
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3473–3487
November 12-16, 2024 ©2024 Association for Computational Linguistics

LLM4Decompile: Decompiling Binary Code with Large Language Models
Hanzhuo Tan1,2, Qi Luo1, Jing Li2,3, Yuqun Zhang1*,

1Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen, China

2Department of Computing,
The Hong Kong Polytechnic University, HKSAR, China

3 Research Centre for Data Science & Artificial Intelligence

hanzhuo.tan@connect.polyu.hk, 12232440@mail.sustech.edu.cn, jing-amelia.li@polyu.edu.hk, zhangyq@sustech.edu.cn

Abstract

Decompilation aims to convert binary code to
high-level source code, but traditional tools like
Ghidra often produce results that are difficult
to read and execute. Motivated by the advance-
ments in Large Language Models (LLMs),
we propose LLM4Decompile, the first and
largest open-source LLM series (1.3B to 33B)
trained to decompile binary code. We opti-
mize the LLM training process and introduce
the LLM4Decompile-End models to decompile
binary directly. The resulting models signifi-
cantly outperform GPT-4o and Ghidra on the
HumanEval and ExeBench benchmarks over
100% in terms of re-executability rate. Addi-
tionally, we improve the standard refinement
approach to fine-tune the LLM4Decompile-
Ref models, enabling them to effectively re-
fine the decompiled code from Ghidra and
achieve a further 16.2% improvement over
the LLM4Decompile-End. LLM4Decompile1

demonstrates the potential of LLMs to revolu-
tionize binary code decompilation, delivering
remarkable improvements in readability and ex-
ecutability while complementing conventional
tools for optimal results.

1 Introduction

Decompilation, the reverse process of converting
machine code or binary code into a high-level
programming language, facilitates various reverse
engineering tasks such as vulnerability identifica-
tion, malware research, and legacy software mi-
gration (Brumley et al., 2013; Katz et al., 2018;
Hosseini and Dolan-Gavitt, 2022; Xu et al., 2023;
Armengol-Estapé et al., 2023; Jiang et al., 2023;
Wong et al., 2023; Hu et al., 2024). Decompilation
is challenging due to the loss of information inher-
ent in the compilation process, particularly finer de-
tails such as variable names (Lacomis et al., 2019)

*Yuqun Zhang is the corresponding author.
1https://github.com/albertan017/LLM4Decompile

Source Code
00111010010101010101010
110101010110101000101...

Compile

Disassemble

Binary

ASM

Ghidra Decompiled Pseudo-Code

int func0(float num[], int size,
float threshold) {
int i, j;
for (i = 0; i < size; i++)
for (j = i + 1; j < size; j++)
if (fabs(num[i] - num[j])

< threshold)
return 1;

return 0;}

undefined4 func0(float param_1,long param_2,int param_3){
int local_28;
int local_24;
local_24 = 0;
do {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;}

while (local_28 = local_28 + 1, local_28 < param_3) {
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) -

*(float *)(param_2 + (long)local_28 * 4)) &
SUB168(_DAT_00402010,0)) < (double)param_1) {

return 1;}}
local_24 = local_24 + 1;

} while(true);}

<func0>:
endbr64
push %rbp
...

...
mov $0x0,%eax
pop %rbp
retq

Decompile

Figure 1: Illustration of compiling source code to binary,
disassembling binary to assembly code (ASM), and
decompiling ASM to pseudo-code with Ghidra. The
pseudo-code is hard to read and not executable.

and fundamental structures like loops and condi-
tionals (Wei et al., 2007). To address these chal-
lenges, numerous tools have been developed for de-
compilation, with Ghidra (Ghidra, 2024a) and IDA
Pro (Hex-Rays, 2024) being the most commonly
used. Although these tools have the capability to re-
vert binary code to high-level pseudo-code, the out-
puts often lack readability and re-executability (Liu
and Wang, 2020a; Wang et al., 2017), which are
essential for applications like legacy software mi-
gration and security instrumentation tasks (Wong
et al., 2023; Dinesh et al., 2020).

Figure 1 illustrates the transformation from the
source C code to a binary file, assembly code
(ASM), and pseudo-code decompiled from Ghidra.
In this pseudo-code, the original nested for struc-
ture is replaced with a less intuitive combination of
a do-while loop inside another while loop. Fur-
thermore, array indexing like num[i] is decom-
piled into complicated pointer arithmetic such as
*(float *)(param_2 + (long)local_24 * 4).
The decompiled output also exhibits syntactical er-
rors, with the function return type being converted
to undefined4. Overall, traditional decompilation
tools often strip away the syntactic clarity provided

3473

https://github.com/albertan017/LLM4Decompile

by high-level languages and do not ensure the cor-
rectness of syntax, posing significant challenges
even for skilled developers to reconstruct the algo-
rithmic logic (Wong et al., 2023; Hu et al., 2024).

Recent advancements in Large Language Mod-
els (LLMs) have greatly improved the process
of decompiling code. There are two primary ap-
proaches to LLM-based decompilation—Refined-
Decompile and End2end-Decompile. In particular,
Refined-Decompile prompts LLMs to refine the re-
sults from traditional decompilation tools (Hu et al.,
2024; Wong et al., 2023; Xu et al., 2023). However,
LLMs are primarily optimized for high-level pro-
gramming languages and may not be as effective
with binary data. End2end-Decompile fine-tunes
LLMs to decompile binaries directly. Nevertheless,
previous open-source applications of this approach
were limited by the use of smaller models with
only around 200 million parameters and restricted
training corpus (Hosseini and Dolan-Gavitt, 2022;
Armengol-Estapé et al., 2023; Jiang et al., 2023), In
contrast, utilizing larger models trained on broader
datasets has proven to substantially improve the
performance (Hoffmann et al., 2024; Kaplan et al.,
2020; Rozière et al., 2023; OpenAI, 2023).

To address the limitations of previous studies,
we propose LLM4Decompile, the first and largest
open-source LLM series with sizes ranging from
1.3B to 33B parameters specifically trained to de-
compile binary code. To the best of our knowl-
edge, there’s no previous study attempts to im-
prove the capability of LLM-based decompila-
tion in such depth or incorporate such large-scale
LLMs. Based on the End2end-Decompile ap-
proach, we introduce three critical steps: data aug-
mentation, data cleaning, and two-stage training, to
optimize the LLM training process and introduce
the LLM4Decompile-End models to decompile bi-
nary directly. Specifically, our LLM4Decompile-
End-6.7B model demonstrates a successful decom-
pilation rate of 45.4% on HumanEval (Chen et al.,
2021) and 18.0% on ExeBench (Armengol-Estapé
et al., 2022), far exceeding Ghidra (Ghidra, 2024a)
or GPT-4o (OpenAI, 2023) by over 100%. Addi-
tionally, we improve the Refined-Decompile strat-
egy by examining the efficiency of Ghidra’s decom-
pilation process, augmenting and filtering data to
fine-tune the LLM4Decompile-Ref models, which
excel at refining Ghidra’s output. Experiments sug-
gest a higher performance ceiling for the enhanced
Refined-Decompile approach, with 16.2% improve-
ment over LLM4Decompile-End. Additionally, we

assess the risks associated with the potential misuse
of our model under obfuscation conditions com-
monly used in software protection. Our findings
indicate that neither our approach nor Ghidra can
effectively decompile obfuscated code, mitigating
concerns about unauthorized use for infringement
of intellectual property.

In summary, our contributions are as follows:
• We introduce the LLM4Decompile series, the

first and largest open-source LLMs (ranging from
1.3B to 33B parameters) fine-tuned on 15 billion
tokens for decompilation.

• We optimize the LLM training process and in-
troduce LLM4Decompile-End models, which set
a new performance standard of direct binary de-
compilation, significantly surpassing GPT-4o and
Ghidra by over 100% in terms of re-executability
on the HumanEval and ExeBench benchmarks.

• We improve the Refined-Decompile approach
to fine-tune the LLM4Decompile-Ref models,
enabling them to effectively refine the decom-
piled results from Ghidra and achieve fur-
ther 16.2% re-executability enhancements over
LLM4Decompile-End.

2 Related Work

The practice of reversing executable binaries to
their source code form, known as decompilation,
has been researched for decades (Miecznikowski
and Hendren, 2002; Nolan, 2012; Katz et al., 2019).
Traditional decompilation relies on analyzing the
control and data flows of program (Brumley et al.,
2013), and employing pattern matching, as seen in
tools like Hex-Rays Ida pro (Hex-Rays, 2024) and
Ghidra (Ghidra, 2024a). These systems attempt
to identify patterns within a program’s control-
flow graph (CFG) that corresponding to standard
programming constructs such as conditional state-
ments or loops. However, the output from such
decompilation processes tends to be a source-code-
like representation of assembly code, including
direct translations of variables to registers, use of
gotos, and other low-level operations instead of
the original high-level language constructs. This
output, while often functionally similar to the orig-
inal code, is difficult to understand and may not be
re-executable (Liu and Wang, 2020b; Wong et al.,
2023). Drawing inspiration from neural machine
translation, researchers have reformulated decompi-
lation as a translation exercise, converting machine-

3474

level instructions into readable source code (Katz
et al., 2019). Initial attempts in this area utilized
recurrent neural networks (RNNs) (Katz et al.,
2018) for decompilation, complemented by error-
correction techniques to enhance the outcomes.

Motivated by the success of Large Language
Models (Li et al., 2023; Rozière et al., 2023; Guo
et al., 2024), researchers have employed LLMs for
decompilation, primarily through two approaches—
Refined-Decompile and End2end-Decompile. In
particular, Refined-Decompile prompts the LLMs
to refine results from traditional decompilation
tools like Ghidra or IDA Pro. For instance,
DeGPT (Hu et al., 2024) enhances Ghidra’s read-
ability by reducing cognitive load by 24.4%, while
DecGPT (Wong et al., 2023) increases IDA Pro’s
re-executability rate to over 75% by integrating er-
ror messages into its refinement process. These
approaches, however, largely ignore the fact that
LLMs are designed primarily for high-level pro-
gramming languages (Li et al., 2023; Rozière et al.,
2023; Guo et al., 2024), and their effectiveness
with binary files is not well-established. End2end-
Decompile, on the other hand, fine-tunes LLMs
to decompile binaries directly. Early open-source
models like BTC (Hosseini and Dolan-Gavitt,
2022) and recent development Slade (Armengol-
Estapé et al., 2023) adopt the language model with
around 200 million parameters (Lewis et al., 2020a)
to fine-tune for decompilation. While Nova (Jiang
et al., 2023), which is not open-sourced, devel-
ops a binary LLM with 1 billion parameters and
fine-tunes it for decompilation. Consequently, the
largest open-source model in this domain is limited
to 200M. Whereas utilizing larger models trained
on broader datasets has proven to substantially im-
prove the performance (Hoffmann et al., 2024; Ka-
plan et al., 2020; Rozière et al., 2023).

Therefore, our objective is to present the first
and most extensive open-source LLM4Decompile
series, aiming at comprehensively advancing the
decompilation capability of LLMs. Initially, we
optimize the End2end-Decompile approach to train
the LLM4Decompile-End, demonstrating its effec-
tiveness in directly decompiling binary files. Subse-
quently, we enhance the Refined-Decompile frame-
works to integrate LLMs with Ghidra, augmenting
traditional tools for optimal effectiveness.

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

SRC

ASM

…

…

…

… <func0>:
endbr64
push %rbp
mov %rsp,%rbp
...
mov $0x0,%eax
pop %rbp
retq

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

Compile Binary

LLM4Decompile-EndSRC’

Disassemble

Loss

0011101001
01010101...

Preprocessor

Com
piler

A
ssem

bler

Linker

Figure 2: End2end-Decompile framework. The source
code (SRC) is compiled to binary, disassembled to
assembly instructions (ASM), and decompiled by
LLM4Decompile to generate SRC’. Loss is computed
between SRC and SRC’ for training.

3 LLM4Decompile

First, we introduce our strategy for optimizing
LLM training to directly decompile binaries, the
resulting models are named as LLM4Decompile-
End. Following this, we detail our efforts for en-
hancing the Refined-Decompile approach, the cor-
responding fine-tuned models are referred to as
LLM4Decompile-Ref, which can effectively refine
the decompiled results from Ghidra.

3.1 LLM4Decompile-End
In this section, we describe the general End2end-
Decompile framework, and present details
on our strategy to optimize the training of
LLM4Decompile-End models.

3.1.1 The End2End-Decompile Framework
Figure 2 illustrates the End2end-Decompile frame-
work from compilation to decompilation processes.
During compilation, the Preprocessor processes the
source code (SRC) to eliminate comments and ex-
pand macros or includes. The cleaned code is then
forwarded to the Compiler, which converts it into
assembly code (ASM). This ASM is transformed
into binary code (0s and 1s) by the Assembler.
The Linker finalizes the process by linking func-
tion calls to create an executable file. Decompila-
tion, on the other hand, involves converting binary
code back into a source file. LLMs, being trained
on text, lack the ability to process binary data di-
rectly. Therefore, binaries must be disassembled
by Objdump into assembly language (ASM) first.
It should be noted that binary and disassembled
ASM are equivalent, they can be interconverted,

3475

and thus we refer to them interchangeably. Finally,
the loss is computed between the decompiled code
and source code to guide the training.

3.1.2 Optimize LLM4Decompile-End
We optimize the training of LLM4Decompile-End
Models through three key steps: 1) augmenting
the training corpus, 2) improving the quality of the
data, 3) and incorporating two-state training.

Training Corpus. As indicated by the Scaling-
Law (Hoffmann et al., 2024; Kaplan et al., 2020),
the effectiveness of an LLM heavily relies on the
size of the training corpus. Consequently, our ini-
tial step in training optimization involves incorpo-
rating a large training corpus. We construct asm-
source pairs based on ExeBench (Armengol-Estapé
et al., 2022), which is the largest public collection
of five million C functions. To further expand the
training data, we consider the compilation opti-
mization states frequently used by developers. The
compilation optimization involves techniques like
eliminating redundant instructions, better register
allocation, and loop transformations (Muchnick,
1997), which perfectly acts as data augmentation
for decompilation. The key optimization levels are
O0 (default, no optimization) to O3 (aggressive
optimizations). We compile the source code into
all four stages, i.e., O0, O1, O2, and O3, and pair
each of them with the source code.

Data Quality. Data quality is critical in training
an effective model (Li et al., 2023). Therefore, our
second step is to clean our training set. We follow
the guidelines of StarCoder (Li et al., 2023) by
computing MinHash (Broder, 2000) for the code
and utilizing Locally Sensitive Hashing (LSH) to
remove duplicates. We also exclude samples that
are less than 10 tokens.

Two-Stage Training. Our final step for training
optimization aims to educate the model with bi-
nary knowledge, and includes two-stage training.
In the first stage, we train the model with a large
corpus of compilable but not linkable (executable)
data. Note that it’s significantly easier to extract C
code that is compilable but not linkable (da Silva
et al., 2021; Armengol-Estapé et al., 2022). Such
not-executable binary object code will closely re-
semble its executable version except it lacks linked
addresses for external symbols. Therefore, in the
first stage, we use the extensive compilable codes
to ground our model in binary knowledge. In the

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

SRC

Pseudo-code

…

…

…

…int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

Compile Binary

LLM4Decompile-RefSRC’

Loss

0011101001
01010101...

Preprocessor

Com
piler

A
ssem

bler

Linker

undefined func0(...){
int local_28;
do {...}
while (...) {
if (...) {
return 1;}}

} while(...);}

Ghidra

Figure 3: Refined-Decompile framework. It differs from
End2end-Decompile (Figure 2) only in the LLM’s input,
which is pseudo-code decompiled from Ghidra.

second stage, we refine the model using executable
code to ensure its practical applicability. We also
conduct an ablation study for the two-stage training
in Section 4.1.2. Comparison between compilable
and executable data is detailed in Appendix B.

3.2 LLM4Decompile-Ref

We now examine how the conventional decompi-
lation tool, Ghidra, can be significantly improved
by integrating it with LLMs. Note that our ap-
proach aims at refining entire outputs from Ghidra,
offering a broader strategy than merely recover-
ing names or types (Nitin et al., 2021; Xu et al.,
2024). We begin by detailing the general Refined-
Decompile framework, and discuss our strategy to
enhance Ghidra’s output by LLM4Decompile-Ref.

3.2.1 The Refined-Decompile Framework
The Refined-Decompile approach is shown in Fig-
ure 3. This approach differs from that in Figure 2
only in terms of the LLM’s input, which in the
case of Refined-Decompile comes from Ghidra’s
decompilation output. Specifically, Ghidra is used
to decompile the binary, and then the LLM is fine-
tuned to enhance Ghidra’s output. While Ghidra
produces high-level pseudo-code that may suffer
from readability issues and syntax errors, it effec-
tively preserves the underlying logic. Refining this
pseudo-code significantly mitigates the challenges
associated with understanding the obscure ASM.

3.2.2 Refine Ghidra by LLM4Decompile-Ref
Decompiling using Ghidra. Decompiling the
executable code with Ghidra (Figure 3) is time-
consuming due to the complex nature of the ex-
ecutables in ExeBench, which include numerous

3476

external functions and IO wrappers. Ghidra Head-
less (Ghidra, 2024b) requires 2 seconds per sample
using 128-core multiprocessing. Given such a high
computational load, and the high similarities be-
tween non-executable and executable binaries, we
choose to decompile the non-executable files using
Ghidra. This choice significantly reduces the time
to 0.2 seconds per sample, enabling us to efficiently
gather large amounts of training data.

Optimization Strategies. Similar to Sec-
tion 3.1.2, we augment our dataset by compiling
with optimization levels O0, O1, O2, and O3. We
further filter the dataset using LSH to remove
duplicates. As shown in Figure 1, Ghidra often
generates overly long pseudo-code. Consequently,
we filter out any samples that exceed the maximum
length accepted by our model.

4 Experiments

In this section, we discuss the experimental se-
tups and results for LLM4Decompile-End and
LLM4Decompile-Ref respectively.

4.1 LLM4Decompile-End

4.1.1 Experimental Setups
Training Data. As discussed in Section 3.1.2,
we construct asm-source pairs based on compilable
and executable datasets from ExeBench (Armengol-
Estapé et al., 2022), where we only consider the
decompilation of GCC (Stallman et al., 2003) com-
piled C function under x86 Linux platform. After
filtering, our refined compilable training dataset
includes 7.2 million samples, containing roughly
7 billion tokens. Our executable training dataset
includes 1.6 million samples, containing roughly
572 million tokens. To train the model, we use the
following template: # This is the assembly
code: [ASM code] # What is the source
code? [source code], where [ASM code] corre-
sponds to the disassembled assembly code from the
binary, and [source code] is the original C func-
tion. Note that the template choice does not impact
the performance, since we fine-tune the model to
produce the source code.

Evaluation Benchmarks and Metrics. To eval-
uate the models, we introduce HumanEval (Chen
et al., 2021) and ExeBench (Armengol-Estapé et al.,
2022) benchmarks. HumanEval is the leading
benchmark for code generation assessment and in-
cludes 164 programming challenges with accom-

panying Python solutions and assertions. We con-
verted these Python solutions and assertions into
C, making sure that they can be compiled with the
GCC compiler using standard C libraries (Free Soft-
ware Foundation, 2024) and pass all the assertions,
and name it HumanEval-Decompile. ExeBench
consists of 5000 real-world C functions taken
from GitHub with IO examples. Note that the
HumanEval-Decompile consists of individual func-
tions that depend only on the standard C library.
In contrast, ExeBench includes functions extracted
from real-world projects with user-defined struc-
tures and functions2.

As for the evaluation metrics, we follow
previous work to calculate the re-executability
rate (Armengol-Estapé et al., 2023; Wong et al.,
2023). During evaluation, the C source code is
first compiled into a binary, then disassembled into
assembly code, and fed into the decompilation sys-
tem to be reconstructed back into C code. This
decompiled C code is then combined with the as-
sertions to check if it can successfully execute and
pass those assertions.

Model Configurations. The LLM4Decompile
uses the same architecture as DeepSeek-
Coder (Guo et al., 2024) and we initialize our
models with the corresponding DeepSeek-Coder
checkpoints. We employ Sequence-to-sequence
prediction (S2S), which is the training objective
adopted in most neural machine translation
models that aim to predict the output given the
input sequence. As illustrated in Equation 1, it
minimizes the negative log likelihood for the
source code tokens xi, ..., xj :

L = −
∑

i

logPi(xi, ..., xj |x1, ..., xi−1; θ) (1)

Where the loss is calculated only for the output
sequence xi...xj , or the source code.

Baselines. We selected two key baselines for
comparison. First, GPT-4o (OpenAI, 2023) rep-
resents the most capable LLMs, providing an upper
bound on LLM performance. Second, DeepSeek-
Coder (Guo et al., 2024) is selected as the cur-
rent SOTA open-source Code LLM. It represents
the forefront of publicly available models specifi-
cally tailored for coding tasks. While recent work

2Exebench provides comparison of the test set against the
GitHub population using nine distinct code complexity met-
rics, confirming that the characteristics of the testing functions
are aligned with functions in larger real-world projects.

3477

Model/Benchmark HumanEval-Decompile ExeBench

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

DeepSeek-Coder-6.7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GPT-4o 30.49 11.59 10.37 11.59 16.01 4.43 3.28 3.97 3.43 3.78

LLM4Decompile-End-1.3B 47.20 20.61 21.22 20.24 27.32 17.86 13.62 13.20 13.28 14.49
LLM4Decompile-End-6.7B 68.05 39.51 36.71 37.20 45.37 22.89 16.60 16.18 16.25 17.98
LLM4Decompile-End-33B 51.68 25.56 24.15 24.75 31.54 18.86 14.65 13.96 14.11 15.40

Table 1: Main comparison of End2end-Decompile approaches for re-executability rates on evaluation benchmarks.

Model/Benchmark HumanEval-Decompile ExeBench

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

Compilable-1.3B 42.68 16.46 16.46 17.07 23.17 5.68 4.46 4.16 4.43 4.68
Compilable-6.7B 51.83 33.54 32.32 32.32 37.50 7.52 6.49 6.71 6.60 6.83
Executable-1.3B 19.51 12.80 12.80 11.59 14.18 21.94 19.46 19.31 19.50 20.05
Executable-6.7B 37.20 18.29 22.56 17.07 23.78 29.38 25.98 25.91 25.49 26.69

Table 2: Ablation study on training dataset. The “Compilable” models are trained on 7.2M non-executable functions,
while the “Executable” models are trained on 1.6M executable functions.

Slade (Armengol-Estapé et al., 2023) fine-tunes
language model for decompilation, it relies on in-
termediate compiler outputs, specifically, the *.s
files. In practice, however, such intermediate files
are rarely released by developers. Therefore, we
focus on a more realistic approach, and consider
decompilation only from the binaries, for further
discussions please refer to Appendix B.

Implementation. We use the DeepSeek-Coder
models obtained from Hugging Face (Wolf et al.,
2019). We train our models using LLaMA-
Factory library (Zheng et al., 2024). For 1.3B
and 6.7B models, we set a batch size = 2048
and learning rate = 2e−5 and train the mod-
els for 2 epochs (15B tokens). Experiments are
performed on NVIDIA A100-80GB GPU clusters.
Fine-tuning the 1.3B and 6.7B LLM4Decompile-
End takes 12 and 61 days on 8×A100 respectively.
Limited by the resources, for the 33B model we
only train for 200M tokens. For evaluation, we
use the vllm (Kwon et al., 2023) to accelerate the
generation (decompilation) process. We employ
greedy decoding to minimize randomness.

4.1.2 Experimental Results
Main Results. Table 1 presents the re-
executability rate under different optimization
states for our studied models. The base version
of DeepSeek-Coder-33B is unable to accurately
decompile binaries. It could generate code that
seemed correct but failed to retain the original

program semantics. GPT-4o shows notable
decompilation skills; it’s capable to decompile
non-optimized (O0) code with a success rate of
30.5%, though the rate significantly decreases to
about 11% for optimized codes (O1-O3). The
LLM4Decompile-End models, on the other hand,
demonstrate excellent decompilation abilities.
The 1.3B version successfully decompiles and
retains the program semantics in 27.3% of cases
on average, whereas the 6.7B version has a success
rate of 45.4%. This improvement underscores
the advantages of using larger models to capture
a program’s semantics more effectively. While
attempting to fine-tune the 33B model, we
encountered substantial challenges related to the
high communication loads, which significantly
slowed the training process and restricted us to
using only 200M tokens (Section 4.1.1). Despite
this limitation, the 33B model still outperforms the
1.3B model, reaffirming the importance of scaling
up the model size.

Ablation Study. As discussed in Section 4.1.1,
our training data comprises two distinct sets: 7.2
million compilable functions (non-executable) and
1.6M executable functions. We conducted an ab-
lation study using these datasets, and the results
are displayed in Table 2. Here, “Compilable” de-
notes the model trained solely on compilable data,
while “Executable” indicates models trained ex-
clusively on executable data. Notably, the binary
object from compilable functions lacks links to

3478

Model/Metrics Re-executability Rate Edit Similarity

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

LLM4Decompile-End-6.7B 68.05 39.51 36.71 37.20 45.37 15.57 12.92 12.93 12.69 13.53
Ghidra

Base 34.76 16.46 15.24 14.02 20.12 6.99 6.13 6.19 5.47 6.20
+GPT-4o 46.95 34.15 28.66 31.10 35.22 6.60 5.63 5.67 4.99 5.72
+LLM4Decompile-Ref-1.3B 68.90 37.20 40.85 37.20 46.04 15.17 13.25 12.92 12.67 13.50
+LLM4Decompile-Ref-6.7B 74.39 46.95 47.56 42.07 52.74 15.59 13.53 13.42 12.73 13.82
+LLM4Decompile-Ref-33B* 70.73 47.56 43.90 41.46 50.91 15.40 13.79 13.63 13.07 13.97
+LLM4Decompile-Ref-22B* 80.49 58.54 59.76 57.93 64.18 15.19 14.04 13.58 13.40 13.85

Table 3: Main comparison of Refined-Decompile approaches for re-executability rate and Edit Similar-
ity on HumanEval-Decompile benchmark. “+GPT-4o” refers to enhance the Ghidra results with GPT-4o,
“+LLM4Decompile-Ref” means refining Ghidra results with the fine-tuned LLM4Decompile-Ref models. Note that
the 33B model was trained using only 200M tokens, which is just 10% of the tokens used for the 1.3B/6.7B/22B
model. For the 22B model, Please refer to Appendix D.

function calls, which is similar in text distribu-
tion to the HumanEval-Decompile data, consisting
of single functions dependent only on standard C
libraries. Consequently, the 6.7B model trained
only on compilable data successfully decompiled
37.5% of HumanEval-Decompile functions, but
only 6.8% on ExeBench, which features real func-
tions with extensive user-defined functions. On
the other hand, the 6.7B model trained solely on
executable data achieved a 26.7% re-executability
rate on the ExeBench test set but faced challenges
with single functions, with only a 23.8% success
rate on HumanEval-Decompile due to the smaller
size of the training corpus. Limited by the space,
we present further analysis in Appendix C.

4.2 LLM4Decompile-Ref

4.2.1 Experimental Setups
Experimental Datasets. The training data is
constructed using ExeBench, with Ghidra Head-
less (Ghidra, 2024b) employed to decompile the
binary object file. Due to constraints in computa-
tional resources, only 400K functions each with
optimization levels from O0 to O3 (1.6M samples,
1B tokens) are used for training and the evaluation
is conducted on HumanEval-Decompile. The mod-
els are trained using the same template described
in Section 4.1.1. In addition, following previous
work (Hosseini and Dolan-Gavitt, 2022; Armengol-
Estapé et al., 2023), we access the readability of de-
compiled results in terms of Edit Similarity score.

Implementation. Configuration settings for the
model are consistent with those in Section 4.1.1.
For the 1.3B and 6.7B models, the fine-tuning
process involves 2B tokens in 2 epochs, and re-

quires 2 and 8 days respectively on 8 × A100.
Limited by the resource, for 33B model we only
train for 200M tokens. For evaluation, we first
access the re-executability rate of Ghidra to estab-
lish a baseline. Subsequently, GPT-4o is used to
enhance Ghidra’s decompilation result with the
prompt, Generate linux compilable C/C++
code of the main and other functions
in the supplied snippet without using
goto, fix any missing headers. Do not
explain anything., following DecGPT (Wong
et al., 2023). Finally, we use LLM4Decompile-Ref
models to refine the Ghidra’s output.

4.2.2 Experimental Results
The results for the baselines and Refined-
Decompile approaches are summarized in Table 3.
For the pseudo-code decompiled by Ghidra, which
is not optimized for re-execution, only an average
of 20.1% of them pass the test cases. GPT-4o as-
sists in refining this pseudo-code and enhancing
its quality. The LLM4Decompile-Ref models offer
substantial improvements over Ghidra’s outputs,
with the 6.7B model yielding a 160% increase in
re-executability. Similar to the discussion in Sec-
tion 4.1.2, the 33B model outperforms the 1.3B
model even though it used considerably less train-
ing data. And it achieves performance that is only
3.6% below the 6.7B model, which benefited from
ten times more training data. When compared to
LLM4Decompile-End-6.7B, the LLM4Decompile-
Ref-6.7B model, though trained on just 10% of
the data in LLM4Decompile-Ref models, shows a
16.2% performance increase, suggesting a greater
potential for the Refined-Decompile approach. We
present further analysis in Appendix D.

3479

int func0(float num[], int size,
float threshold) {
int i, j;
for (i = 0; i < size; i++)
for (j = i + 1; j < size; j++)
if (fabs(num[i] - num[j])

< threshold)
return 1;

return 0;}

undefined4 func0(float param_1,long param_2,int param_3){
int local_28;
int local_24;
local_24 = 0;
do {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;}

while (local_28 = local_28 + 1, local_28 < param_3) {
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) -

*(float *)(param_2 + (long)local_28 * 4)) &
SUB168(_DAT_00402010,0)) < (double)param_1) {

return 1;}}
local_24 = local_24 + 1;

} while(true);}

int func0(float *x, int n,
float eps){
int i, j;
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (fabsf(x[i] - x[j]) < eps)
return 1;

return 0;}

typedef unsigned int undefined4;
undefined4 func0(float param_1,
long param_2, int param_3)

 {
int local_28;
int local_24;
local_24 = 0;
while (1) {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;

 }
while (local_28 + 1 < param_3) {
local_28++;
if ((double)((*(float *)
(param_2 + (long)local_24 * 4)
- *(float *)(param_2 +
(long)local_28 * 4)))
< (double)param_1) {
return 1;

 }
 }

local_24++;}}

int func0(float *x, int n,
float eps){
int i, j;
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (fabsf(x[i] - x[j]) < eps)
return 1;

return 0;}

Source Code LLM4Decompile-End-6.7B

Ghidra

Ghidra+LLM4Decompile-6.7B Ghidra+GPT-4o

int func0(float **arr, int length,
 float threshold) {
 int outer = 0;
 while (outer < length) {
 int inner = 0;
 while (inner < length) {
 float diff = arr[outer][inner]
 - arr[inner][inner];
 if (fabs(diff) <= threshold) {
 return 1;}
 inner++;}
 outer++;}
 return 0;}

GPT-4o

Figure 4: Decompilation results of different approaches.
GPT-4o output is plausible yet fail to recover the array
dimension (incorrect 2D array arr[outer][inner]).
Ghidra’s pseudo-code is notably less readable as
discussed in Figure 1. GPT-refined Ghidra re-
sult (Ghidra+GPT-4o) marginally enhances readabil-
ity but fails to correctly render for loops and ar-
ray indexing. Conversely, LLM4Decompile-End and
LLM4Decompile-Ref produce accurate and easy-to-
read outputs.

An analysis of readability across different meth-
ods is also conducted and presented in Table 3
with illustrative examples presented in Figure 4.
For text similarity, all decompiled outputs diverge
from the original source code, with Edit Similarity
ranging from 5.7% to 14.0%, primarily because
the compilation process removes variable names
and optimizes the logic structure. Ghidra generates
pseudo-code that is particularly less readable with
6.2% Edit Similarity on average. Interestingly, with
refinement from GPT (Ghidra+GPT-4o), there is a
marginal decrease in Edit Similarity. GPT assists
in refining type errors like undefined4 and ulong
(Figure 4). However, it struggles to accurately re-
construct for loops and array indexing. In contrast,
both LLM4Decompile-End and LLM4Decompile-
Ref generate outputs that are more aligned with the
format of the source code and easier to comprehend.

To summarize, domain-specific fine-tuning is cru-
cial for enhancing re-executability and readability
of decompilation outputs.

We further employed GPT-4o to evaluate read-
ability (Wang et al., 2023; Liu et al., 2023). Specif-
ically, we guide GPT to assess syntax similarity
(variables, loops, conditions) and structural in-
tegrity (logic flow, structure) using a structured
template. We then summarize readability with a
score from 1 (Poor) to 5 (Excellent), based on de-
tailed comparisons between original and decom-
piled code. The template is available on our GitHub
repository3. Table 4 summarizes our readability
assessments on HumanEval-Decompile across var-
ious models and optimization levels.

Optimization Level O0 O1 O2 O3 AVG
GPT-4o 2.8171 2.3537 2.2927 2.311 2.4436
Ghidra 2.9756 2.4085 2.5183 2.3841 2.5716

LLM4Decompile-End-6.7B 4.0732 3.4634 3.4024 3.2378 3.5442

Table 4: Evaluation by GPT-4o on the readability of
decompiled results from various methods.

Compared with the results in Table 3, it indicates
that Edit Similarity (ES) follows a trend similar to
GPT evaluation. Although ES is mathematically
based, its values can be difficult to interpret. For in-
stance, a 15 ES score obtained by LLM4Decompile
model may seem low, yet the decompiled function
and the source code are highly aligned. In contrast,
GPT evaluation, which measures readability con-
ceptually, is more intuitive. A score of 4 on the
GPT scale suggests that the decompiled code is
nearly identical to the original. Nonetheless, these
scores are derived from GPT’s "subjective" judg-
ments. Combining insights from both ES and GPT-
Eval could lead to a more thorough assessment of
code readability.

5 Obfuscation Discussion

The process of decompilation aims at revealing the
source code from binaries distributed by develop-
ers, presenting a potential threat to the protection
of intellectual property. To resolve the ethical con-
cerns, this section accesses the risks of the possible
misuse of our decompilation models.

In software development, engineers typically im-
plement obfuscation techniques before releasing
binary files to the public (Lachaux et al., 2021;
Junod et al., 2015). This is done to protect the

3https://github.com/albertan017/LLM4Decompile/
blob/main/samples/readability_template.txt

3480

https://github.com/albertan017/LLM4Decompile/blob/main/samples/readability_template.txt
https://github.com/albertan017/LLM4Decompile/blob/main/samples/readability_template.txt

Model/Obfuscation Control Flow Flattening Bogus Control Flow

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

LLM4Decompile-End-6.7B 4.27 4.88 4.88 3.05 4.27 9.76 7.32 7.93 9.76 8.69
Ghidra 12.20 6.71 6.10 6.71 7.93 6.10 4.27 3.05 4.27 4.42

+LLM4Decompile-Ref-6.7B 6.71 3.66 4.88 5.49 5.19 15.85 14.02 8.54 7.93 11.59

Table 5: Re-executability rates of different approaches on the HumanEval-Decompile benchmark under obfuscations.
Compared to Table 3, the decompilation success rates significantly drop for over 70%.

software from unauthorized analysis or modifica-
tion. In our study, we focus on two fundamental
obfuscation techniques as suggested in Obfuscator-
LLVM (Junod et al., 2015): Control Flow Flatten-
ing (CFF) and Bogus Control Flow (BCF). These
techniques are designed to disguise the true logic of
the software, thereby making decompilation more
challenging to protect the software’s intellectual
property. We present the details of these two tech-
niques in the Appendix E.

Results summarized in Table 5 demonstrate that
basic conventional obfuscation techniques are suffi-
cient to prevent both Ghidra and LLM4Decompile
from decoding obfuscated binaries. For example,
the decompilation success rate for the most ad-
vanced model, LLM4Decompile-Ref-6.7B, drops
significantly for 90.2% (0.5274 to 0.0519) under
CFF and 78.0% (0.5274 to 0.1159) under BCF.
Considering the industry standard of employing
several complex obfuscation methods prior to soft-
ware release, experimental results in Table 5 mit-
igate the concerns about unauthorized use for in-
fringement of intellectual property.

6 Conclusions

We propose LLM4Decompile, the first and largest
open-source LLM series with sizes ranging from
1.3B to 33B trained to decompile binary code.
Based on the End2end-Decompile approach, we
optimize the LLM training process and introduce
the LLM4Decompile-End models to decompile bi-
nary directly. The resulting 6.7B model shows a
decompilation accuracy of 45.4% on HumanEval
and 18.0% on ExeBench, surpassing existing tools
like Ghidra and GPT-4o over 100%. Addition-
ally, we improve the Refined-Decompile strategy to
fine-tune the LLM4Decompile-Ref models, which
excel at refining the Ghidra’s output, with 16.2%
improvement over LLM4Decompile-End. Finally,
we conduct obfuscation experiments and address
concerns regarding the misuse of LLM4Decompile
models for infringement of intellectual property.

Limitations

The scope of this research is limited to the com-
pilation and decompilation of C language target-
ing the x86 platform. While we are confident that
the methodologies developed here could be eas-
ily adapted to other programming languages and
platforms, these potential extensions have been re-
served for future investigation. Furthermore, Our
research is limited by financial constraints, with a
budget equivalent to using 8×A100 GPUs for one
year, which includes all trials and iterations. As
a result, we have only managed to fully fine-tune
models up to 6.7B, and conducted initial explo-
rations on the 33B models with a small dataset,
leaving the exploration of 70B and larger models
to future studies. Nonetheless, our preliminary
tests confirm the potential advantages of scaling up
model sizes and suggest a promising direction for
future decompilation research into larger models.

Ethic Statement

We have evaluated the risks of the possible mis-
use of our decompilation models in Section 5.
Basic obfuscation methods such as Control Flow
Flattening and Bogus Control Flow have been
empirically tested and proven to protect against
unauthorized decompilation by both traditional
tools like Ghidra and advanced models like
LLM4Decompile. This built-in limitation ensures
that while LLM4Decompile is a powerful tool for
legitimate uses, it does not facilitate the infringe-
ment of intellectual property.

In practical applications in the industry, software
developers typically employ a series of complex ob-
fuscation methods before releasing their software.
This practice adds an additional layer of security
and intellectual property protection against decom-
pilation. LLM4Decompile’s design and intended
use respect these measures, ensuring that it serves
as an aid in legal and ethical scenarios, such as un-
derstanding legacy code or enhancing cybersecurity

3481

defenses, rather than undermining them.
The development and deployment of

LLM4Decompile are guided by strict ethi-
cal standards. The model is primarily intended for
use in scenarios where permission has been granted
or where the software is not protected by copyright.
This includes academic research, debugging,
learning, and situations where companies seek to
recover lost source code of their own software.

Acknowledgments

This work is partially supported by the Na-
tional Natural Science Foundation of China (No.
62372220), the Research Grants Council of the
Hong Kong Special Administrative Region, China
(Project No. PolyU/25200821), the NSFC Young
Scientists Fund (Project No. 62006203), the
Innovation and Technology Fund (Project No.
PRP/047/22FX), and PolyU Internal Fund from
RC-DSAI (Project No. 1-CE1E).

References
01-AI. 2024. Yi-coder.

Jordi Armengol-Estapé, Jackson Woodruff, Alexander
Brauckmann, José Wesley de Souza Magalhães, and
Michael F. P. O’Boyle. 2022. Exebench: An ml-scale
dataset of executable c functions. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, MAPS 2022, page 50–59,
New York, NY, USA. Association for Computing
Machinery.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cum-
mins, and Michael F. P. O’Boyle. 2023. Slade: A
portable small language model decompiler for opti-
mized assembler. CoRR, abs/2305.12520.

Andrei Z Broder. 2000. Identifying and filtering near-
duplicate documents. In Annual symposium on com-
binatorial pattern matching, pages 1–10. Springer.

David Brumley, JongHyup Lee, Edward J. Schwartz,
and Maverick Woo. 2013. Native x86 decompila-
tion using semantics-preserving structural analysis
and iterative control-flow structuring. In Proceedings
of the 22th USENIX Security Symposium, Washing-
ton, DC, USA, August 14-16, 2013, pages 353–368.
USENIX Association.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Chris Cummins, Volker Seeker, Dejan Grubisic, Bap-
tiste Roziere, Jonas Gehring, Gabriel Synnaeve, and
Hugh Leather. 2024. Meta large language model
compiler: Foundation models of compiler optimiza-
tion. arXiv preprint arXiv:2407.02524.

Anderson Faustino da Silva, Bruno Conde Kind,
José Wesley de Souza Magalhães, Jerônimo Nunes
Rocha, Breno Campos Ferreira Guimarães, and
Fernando Magno Quintão Pereira. 2021. ANG-
HABENCH: A suite with one million compilable C
benchmarks for code-size reduction. In IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO 2021, Seoul, South Korea, Febru-
ary 27 - March 3, 2021, pages 378–390. IEEE.

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math-
ias Payer. 2020. Retrowrite: Statically instrument-
ing cots binaries for fuzzing and sanitization. In
2020 IEEE Symposium on Security and Privacy (SP),
pages 1497–1511.

Inc. Free Software Foundation. 2024. The gnu c library.

Ghidra. 2024a. Ghidra software reverse engineering
framework.

Ghidra. 2024b. Headless analyzer readme.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Hex-Rays. 2024. Ida pro: a cross-platform multi-
processor disassembler and debugger.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Oriol Vinyals, Jack W. Rae,
and Laurent Sifre. 2024. Training compute-optimal
large language models. In Proceedings of the 36th
International Conference on Neural Information Pro-
cessing Systems, NIPS ’22, Red Hook, NY, USA.
Curran Associates Inc.

3482

https://github.com/01-ai/Yi-Coder
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://www.gnu.org/software/libc/manual/html_mono/libc.html
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://static.grumpycoder.net/pixel/support/analyzeHeadlessREADME.html
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/

Iman Hosseini and Brendan Dolan-Gavitt. 2022. Be-
yond the C: retargetable decompilation using neural
machine translation. CoRR, abs/2212.08950.

Peiwei Hu, Ruigang Liang, and Kai Chen. 2024. Degpt:
Optimizing decompiler output with llm. In Proceed-
ings 2024 Network and Distributed System Security
Symposium (2024). https://api. semanticscholar. org/-
CorpusID, volume 267622140.

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe
Xu, Lin Tan, and Xiangyu Zhang. 2023. Nova+:
Generative language models for binaries. CoRR,
abs/2311.13721.

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie
Michielin. 2015. Obfuscator-LLVM – software
protection for the masses. In Proceedings of the
IEEE/ACM 1st International Workshop on Software
Protection, SPRO’15, Firenze, Italy, May 19th, 2015,
pages 3–9. IEEE.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Deborah S. Katz, Jason Ruchti, and Eric M. Schulte.
2018. Using recurrent neural networks for decompi-
lation. In 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018,
Campobasso, Italy, March 20-23, 2018, pages 346–
356. IEEE Computer Society.

Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran
Yahav. 2019. Towards neural decompilation. ArXiv,
abs/1905.08325.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Marie-Anne Lachaux, Baptiste Roziere, Marc
Szafraniec, and Guillaume Lample. 2021. Dobf: A
deobfuscation pre-training objective for program-
ming languages. Advances in Neural Information
Processing Systems, 34:14967–14979.

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neu-
big, and Bogdan Vasilescu. 2019. DIRE: A neural
approach to decompiled identifier naming. In 34th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA,
USA, November 11-15, 2019, pages 628–639. IEEE.

Chris Lattner and Vikram Adve. 2004. Llvm: A com-
pilation framework for lifelong program analysis
& transformation. In International symposium on
code generation and optimization, 2004. CGO 2004.,
pages 75–86. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020a.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020b. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you! Preprint, arXiv:2305.06161.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Zhibo Liu and Shuai Wang. 2020a. How far we have
come: testing decompilation correctness of c decom-
pilers. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2020, page 475–487, New York,
NY, USA. Association for Computing Machinery.

Zhibo Liu and Shuai Wang. 2020b. How far we have
come: testing decompilation correctness of C decom-
pilers. In ISSTA ’20: 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis,
Virtual Event, USA, July 18-22, 2020, pages 475–487.
ACM.

Jerome Miecznikowski and Laurie J. Hendren. 2002.
Decompiling java bytecode: Problems, traps and

3483

https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2311.13721
https://doi.org/10.48550/ARXIV.2311.13721
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/SPRO.2015.10
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/SANER.2018.8330222
https://api.semanticscholar.org/CorpusID:160009986
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://api.semanticscholar.org/CorpusID:206628735

pitfalls. In International Conference on Compiler
Construction.

Mistral-AI. 2024. Codestral: Empowering developers
and democratising coding with mistral ai.

Steven S. Muchnick. 1997. Advanced compiler design
and implementation.

Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail
Kaiser. 2021. DIRECT : A transformer-based model
for decompiled identifier renaming. In Proceedings
of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pages 48–57,
Online. Association for Computational Linguistics.

Godfrey Nolan. 2012. Decompiling android. In Apress.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Richard M Stallman et al. 2003. Using the gnu compiler
collection. Free Software Foundation, 4(02).

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu,
and Jie Zhou. 2023. Is ChatGPT a good NLG evalua-
tor? a preliminary study. In Proceedings of the 4th
New Frontiers in Summarization Workshop, pages
1–11, Singapore. Association for Computational Lin-
guistics.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,
Aravind Machiry, John Grosen, Paul Grosen, Christo-
pher Kruegel, and Giovanni Vigna. 2017. Ramblr:
Making reassembly great again. In NDSS.

Tao Wei, Jian Mao, Wei Zou, and Yu Chen. 2007. A
new algorithm for identifying loops in decompilation.
In Static Analysis, 14th International Symposium,
SAS 2007, Kongens Lyngby, Denmark, August 22-24,
2007, Proceedings, volume 4634 of Lecture Notes in
Computer Science, pages 170–183. Springer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu,
Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023.
Refining decompiled C code with large language
models. CoRR, abs/2310.06530.

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye,
Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan, and
Xiangyu Zhang. 2023. Lmpa: Improving decompila-
tion by synergy of large language model and program
analysis. CoRR, abs/2306.02546.

Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang,
Shiwei Feng, Yapeng Ye, Nan Jiang, Danning
Xie, Siyuan Cheng, Lin Tan, and Xiangyu Zhang.
2024. Leveraging generative models to recover
variable names from stripped binary. Preprint,
arXiv:2306.02546.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac-
tory: Unified efficient fine-tuning of 100+ language
models. arXiv preprint arXiv:2403.13372.

A ExeBench Setups

For every sample in ExeBench’s executable splits,
assembly code from *.s file—a compiler’s interme-
diate output as discussed in Section 3.1 and Fig-
ure 1—is required to compile the sample into a
binary. The specific compilation settings and pro-
cessing details, however, are not provided by their
authors. Consequently, we choose to compile the
code in a standard way and manage to compile only
half of the samples. This leaves us with 443K out
of 797K samples for the executable training set and
2621 out of 5000 samples for the executable test
set. Accordingly, we train our model on the 443K
samples and conduct the re-executability evalua-
tion on these 2621 samples, the results are shown
in Table 1.

The researchers from Slade (Armengol-
Estapé et al., 2023), who also developed
ExeBench (Armengol-Estapé et al., 2022),
have published their decompilation findings
on ExeBench. They chose to decompile the
intermediate output, or assembly code from *.s
file, directly without further compilation into
binaries, where in practice, such intermediate
output is rarely released by software developers.
Their reported results, as seen in Table 6, show
a significant difference from ours. Their version
of ChatGPT achieved a re-executability rate of
22.2% and an edit similarity of 44.0% under O0
optimization. On the other hand, our GPT-4o
model only reached a 4.4% re-executability rate
and a 7.9% edit similarity. The approach taken by
Slade involves settings not commonly available in
practical decompilation scenarios, which explains
why their results vary significantly from ours. We
adhere to a more realistic setting, decompiling

3484

https://api.semanticscholar.org/CorpusID:206628735
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://api.semanticscholar.org/CorpusID:32801154
https://api.semanticscholar.org/CorpusID:32801154
https://doi.org/10.18653/v1/2021.nlp4prog-1.6
https://doi.org/10.18653/v1/2021.nlp4prog-1.6
https://api.semanticscholar.org/CorpusID:37807480
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.1007/978-3-540-74061-2_11
https://doi.org/10.1007/978-3-540-74061-2_11
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://arxiv.org/abs/2306.02546
https://arxiv.org/abs/2306.02546
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

void StateIdle(Ltc4151State next,
Ltc4151 *device) {
device->state = next;

}

<StateIdle>:
endbr64
push %rbp
mov %rsp,%rbp
mov %edi,-0x4(%rbp)
mov %rsi,-0x10(%rbp)
mov -0x10(%rbp),%rax
mov -0x4(%rbp),%edx
mov %edx,(%rax)
nop
pop %rbp
retq

void StateIdle(int a, int *b) {
*b = a;
}

Source Code

GPT-4o

ASM

Figure 5: Decompilation results of GPT-4o on
ExeBench test case.

binary files based solely on their intrinsic data,
without any external information.

Model/Metrics Re-executability Edit Similarity
Optimization Level O0 O3 O0 O3

Slade 59.5 52.2 71.0 60.0
ChatGPT 22.2 13.6 44.0 34.0

GPT-4o(ours) 4.4 3.4 7.9 6.6

Table 6: Re-executability and Edit Similarity on
Exebench.

To further illustrate our settings, Figure 5 of-
fers an example where the source function includes
specific user-defined types like Ltc4151State,
Ltc4151, and device. However, these types are
completely lost after compilation, i.e., no informa-
tion related to these user-definitions can be found
in the binary (disassembled ASM code). Conse-
quently, GPT-4o is unable to reconstruct these types
based purely on the ASM (the realistic setting), but
converting them to default types int or pointer,
producing non-executable code. This issue was
pervasive across the ExeBench test set, leading to
the failure of GPT-4o models in decompiling the
ExeBench samples in a realistic setting.

B Compilable and Executable Binary

The statistics of training and testing datasets is sum-
marized in the Table 7. We also present an exam-
ple to illustrate the difference between these two
datasets.

Dataset/Code ASM SRC
Train-Executable 205.08 119.35
Test-Exebench 280.27 162.68

Train-Compilable 711.89 241.16
Test-Decompile-Eval 808.07 186.84

Table 7: Statistics of training and testing set.

As shown in Figure 6, the primary distinction be-
tween a compilable binary and an executable binary
is the handling of function operation addresses. In

Object file (only compile) Executable file (linked)

Figure 6: Compilable data and Executable data.

a compilable file, the address for a jump operation
is placeholder, representing only a relative offset
within the function. Conversely, in an executable
file, this jump operation address is resolved during
the linking process, pointing directly to the specific
memory location where the code will execute.

C Further Analysis of
LLM4Decompile-End

0.0

0.2

0.4

0.6

0.8

1.0

R
e-

ex
ec

ut
ab

ili
ty

 R
at

e

1.3B Performance on HumanEval-Decompile

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

>=
40

0

Length

0.0

0.2

0.4

0.6

0.8

1.0

R
e-

ex
ec

ut
ab

ili
ty

 R
at

e

6.7B Performance on HumanEval-Decompile

O0 O1 O2 O3

Figure 7: Re-executability rate with the growth of input
length. The 6.7B model is more robust against input
length.

Figure 7 illustrates that the re-executability rate
decreases as the input length increases, and there is
a marked decline in performance at higher levels of
code optimization, highlighting the difficulties in
decompiling long and highly optimized sequences.
Importantly, the performance difference between
the 1.3B and 6.7B models showcased in the figure
emphasizes the advantages of larger models in such

3485

Other
2%

Assert
4%

Type
16%

Struct
28%

Declare
50%

ExeBench

Other
8%

Type 3%
Return 4% Struct 7%

Syntax
14%

Assert
64%

HumanEval-Decompile

Figure 8: Types of errors identified in the two bench-
marks: LLM4Decomile-End-6.7B faces issues with log-
ical errors in HumanEval-Decompile and user-defined
components in ExeBench.

tasks. Larger models, with their expanded compu-
tational resources and deeper learning capabilities,
are inherently better at resolving the challenges
posed by complex decompilations.

The error analysis presented in Figure 8 for
LLM4Decompile-End-6.7B indicates that logical
errors are prevalent in the HumanEval-Decompile
scenarios, with 64% of errors due to assertions that
the decompiled codes do not pass. In the ExeBench
dataset, which features real functions with user-
defined structures and types, the major challenges
are related to reclaiming these user-specific com-
ponents. Where 50% of the errors come from un-
declared functions, and 28% from improper use of
structures. Given that these user-defined details are
typically lost during the compilation process, re-
constructing them can be particularly challenging.
Integrating techniques like Retrieval Augmented
Generation (Lewis et al., 2020b) might supplement
the decompilation process with necessary external
information.

D Data Quality, Volume and Model

Data Quality In this project, we intentionally
limited our data preprocessing to classical tech-
niques such as filtering short texts and removing
duplicates. This approach was chosen to estab-
lish a fair baseline model for decompilation that
minimizes potential biases, aiming to provide a
broad, unrefined baseline model that reflects di-
verse scenarios. We acknowledge that selective
data removal, specifically excluding data incompat-
ible with standard C libraries (Free Software Foun-
dation, 2024), can enhance performance, as evi-
denced in Table 8 with Decompile-Eval, which
only relies on standard C libraries. While refining
the dataset can lead to improved performance, our
primary goal in this study was to set a foundational
baseline for the community. We believe this base-

line can serve as a starting point encouraging future
research to refine and expand.

Models Re-executability Rate
Optimization Level O0 O1 O2 O3 AVG
Compilable-6.7B 51.83 33.54 32.32 32.32 37.50

+Executable (2B tokens) 68.05 39.51 36.71 37.20 45.37
+Exe w. Standard C (100M tokens) 71.80 42.68 41.31 41.46 49.31

Table 8: Performance improves when training data
(+Exe w. Standard C) closely resembles the testing
set patterns.

Data Volume We have summarized the relation-
ship between performance and training epochs (2B
token in one epoch) for the LLM4Decompile-Ref-
1.3B model in Table 9. From this, it is clear that a
single epoch serves as a strong baseline, while two
epochs optimize performance. Additional epochs
tend to lead to overfitting and diminished results.

Epoch O0 O1 O2 O3 Avg
1 67.68 41.46 41.46 35.37 46.49
2 68.29 40.85 40.85 37.20 46.80
3 62.80 37.80 36.59 29.88 41.77
4 51.22 32.93 27.44 26.22 34.45

Table 9: Performance of LLM4Decompile-Ref-1.3B on
HumanEval-Decompile w.r.t. different training epochs.

Moreover, we have included results from the
6.7B model to address scaling issues and provided
comparison with the 1.3B and 33B models in Ta-
ble 10. Notably, the 6.7B model achieves com-
parable performance to the 1.3B model with only
20% of the data, and the 33B model reaches similar
outcomes to the 6.7B with just 10% of the data, al-
though these ratios may differ with varying datasets.

Size epoch O0 O1 O2 O3 Avg
1.3B 1.0 67.68 41.46 41.46 35.37 46.49
6.7B 0.05 55.49 31.71 34.76 30.49 38.11
6.7B 0.1 57.93 36.74 32.77 32.01 39.86
6.7B 0.2 65.85 37.80 40.24 34.76 44.66
6.7B 0.5 65.55 45.73 43.29 43.75 49.58
6.7B 1.0 72.56 45.73 43.90 42.68 51.22
33B 0.1 70.73 47.56 43.90 41.46 50.91

Table 10: Performance of LLM4Decompile-Ref mod-
els on HumanEval-Decompile w.r.t. different training
epochs.

Our findings suggest that model scaling can sig-
nificantly enhance performance when the training
data is adequately large (100M tokens), but repeti-
tive training risks overfitting after a few epochs.

Model Choosing the right base model for de-
compilation training significantly influences perfor-

3486

mance. Our first choice, Deepseek-Coder-6.7B, de-
livered an encouraging average re-executability rate
of 52.74% on the HumanEval-Decompile bench-
mark. Conversely, LLM-Compiler-7B (Cummins
et al., 2024), trained to compile source code into
LLVM IR (Lattner and Adve, 2004)—the opposite
of decompilation—served as a more effective foun-
dation, enhancing performance by 3.5% compared
to Deepseek-Coder-6.7B. Additionally, Yi-Coder-
9B (01-AI, 2024), introduced in September 2024
as the current state-of-the-art model, markedly im-
proved decompilation training results by 23.1%.
Furthermore, CodeStral-22B (Mistral-AI, 2024),
benefiting from its larger architecture, provided a
21.7% improvement over smaller models.

Model/Opt. Level O0 O1 O2 O3 AVG
DeepSeek-Coder-6.7B 74.39 46.95 47.56 42.07 52.74

LLM-Compiler-7B 72.56 51.83 48.78 45.12 54.57
Yi-Coder-9B 79.27 62.20 61.59 56.71 64.94

CodeStral-22B 80.49 58.54 59.76 57.93 64.18

Table 11: Comparison of re-executability rates for base
models in the LLM4Decompile-Ref series.

E Obfuscation Techniques

We provide the details of two classic obfuscation
techniques suggested in Obfuscator-LLVM (Junod
et al., 2015).

Control Flow Flattening. It enhances the secu-
rity of software by transforming its straightforward,
hierarchical control flow into a more complex, flat-
tened structure. The workflow involves breaking a
function into basic blocks, arranging these blocks
at the same level, and encapsulating them within a
switch statement inside a loop.

Bogus Control Flow. It modifies a function’s ex-
ecution sequence by inserting an additional basic
block prior to the existing one. This added block
includes an opaque predicate, followed by a con-
ditional jump that leads back to the original block.
Additionally, the original basic block is polluted
with randomly selected, meaningless instructions.

3487

