused dequantization; version
3 fuses both. Figure 5 provides a detailed break-
down of each of these optimizations, showing that
they are especially effective for the small matrices,
where they lead to end-to-end speedups of almost
2x. Fused quantization gives up to 40% through-
put improvement and the dequantization epilogue
yields an additional 10% speedup.

(8192, 1024) (8192, 8192) (28672, 8192)
Layer size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
re

la
tiv

e 
to

 V
1 V1

V2 V3

V1
V2

V3

V1
V2 V3

Data Split
Meta

Quantization
INT Matmul

FP Matmul
Dequantization

Figure 5: Operation timings in different QUIK-4B ver-
sions with 256 outliers on an RTX3090 GPU with input
size 2048. Hatched bars represent fused operations.

4 Experimental Validation

General setup. We evaluate our method on
OPT (Zhang et al., 2022), LLaMA-2 (Touvron
et al., 2023), and Falcon (TII UAE, 2023) models,
using HuggingFace (Wolf et al., 2019) implementa-
tions of model definitions and datasets. Following
SmoothQuant (Xiao et al., 2022), we extract out-
lier indices using 512 random sentences from the
Pile dataset (Gao et al., 2020). We consider up
to 5% (based on the model size) of the input fea-
tures as outliers in the linear layers. During the
GPTQ weight quantization, we randomly select
128 samples with 2048 sequence length from the
C4 dataset (Raffel et al., 2020). We apply sym-
metric quantization to weights and asymmetric
quantization to activations. Clipping thresholds for
weight quantization are found via a linear search
over the squared error. QUIK quantizes a 70B
model in less than 2h on a single A100 GPU.

4.1 Accuracy Recovery

Accuracy Comparison on OPT. We first com-
pare QUIK with prior 4W4A quantization methods:
SmoothQuant (Xiao et al., 2022), RPTQ (Yuan
et al., 2023) and OmniQuant (Shao et al., 2023).

Table 1 shows the results of all methods for 4
larger OPT models on the WikiText2 task (Merity
et al., 2016). We observed that, with QUIK, the
accuracy of OPT models remains consistent even
when employing a uniform number of outliers for
all layers (instead of using a percentage of the input

3359



Model OPT
6.7B 13B 30B 66B

Baseline 10.86 10.13 9.56 9.34

SmoothQuant 1.8e4 7.4e3 1.2e4 2.2e5
RPTQ 17.83 17.83 11.50 11.16
OmniQuant 12.24 11.65 10.60 10.29
QUIK (ours) 11.18 10.78 10.08 9.66

Table 1: Perplexity of 4-bit OPT models on the Wiki-
Text2 dataset. SmoothQuant, RPTQ, and OmniQuant
results are taken from Shao et al. (2023), RPTQ de-
notes their improved numbers. For the 66B model, all
prior schemes keep 0.71% of the linear layer operations
in FP16 (the Head), while, by excluding outliers from
quantization, we retain 2.78% of operations in FP16.

features). Consequently, we employed 256 outliers
across all linear modules (which is ≈ 3% of OPT-
66B’s hidden size). As can be seen, by effectively
leveraging a small amount of full-precision outlier
columns, QUIK can significantly outperform prior
4-bit methods, dropping only 0.3 to 0.5 points in
perplexity relative to the full precision baseline.
We emphasize that, for a fair comparison, QUIK
quantizes all linear backbone layers to 4-bit here.
Additional results are presented in Appendix I.

Accuracy on LLaMA-2 and Falcon Models.
Next, we move to LLaMA-2 and Falcon models.
See Table 2 for the results on WikiText2. As can
be seen, QUIK-4B can preserve the accuracy in
all models with at most 0.5 perplexity loss for the
LLaMA-2 models, and 0.3 for Falcon models.

Model
LLaMA-2 Falcon

7B 13B 70B 7B 40B 180B

Baseline 5.47 4.88 3.20 6.59 5.23 3.30

SmoothQuant 83.12 35.88 - - - -
OmniQuant 14.26 12.30 - - - -
QUIK-4B 5.84 5.28 3.74 6.90 5.46 3.61

Table 2: Perplexity results of QUIK (with 256 outliers)
for 4-bit LLaMA-2 and Falcon models on WikiText2.
For the down-projection (in LLaMA-2 models) and FC2
layers (in Falcon models), we use 8-bit quantization, and
increase the number of outliers (in FP16) proportionally
to the number of input features (which is not the case
for other schemes). Results for SmoothQuant and Om-
niQuant follow (Shao et al., 2023).

Zero-Shot Accuracy. Next, we evaluate the im-
pact of QUIK on the accuracy of zero-shot tasks.
To this end, we study the average accuracy of the
largest LLaMA-2 and OPT models on five popu-
lar zero-shot tasks: PIQA (Tata and Patel, 2003);
WinoGrande (Sakaguchi et al., 2021); HellaSwag
(Zellers et al., 2019); Arc (Easy and Challenge)
(Boratko et al., 2018). We use the LM Evaluation
Harness (Gao et al., 2021) with default parameters

(4096, 4096)

(8192, 1024)

(11008, 4096)

(5120, 5120)

(8192, 8192)

(28672, 8192)

Matrix size

0

1

2

3

4

Sp
ee

du
p

Baseline
QUIK-8B
QUIK-4B

Figure 6: Layer-wise speedups on a single RTX3090
for different layer sizes and compression types. QUIK-
4B with 256 outliers, QUIK-8B without outliers.

in our experiments. Table 3 shows the averaged ac-
curacy of QUIK over zero-shot tasks. Similar to the
generation task, QUIK preserves the accuracy of
zero-shot tasks with at most a 1.5% accuracy drop
for LLaMA-2 models and 1.1% for OPT models.

Model Bits Avg. Score

OPT-30B FP16 64.45
QUIK-4B 63.34

OPT-66B FP16 66.16
QUIK-4B 65.10

LLaMA2-13B FP16 71.70
QUIK-4B 70.49

LLaMA2-70B FP16 76.57
QUIK-4B 74.97

Table 3: LM eval harness results of QUIK on OPT and
LLaMA-2 families using 256 outliers. The results are
averaged across five different zero-shot tasks. Detailed
results are provided in Table 9.

4.2 Performance Analysis

We now examine the performance of the QUIK
implementation by evaluating different aspects of
our kernel. We use PyTorch/1.13, CUDA/11.8,
Huggingface Transformers/4.34. We run all our
experiments on RTX 3090 GPUs. Appendix O
shows similar results on RTX 3080 GPUs.

Ideal and Layer-wise Speedups. We evaluate
the ideal speedups, as well as the actual speedups
we measure in each Transformer block separately.
The results in Figure 9 depict “ideal” computational
power for layer-wise matrix multiplications at dif-
ferent precision levels, without taking into account
any quantization/dequantization. Here, we focus on
realizable speedups when executing Algorithm 1,
which includes mixed-precision multiplication as
well as compression and decompression operations.

3360



In Figure 6, we compare the layer-wise perfor-
mance of quantized linear layers (QUIK-4B uses
256 outliers per layer) relative to FP16, for a full
implementation of our algorithm. The matrix sizes
correspond to layers in LLaMA models. We ob-
serve that QUIK-4B can achieve slightly higher
than 4× speedup on large layers and over 2× on
smaller ones. Thus, the speedups of raw low-
precision matmul speedups can partially “hide” the
overheads of QUIK.

End-to-end speedups and Memory Saving. To
examine end-to-end speedups, we integrate QUIK
into the HuggingFace PyTorch implementation, by
replacing linear layers with 4-bit (and 8-bit) QUIK
versions. For the LLaMA2 models, we use FlashAt-
tention (Dao et al., 2022) for all models (including
FP16). The number of outliers in QUIK-4B is set to
256 except for the special case of down projection
layers in LLaMA and FC2 in the Falcon models,
which we quantize to 8 bits with ∼ 600 outliers.
We evaluate memory usage in Appendix C.

In Figure 8, we compare the throughput im-
provements of prefill passes (for single batches
with 2048 tokens) for quantized models, relative
to the corresponding FP16 version. The bar plot
shows throughput improvements of QUIK-4B com-
pared to FP16. The annotations to the baseline
represent its actual throughput values in our ex-
periments. For instance, OPT-66B using FP16 lin-
ear layers achieved 439 tokens/s whereas the same
model inference with QUIK-4B linear layers re-
sulted in 1343 tokens/s. This shows that, in addition
to a close to 4× memory reduction, which reduces
the number of required GPUs for inference, QUIK
also achieves up to 3.4× higher throughput relative
to FP16, with the biggest improvements attained on
the largest models (LLaMA2-70B), where the rel-
ative impact of overheads is lowest. The memory
reduction is important in the Falcon inference case:
we were not able to run Falcon-180B in full pre-
cision on 8xRTX3090 GPUs, as the max memory
peak of the model is more than 360GB. However,
QUIK-4B allows us to run full inference of this
180B model on a single server resulting in 542 to-
kens/second. Therefore, we estimated speedups for
the FP16 180B model in Figure 8(c) based on the
runtime of a single Transformer block.

The speedups in our end-to-end experiments
are exclusively through QUIK accelerated linear
layers–other functions are precisely the same. Fig-
ure 7 (right) shows that the overheads from atten-
tion, softmax, and layernorm operations become

0

1

2

3

4

5

6

Sp
ee

du
p

0.5k t/s

1.4k t/s1.4k t/s
1.7k t/s

1.9k t/s

FP16 Baseline
SmoothQuant QUIK-8B
Ideal 8 Bits

QUIK-4B
Ideal 4 Bits 7%

6%

61%

7%

19%

Quantization
FP MatMul
INT MatMul
FlashAttn
Other

Figure 7: Performance results and overhead breakdown
on LLaMA2-70B on a machine with 8x RTX 3090
GPUs. Left: Speedup vs. FP16 and vs. an ideal imple-
mentation, without overheads, for 4-bit and 8-bit QUIK
with absolute throughput values. Right: Performance
breakdown of end-to-end QUIK inference with outliers
in terms of MatMul time vs. quantization overheads.
significant when most computation occurs in 4-bit.

Outlier Performance Costs. To illustrate the
overheads of outliers, in Figure 7 (left) we pro-
vide end-to-end speedups for variants where we
directly use 8-bit and 4-bit kernels, without pre-
serving accuracy (Ideal 8-bit and 4-bit), relative to
our accurate QUIK implementations.

We observe that the 8-bit implementation pro-
vides close to ideal speedups, reducing the number
of GPUs from 7 to 5. QUIK-4B (taking outliers
into account) performs ≈15% better, further reduc-
ing the number of required GPUs to 3, using less
than 50 GB of GPU memory. The performance
impact of outlier selection (hence mixed precision
matrix multiplication) and selective 8-bit quanti-
zation (for down-projection MLP layer) is shown
in the comparison with Ideal 4-bit. QUIK-4B is
within 15% of Ideal 4-bit performance. (Notice
that this “Ideal” implementation has very poor ac-
curacy.) In Figure 7 (right) we break down the
per-operation overheads for LLaMA2-70B infer-
ence. We observe here and in Figure 5 that the
overheads of quantization and full precision multi-
plication can take up a large fraction of the overall
operation time, especially for smaller matrices.

4.3 Ablation Studies
We now provide in-depth examples of QUIK on the
large LLaMA2-70B and Falcon-180B models. The
former model is important as it is highly accurate
and sensitive, while the latter is the largest openly-
available GPT3-type model.

Case Study 1: LLaMA2-70B. First, we study
the FLOP breakdown across precisions using
QUIK-4B on LLaMA2-70B. Within the MLP mod-
ule of the LLaMA2-70B model, three linear layers
are present, referred to as "Up-Proj", "Gate-Proj",
and "Down-Proj". "Up-Proj" and "Gate-Proj" share

3361



6.7B 13B 30B 66B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

34
91

 tk
ns

/s

20
65

 tk
ns

/s

95
6 

tk
ns

/s

43
9 

tk
ns

/s

Baseline
QUIK-4B

(a) OPT

7B 13B 70B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

40
39

 tk
ns

/s

24
09

 tk
ns

/s

48
0 

tk
ns

/s

Baseline
QUIK-4B

(b) LLaMA-2

7B 40B 180B*
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

29
95

 tk
ns

/s

63
3 

tk
ns

/s

Baseline
QUIK-4B

(c) Falcon

Figure 8: End-to-end inference speedups for QUIK-4B with outliers relative to the FP16 baseline, on NVIDIA RTX
3090 GPUs. Falcon-180B results are from single Transformer block inference benchmark.

an input (MLP input) and apply their respective lin-
ear transformations to it. Subsequently, the output
of "Gate-Proj" is subjected to a SiLU activation
function. Lastly, the input for the "Down-Proj"
layer is constructed by taking the Hadamard prod-
uct of the outputs from "Up-Proj" and "Gate-Proj".

LLaMA-2 7B 13B 70B

Baseline 5.47 4.88 3.20

QUIK-4B 5.84 5.28 3.74
4-bit Down-Proj 8.87 7.78 6.91

Table 4: Ablation for keeping the Downproj in 4-bits.

We use input variance across layers to choose
both the number of outliers and the set of layers to
be executed in 8bit. (This is illustrated in Figure 11
for LLaMA2-70B.) Specifically, the "Down-Proj"
layers have large input variance, mainly due to the
Hadamard product of the previous two outputs. To
address this, we employ 8-bit quantization for both
the weights and activations within the "Down-Proj"
layers of LLaMA2 models. Table 4 shows that
keeping the down-projection layers in 8-bit is criti-
cal for high accuracy on LLaMA2, as it improves
perplexity by > 2 points, across all models.

Case Study 2: Falcon-180B. Finally, we apply
QUIK to Falcon-180B, one of the largest GPT-
style openly-available models. The model requires
≈ 365GB of GPU memory for the inference, which
makes it impossible to run inference on a GPU
server with 8x RTX3090 nodes (192 GB memory),
illustrating the importance of reducing the memory
footprint of this model. The results in Tables 2
and 8, and Figure 8 already presented quantiza-
tion results; in addition we exlore the hardware-
supported 2:4 sparse + INT4 format by combining
QUIK with 2:4 sparsity.

Instead of just sparsifying the already-quantized
model, which results in high accuracy drops, we

Precision Sparsity
Dense WikiText2 Mem. Peak
Layers (PPL) (rel to FP16)

FP16
0% All 3.30 100%
2:4 None 6.13 -

QUIK-4B

0% All 3.61 38 %
2:4 None 6.62 25%
2:4 Attn. Blocks 6.34 26%
2:4 MLP Blocks 3.93 36%

Table 5: Accuracy results for quantized + 2:4 sparsified
on Falcon-180B. For the quantized experiments, we
apply quantization on all layers with 256 outliers but
keep some of the layers in dense (mentioned in the
Table) for a single Transformer block.

extend the SparseGPT algorithm (Frantar and Alis-
tarh, 2023) to support our outlier scheme to jointly
quantize and sparsify the model, while keeping
the outlier features in dense FP16. In Table 5, we
present the results of quantizing all layers, but se-
lectively keep some layer types dense. Specifically,
we found that one-shot pruning of the weights in
the attention blocks to the 2:4 pattern throughout all
layers largely preserves accuracy, leading to small
memory gains. We present 8-bit results in the same
setting in Appendix M.

Discussion. In summary, QUIK shows that one
can execute a large majority of inference computa-
tion in 4-bit precision, with efficient GPU support.
Specifically, one can obtain speedups of over 3x in
using QUIK across several LLM types.

5 Limitations

Our current experiments are limited to compressing
the linear layers of LLMs. However, our scheme is
compatible with virtually any scheme for compress-
ing attention layers or the KV-cache (Sheng et al.,
2023), which can be applied orthogonally. Another
limitation, which we plan to address in future work,
is experimenting with recent Mixture-of-Experts
(MoE) architectures, and integration with specula-
tive decoding (Leviathan et al., 2023).

3362



References
Michael Boratko, Harshit Padigela, Divyendra Mikki-

lineni, Pritish Yuvraj, Rajarshi Das, Andrew McCal-
lum, Maria Chang, Achille Fokoue-Nkoutche, Pa-
van Kapanipathi, Nicholas Mattei, et al. 2018. A
systematic classification of knowledge, reasoning,
and context within the ARC dataset. arXiv preprint
arXiv:1806.00358.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with io-awareness.
arXiv preprint arXiv:2205.14135.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Al-
istarh. 2023. Spqr: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Tim Dettmers and Luke Zettlemoyer. 2022. The case for
4-bit precision: k-bit inference scaling laws. arXiv
preprint arXiv:2212.09720.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-
honey, and Kurt Keutzer. 2023. Squeezellm:
Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao,
Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du, and
Yuchen Xie. 2023. Fptq: Fine-grained post-training
quantization for large language models. arXiv
preprint arXiv:2308.15987.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. arXiv preprint arXiv:2306.00978.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

NVIDIA. Nvidia nsight compute.

NVIDIA. 2023. Nvidia cutlass library.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. Preprint, arXiv:2308.13137.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Sandeep Tata and Jignesh M Patel. 2003. PiQA: An al-
gebra for querying protein data sets. In International
Conference on Scientific and Statistical Database
Management.

TII UAE. 2023. The Falcon family of large language
models. https://huggingface.co/tiiuae.

3363

https://developer.nvidia.com/nsight-compute
https://github.com/NVIDIA/cutlass/
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://huggingface.co/tiiuae


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:
Reorder-based post-training quantization for large
language models. arXiv preprint arXiv:2304.01089.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
OPT: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

3364



A Ideal 4-bit Matrix Multiplication

Figure 9 shows the ideal performance of matrix multiplication kernel (using CUTLASS library) for different
matrix sizes. The plot shows nearly 4x speedup with large enough matrices.

256 512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336

Matrix Dimension (M=N=K)

0

100

200

300

400

TF
LO

P/
s

W4A4
W8A8
FP16
FP32

Figure 9: Ideal matrix multiplication performance for different layer sizes and data precision on RTX3090.

B Full QUIK Algorithm

Algorithm 1: Quantization and Dequantization kernels in QUIK.
Input :wInt, wFP, x, FPindices, scaleWeight, wReduced

1 Function QUIK Matmul:
2 xFP, xQ←−split(x, FPindices);
3 xINT, zeroAct, scaleAct←− Quantization(xQ);
4 resultFP ←− FPmatmul(xFP, wFP);
5 resultInt←− INTmatmul(xINT, wInt);
6 dequantFP ←− Dequantization(resultInt, zeroAct, scaleAct, scaleWeight, wReduced);
7 return dequantFP + resultFP;

Input :dataFP
8 Function Quantization:
9 zeroAct, scaleAct←− findZeroScale(dataFP);

10 for elem ∈ dataFP, outElem ∈ output do
11 //Use scale/zero corresponding to token
12 outFP ←− (elem - zeroAct) / scaleAct - halfRange;
13 outElem←− pack(outFP);

14 return output, zeroAct, scaleAct;
Input : inputINT, zeroAct, scaleAct, scaleWeight, wReduced

15 Function Dequantization:
16 for elem ∈ inputINT, outElem ∈ outputFP do
17 //Use scales for token and weight row, respectively
18 x←− elem * scaleAct * scaleWeight;
19 shift←− zeroAct + halfRange * scaleAct;
20 shift←− shift * wReduced;
21 outElem←− x+ shift;

22 return outputFP;

C QUIK Peak Memory Usage

In this section, we assess the memory usage of our quantized models. In Table 6, we evaluate the peak
memory usage across different configurations for the OPT and LLaMA-2 families. For OPT-66B, the
QUIK-8B and QUIK-4B models demonstrate peak memory reductions of approximately 47% (compared
to the ideal 50% reduction) and 74% (compared to the ideal 75% reduction), respectively. For the
LLaMA2-70B model, the reductions are 32% for QUIK-8B and 67% for QUIK-4B. This is because we
keep the down-projection in 8-bits and use additional outliers. Additional overheads come from auxiliary
buffers, which differ for various layer sizes.

3365



Model
OPT LLaMA-2

13B 30B 66B 7B 13B 70B

Baseline 30.5 67.4 162.1 14.9 28.0 147.1

QUIK-8B 16.1 39.3 81.2 14.6 25.2 99.3

QUIK-4B 10.7 24.6 45.1 7.1 12.1 49.1

Table 6: Peak memory usage (in GB) in an end-to-end benchmark. In total, the outliers take 2.71 GB and 4.06 GB
for OPT-66B and LLaMA2-70B models respectively.

D QUIK FLOP/s Analysis

Figure 10 shows the percentage of the FLOP/s we keep in each precision (INT4 for base weights, FP16
for outliers, and INT8 for down-projection layers) in LLaMA2-70B. More precisely, for 256 outliers, we
perform ≈70% of the operations in 4-bit and ≈27% using 8-bits.

QKV Out-Proj Up-Proj Gate-Proj Down-Proj LM-Head Sum
Module

0

20

40

60

80

100

FL
O

P/
s 

(%
)

LLaMA2-70B Linear Modules
FP16
INT8
INT4

Figure 10: FLOP/s analysis of the LLaMA2-70B linear layers with QUIK. We use 3.125% outliers (256 outliers in
all layers and 896 for the down-projection layer) and 2048 sequence length.

E Input Variance of Linear Layers

Figure 11 shows the variance of the inputs for different layers of 70B model.

0 10 20 30 40 50 60 70 80
Layer

10
−2

10
−1

10
0

10
1

10
2

10
3

Va
ria
nc
e

Q/K/V Out-Proj Up/Gate-Proj Down-Proj

Figure 11: The variance of the inputs in different layers of LLaMA2-70B. The "Down-Proj" layers have significantly
larger variances, resulting in poor 4-bit quantization.

3366



F Outlier Analysis

In this section, we look at how different outlier counts affect the WikiText2 score for the LLaMA2-70B
model. In Table 7, we observe that increasing the outliers from 128 to 1024 results in a 0.2 perplexity
improvement. We also adjusted the outliers for down-projection layers, ensuring there are 3.5x times
more than the other linear layers, to match input size. Our results show that using 256 outliers is already a
good choice for our experiments. Using additional outliers does not significantly improve accuracy.

Method Outliers Down-Proj WikiText2
Outliers (PPL)

Baseline - - 3.20

QUIK-4B

128 448 3.80
256 896 3.74
512 1792 3.67
1024 3584 3.62

Table 7: Ablation study of different outlier numbers in QUIK for the LLaMA2-70B model.

G Outlier-Free Layers

We study the effect of keeping multiple linear layers without any outliers. This might help boost end-to-end
performance by removing all the outlier-related overheads during the forward pass. (Although, as we
show later, these overheads are minor.) Table 8 shows how the accuracy of different models changes when
we use different absolute threshold values (shown by T), extracted using a linear search, for the outliers.
We conclude that there is no universal threshold across all models, which would preserve accuracy across
all models. For example, Falcon-180B can achieve reasonable accuracy even if 24% of the linear layers
(115 out of 480) contain zero outliers. However, this is not the case for smaller models: LLaMA2-70B
can recover accuracy with up to 5% of the linear layers (30 out of 560) having zero QUIK outliers. We
provide additional experiments in Appendix L.

Model T LLaMA2-70B Falcon-180B

FP16 - 3.2 3.30

QUIK-4B

0 3.74 (0) 3.61 (0)

2.0 3.75 (10) 3.61 (3)

3.0 3.85 (30) 3.61 (4)

4.0 5.15 (58) 3.72 (14)

8.0 5.92 (219) 3.73 (115)

Table 8: Study of zero outlier setting on WikiText2 using 256 outliers. We use zero outliers when the maximum
of scale is less than threshold T. For each experiment, the number of linear layers with zero outliers is written in
parentheses.

H Detailed Zero-Shot Results

Table 9 shows the detailed results of QUIK-4B on OPT and LLaMa-2 families on five popular zero-shot
tasks: PIQA (Tata and Patel, 2003); WinoGrande (Sakaguchi et al., 2021); HellaSwag (Zellers et al.,
2019); Arc (Easy and Challenge) (Boratko et al., 2018). We use the LM Evaluation Harness (Gao et al.,
2021) with default parameters in our experiments.

3367



Model Bits Arc Challenge Arc Easy HellaSwag PIQA WinoGrande Avg. Score

OPT-30B FP16 38.05 65.36 72.28 78.13 68.43 64.45
QUIK-4B 36.69 64.39 70.84 77.75 67.01 63.34

OPT-66B FP16 40.02 67.26 74.87 79.82 68.82 66.16
QUIK-4B 38.82 64.73 73.68 79.43 68.82 65.10

LLaMA2-13B FP16 48.98 77.44 79.38 80.52 72.22 71.70
QUIK-4B 48.04 74.92 78.36 79.22 71.90 70.49

LLaMA2-70B FP16 57.34 80.98 83.81 82.75 77.98 76.57
QUIK-4B 56.14 79.00 81.57 81.56 76.56 74.97

Table 9: LM eval harness results of QUIK on OPT andLLaMA-2 families, using 256 outliers.

I Full OPT Accuracy Results

Table 10 shows the perplexity results of OPT models. We use symmetric quantization for the weights in
all our experiments. The results suggest that in a 4-bit setting, considering outlier features is crucial to
preserve the accuracy even in small models (like OPT-1.3b). We note that 256 outliers is equivalent to
12.5% of the 1.3B model’s hidden size (and 2.77% of the 66B model’s hidden size).

Model OPT-1.3b OPT-6.7b OPT-13b OPT-30b OPT-66b

Task WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4

Baseline 14.63 16.96 14.72 10.86 13.09 11.74 10.13 12.34 11.20 9.56 11.84 10.69 9.34 11.36 10.28

GPTQ-4B 15.89 18.83 15.90 11.43 13.81 12.21 10.38 12.65 11.41 9.60 12.02 10.83 9.65 11.63 10.56

0 Outliers 15k 9k 10k 10k 9k 9k 9k 12k 9k 12k 13k 17k 12k 13k 10k
64 Outliers 26.259 27.143 22.981 11.473 13.888 12.348 11.031 13.305 11.971 10.283 12.557 11.267 9.851 11.965 10.742
128 Outliers 17.638 19.709 16.799 11.671 13.809 12.314 10.964 13.241 11.894 10.339 12.564 11.279 9.805 11.842 10.653
256 Outliers 17.358 19.525 16.607 11.184 13.811 12.262 10.779 13.175 11.847 10.078 12.465 11.226 9.662 11.793 10.635

Table 10: Perplexity scores of QUIK-4B over various OPT models with different outliers on three datasets:
WikiText2 (WIKI), Pen Treebank (PT), and C4. GPTQ-4B only quantizes the weights (using int-4 symmetric
quantization) and keeps the activations in FP16.

J Full LLaMA-2 Accuracy Results

Table 11 shows the perplexity of QUIK on LLaMA-2 models. We provide a list of tricks to improve the
quality of the model without too much overhead. We found that keeping the down-proj layer in 8 bits can
improve the perplexity by about 3 points. Also, we found weight clipping as a cheap and efficient trick for
improving the accuracy of QUIK-4B.

LLaMA-2 Down-Proj Clipping 7B 13B 70B

FP16 W16A16 - 5.47 4.88 3.2

GPTQ-4B W4A16 - 6.24 5.25 3.68

QUIK-4B W4A4 - 8.78 7.78 6.91

QUIK-4B W4A16 - 6.09 5.49 3.98

QUIK-4B W4A8 - 6.11 5.5 4.0

QUIK-4B W8A8 - 5.98 5.37 3.87

QUIK-4B W8A8 ✓ 5.84 5.28 3.74

Table 11: LLaMA-2 perplexity results on WikiText2 using 256 outliers. We apply clipping only during the weight
quantization.

3368



K Full INT-8 Accuracy Results

Table 12 shows QUIK-8B comparison against SmoothQuant on the WikiText2 dataset. We use per-token
(per-column) quantization for the activations (weights) in SmoothQuant and only apply the quantization
on the linear layers (which is the case for QUIK also). We exclude the Falcon-7B model as this model has
a single layer-norm for both MLP and Attention blocks and it is not clear how the weights of the FC1 and
KQV will be updated in the SmoothQuant algorithm.

Model OPT LLaMA-2 Falcon
1.3b 6.7B 13B 30B 66B 7B 13B 70B 40B 180B

FP16 14.63 10.84 10.13 9.56 9.34 5.47 4.88 3.20 5.23 3.30

SmoothQuant 14.70 10.89 10.37 9.59 9.80 5.58 4.94 3.48 5.26 3.30

QUIK-8B 14.62 10.84 10.13 9.51 9.29 5.48 4.89 3.33 5.23 3.31

Table 12: Accuracy results for 8bit models on WikiText2. We use 256 outliers in QUIK experiments. Following
the SmoothQuant paper, we use α = 0.8 hyperparameter for LLaMA-2 models and α = 0.5 for OPT and Falcon
families.

L Zero-Outlier Full Results

Table 13 shows the results of keeping different numbers of layers without outliers for different models.

M 2:4 Sparsity + INT8 Quantization

Table 14 shows the accuracy results of applying QUIK-8B with 2:4 sparsity across all models. The results
suggest that the main accuracy drop is from introducing 2:4 sparsity to the weight matrices and keeping
some of the layers in dense is crucial to preserve the accuracy (See section 4.3).

N Falcon performance benchmark

We also explore the performance improvements of Falcon (TII UAE, 2023) models. The 8xRTX3090
machine contains around 190GB GPU memory which is not enough to run fp16 model inference.

Model T LLaMA-2 Falcon
7B 13B 70B 7B 40B 180B

FP16 - 5.47 4.88 3.2 6.59 5.23 3.30

QUIK-4B

0 5.84 (0) 5.28 (0) 3.74 (0) 6.90 (0) 5.46 (0) 3.61 (0)

2.0 5.91 (5) 5.33 (3) 3.75 (10) 6.90 (3) 5.46 (1) 3.61 (3)

3.0 6.09 (11) 5.34 (8) 3.85 (30) 6.91 (14) 5.46 (2) 3.61 (4)

4.0 6.13 (21) 5.36 (17) 5.15 (58) 6.93 (27) 10.56 (8) 3.72 (14)

8.0 12.93 (55) 21.85 (66) 5.92 (219) 6.94 (57) 10.61 (33) 3.73 (115)

Table 13: Study of zero outlier setting on WikiText2 using 256 outliers. We use zero outliers when the maximum
of scale is less than threshold T. For each experiment, the number of linear layers with zero outliers is written in
parentheses.

3369



Model Sparsity OPT LLaMA-2 Falcon
1.3b 6.7B 13B 30B 66B 7B 13B 70B 7B 40B 180B

FP16 0% 14.63 10.84 10.13 9.56 9.34 5.47 4.88 3.20 6.59 5.23 3.30

SparseGPT 2:4 24.08 14.15 12.93 10.93 10.08 10.97 8.78 5.70 12.33 12.33 6.13

QUIK-8B 0% 14.62 10.84 10.13 9.51 9.29 5.48 4.89 3.33 6.59 5.23 3.31
2:4 22.69 14.59 12.87 11.06 10.24 11.07 8.66 5.89 11.07 8.09 6.19

Table 14: WikiText2 accuracy results for applying 2:4 sparsity with QUIK-8B. We use 256 outliers in all experiments.

(4096, 4096)

(8192, 1024)

(11008, 4096)

(5120, 5120)

(8192, 8192)

(28672, 8192)

Matrix size

0

1

2

3

4
Sp

ee
du

p
Baseline
QUIK-8B
QUIK-4B

Figure 12: Layer-wise speedups on a single RTX3080 for different layer sizes and compression types. QUIK-4B
with 256 outliers, QUIK-8B without outliers.

O Performance on RTX3080 GPUs

To validate the performance of QUIK in other types of GPUs we conducted benchmarks on RTX3080
GPUs. The results are presented in Figure 12. We can see that QUIK-4B still can get more that 4x speedup
on another type of GPU.

P Performance at different sequence sizes

We mainly focus our work on the “prefill” cases with large sequence sizes (in all our experiments sequence
size is equal to 2048). In this section we explore the performance of the QUIK-4B with other input
sequence sizes. In Figures 13(a) and 13(b) we vary input size from 1 to 8k. In the first expeeriment
(Figure. 13(a)) we ran layer-wise benchmark, in the second (Figure 13(b)) we ran inference of a single
Transformer block (on a single GPU). We see that at small input sequence sizes QUIK is noticably slower
for smaller layer size and models. It can be explained by the fact that the gains of low precision matrix
multiplication at this scale can not compensate the quantization overheads. However, at large layer and
model sizes QUIK has up to 2x speedup even with single token input. In case of the large input sequences
we see that performance decreases meaning that low precision matrix multiplication saturates at this scale.

Q Performance with various outlier number

In this section we explore the effect of outliers numbers on the QUIK performances. Figure 14 suggests
that the timing of QUIK matmul stays the same across all layer sizes for all non-zero outlier numbers. The
zero outliers case superiority can be explained by the fact that it does not have additional full precision
matrix multiplication and input data movements. However, these results show that QUIK allow increase
the outlier number without performance sacrifices which is crucial for the accuracy recovery, as we
discussed in the Section ??.

3370



1 16 256 2048 8192
Input size

1

2

3

4

Ti
m

e 
re

la
tiv

e 
to

 fp
16

(4096, 4096)
(8192, 1024)
(8192, 8192)
(28672, 8192)

(a) Layerwise Performance.

1 16 256 2048 8192
Input size

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Th
ro

ug
hp

ut
 re

la
tiv

e 
to

 fp
16

7B
13B
70B

(b) LLaMA Block performance.

Figure 13: Relative performance of QUIK-4B with outliers for different sequence sizes (batch size = 1) on RTX3090
GPU

0 32 64 128 256 512 704 1024
Number of outliers

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e 
pe

r m
at

m
ul

, m
s

(4096, 4096)
(8192, 1024)

(11008, 4096)
(5120, 5120)

Figure 14: Timing results for different QUIK-4B layers sizes with various number of outliers on RTX3090 GPU.

3371


