
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3488–3500
November 12-16, 2024 ©2024 Association for Computational Linguistics

From Bottom to Top: Extending the Potential of Parameter Efficient
Fine-Tuning

Jihao Gu, Zelin Wang, Yibo Zhang, Ziji Zhang, Ping Gong*

School of Artificial Intelligence,
Beijing University of Posts and Telecommunications, BeiJing, China
{gujihao, wang_zelin, zhangyibo, 1614823271, pgong}@bupt.edu.cn

Abstract

With the proliferation of large language mod-
els, Parameter Efficient Fine-Tuning (PEFT)
method, which freeze pre-trained parameters
and only fine-tune a few task-specific parame-
ters, are playing an increasingly important role.
However, previous work primarily applied uni-
form operations across all layers of the model,
overlooking the fact that different layers in a
transformer store different information. In the
process of exploration, We find that there is a
significant differences in fine-tuning strategies
between different layers, and fine-tuning only
a subset of layers can even achieve comparable
performance. Based on this, we propose the
Hybrid LoRA-Prefix Tuning (HLPT) method,
which uses enhanced LoRA and Prefix-tuning
methods with learnable adaptive mechanism
separately for the bottom and top layers, and
the Half Hybrid LoRA-Prefix Tuning (H2LPT)
method, which goes a step further, reducing
the parameter count to nearly half by omitting
fine-tuning in the middle layers. Extensive ex-
periments with large language models on vari-
ous downstream tasks provide strong evidence
for the potential of PEFT focusing on differ-
ent layers’ interactions and the effectiveness of
our methods. Furthermore, we validate the ro-
bustness of these methods and their advantages
in smoothing training convergence, reducing
inference time requirements.

1 Introduction

With the success of large language models like
GPT-3 (Brown et al., 2020) and Ernie3.0 (Sun et al.,
2021), large language models (LLMs) have demon-
strated remarkable generative capabilities, enabling
them to handle various downstream tasks. More-
over, it has spurred the development of numerous
large language models such as GPT-J (Wang and
Komatsuzaki, 2021) and LLaMA (Touvron et al.,
2023) . However, this also brings forth a challenge

*Ping Gong is the corresponding author.

that these LLMs typically have billions of param-
eters, making it challenging to afford the compu-
tational resources required for fine-tuning all pa-
rameters of the model for different downstream
tasks.

To address this challenge, the PEFT (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2021; He
et al., 2022a) method, as an emerging fine-tuning
approach, often adds a subset of parameters to
the model to tune while freezing the original pre-
trained model parameters. Significantly reducing
the number of parameters needed for fine-tuning
while achieving comparable results on downstream
tasks, thus greatly reducing resource consumption
during training.

In previous works, the different information stor-
age between layers was neglected while most of
works applied the same method uniformly across
all layers of the model. However, prior researches
have indicated the distinct effect of different lay-
ers. (Jawahar et al., 2019; Tenney et al., 2019;
Jawahar et al., 2019). It is generally believed that
lower layers contain more specific sentence-level
information, middle layers focus on capturing syn-
tactic information and higher layers store more
abstract semantic information. There has been a
lack of analysis and utilization concerning the dis-
tinct roles played by different layers. Based on the
perspective, we assume that by effectively combin-
ing various PEFT methods according to the distinct
roles of different layers, we can achieve a more
efficient PEFT approach, and conduct extensive
experiments using LLMs with zero-shot learning
to validate our ideas and the increasingly important
generation capability of our methods in contrast to
previous methods focusing on understanding tasks.

Inspired by the work (Patel et al., 2021), we
focuses on two efficient methods: LoRA, which
operates in parallel mechanisms and utilizes matrix
rank, and prefix, which adds virtual heads before
multi-head attention. As shown in Figure1, in our

3488

Figure 1: This is an analysis of the experimental results regarding the effects of different layers. We divide the
LLaMA-7B model into two equal parts based on the number of layers, where "LoRA+prefix" represents placing
LoRA at the bottom layers and prefix at the top layers, and "prefix+LoRA" represents the opposite. On the left
side is a comparison of the loss during convergence for the two training methods, with the x-axis representing the
number of epochs. On the right side is a comparison of the responses generated by the two trained models for the
same question.

study, we find different layer allocation strategies
for LoRA and prefix methods result in completely
opposite effects on task performance and model
convergence speed. We attribute this result to that
LoRA fundamentally adjusts the model parameters,
making it suitable for fine-tuning general specific
information, whereas prefix tuning involves adding
prompts to the input to guide the model to adapt
to downstream tasks, requiring a certain level of
understanding of large model language, making it
suitable for capturing abstract information at the
top layers. Further exploration (refer to Section
3) has revealed that the model can even maintain
comparable performance while discarding half of
the layers during fine-tuning.

Based on the survey mentioned above, we have
introduced two methods: Hybrid LoRA-Prefix Tun-
ing (HLPT), which effectively combines the en-
hanced LoRA and Prefix methods operating on
both the top and bottom layers, and Half Hybrid
LoRA-Prefix Tuning (H2LPT), which further re-
duces the number of parameters by half based on
HLPT excluding the operations on the middle lay-
ers, to help the model adapt more effectively to
various downstream tasks and unleash the poten-
tial of PEFT. We conduct lots of experiments on
a total of six datasets for mathematical reason-
ing tasks using large language models, namely
LLaMA-7B, LLaMA-13B, and GPT-J (6B) (Tou-
vron et al., 2023; Wang and Komatsuzaki, 2021).
The accuracy can be even significantly improved
while reducing the number of parameters by up

to 71 points compared to the original LoRA and
Prefix methods in the main experiment. These ex-
periments highlight the powerful potential of tun-
ing each layer differently based on interactions be-
tween different layers to reduce model resource
consumption and enhance performance, affirming
the effectiveness of the methods presented in this
paper.

In summary, our main contributions can be out-
lined as follows:

1.Investigate and demonstrate the suitability of
distinct information storage in different layers for
fine-tuning methods.

2.Introduce two methods, HLPT and H2LPT,
employing enhanced LoRA and Prefix to adapt to
the diverse information storage across layers.

3.Discover the conclusion that the model can ig-
nore half of the layers during fine-tuning while still
achieving comparable performance, and propose a
corresponding approach.

2 Background and Related Works

As the model size increases, the significance of
PEFT methods becomes increasingly apparent,
leading to the development of several classical
and widely-used PEFT techniques. These methods
predominantly involve freezing the original pre-
trained parameters and fine-tuning only the newly
introduced parameters. Among these, "Adapter
tuning" adds adjustable modules to the multi-head
attention and feed-forward layers of the transformer
model. "Prefix tuning" (Li and Liang, 2021) intro-

3489

(c)

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

…

…

…

+ ：method1

+ ：method2

+ ：method3

+ ：method4
(a)

(b)

Figure 2: Figure(a) is a line graph depicting the average accuracy across six datasets as a function of the ratio of
lower-level LoRA to upper-level Prefix layers. The orange line represents the corresponding ratio for the hybrid
method, while the blue line represents the LoRA method. The seven points on the orange line correspond to the
experimental settings for the LLaMA-7B model, which has 32 transformer layers, with different ratios of LoRA
and Prefix layers: (5:27), (8:24), (11:21), (16:16), (21:11), (24:8), and (27:5), totaling 7 sets of experiments.The
x-axis represents the ratio of layers between LoRA and Prefix, and the y-axis represents the average accuracy of the
LLaMA-7B model.Figure(b) is an explanatory figure of fine-tuning only specific layers, the layers fine-tuned by
each of the four fine-tuning methods are color-coded, green represents the layers fine-tuned with the LoRA at the
bottom, while red represents the layers fine-tuned with the prefix at the top in the chosen method, and figure(c) is a
comparison of the average experimental results on mathematical reasoning datasets for the LLaMA-7B model using
the four methods mentioned above.

duces learnable parameter vectors in front of the
input "k" and "v" of each multi-head attention layer
in the transformer, expanding the dimensions of
"k" and "v." "LoRA" (Hu et al., 2021) incorporates
learnable parallel models alongside the multi-head
attention layers.

On the other hand, many methods have at-
tempted to reduce the number of transformer lay-
ers in the model (Xin et al., 2020; Fan et al.,
2019). Subsequently, the AdapterDrop (Rücklé
et al., 2021) method was introduced, which builds
upon the PEFT approach and investigates the im-
pact of removing fine-tuning in the lower layers
of the model on both speed and performance. In
addition, there are also some studies exploring the
prompt tuning methods and the function of neurons
in different layers of pretrained transformer models
(Su et al., 2021; Wang et al., 2022).

Building on the excellent PEFT approach men-
tioned above, many studies have attempted to inte-
grate existing methods together. The "UniPELT"
(Mao et al., 2022) method combines all these meth-
ods into a single transformer model by introduc-
ing different gating mechanisms for each model,
achieving a unified model overall. The "Sparse"
(Hu et al., 2022) explore constructing delta-tuning
modules in an automatic manner. "Unified view"

(Patel et al., 2021) employs mathematical analysis
to demonstrate the commonalities among adapter,
LoRA, and Prefix models using a set of similar
mathematical formulas. It finds that multi-head
attention achieves better results with fewer parame-
ters, parallel structures outperform serial structures,
and adding parallel models to the feed-forward lay-
ers yields superior results. Ultimately, it proposes a
Prefix-tuning with parallel adapter structure across
the entire model, highlighting the effectiveness of
multi-head attention’s Prefix and parallel LoRA in
the feed-forward layers. This also guides the use
of LoRA and Prefix in this paper to adapt to the
different roles of various layers.

Compared to these methods above, We believe
our contribution lies in exploring the interactions
between different layers aligned with PEFT meth-
ods, clearly delineating the HLPT method and the
H2LPT method that omits intermediate layer fine-
tuning. Our method can improve the effectiveness
as reduce resource consumption. At the same time,
we primarily verify the increasingly important gen-
eration capability of the method in the era of LLMs.

3 Analysis of layers

To further explore the differences in the combi-
nation of the two methods across different layers

3490

following the findings in figure 1, We conduct ex-
perimental analysis in this chapter.

3.1 Analysis of Different Layer Allocation
Methods

We conduct a comparative exploration on LLaMA-
7B using only Prefix and LoRA (LoRA is applied
to the feed-forward network layers to further widen
its gap with prefix applied to the attention layer,
adapting to different inter-layer information), with
different allocation methods based on the structure
where LoRA is at the bottom layers and prefix is at
the top layers, the further reasons for using these
two methods can be found in the appendix E. As
shown in Figure 2(a), it can be observed that as the
proportion of LoRA in the lower layers increases,
the model’s performance initially improves and
then declines. The best performance is achieved
when LoRA was applied to 24 layers and Prefix to
8 layers. It is determined that a 3:1 ratio of LoRA
in the lower layers and Prefix in the upper layers
achieves better performance. Based on this, the fi-
nal model proposed in this paper also demonstrated
superior performance on GPT-J and LLaMA-13B,
highlighting the rationality and universality of this
allocation method.

3.2 Analysis of fine-tuning only a subset of
layers

During our research, we find that fine-tuning a sub-
set of layers does not affect the performance. To
further explore this phenomenon, we boldly pro-
pose the idea of fine-tuning half of the layers and
conducte experiments. Based the previously cho-
sen best method in Section 3.1, we propose four dif-
ferent parameter reduction methods, as illustrated
in Figure 2(b). The final experimental results, as
shown in Figure 2(c), indicate that the accuracy
of all four methods does not exhibit a significant
decrease compared to the best accuracy (59.78) in
figure 2(a). We believe this is due to redundant
information stored across layers, which allows for
a significant reduction in the number of trainable
parameters. Besides, among them, the method plac-
ing LoRA at the bottom layer and prefix at the top
layer achieves the best results in our experiments.

4 Method

4.1 Motivation and Methods

Previous research has introduced several outstand-
ing methods, but most of them either treat all layers

of the model uniformly (He et al., 2022b; Mao et al.,
2022; He et al., 2022a), or directly reduce certain
layers of the model (Rücklé et al., 2021). We be-
lieve that by effectively utilizing various methods
based on the varying storage of information across
different layers of the model, we can further push
the performance boundaries of the PEFT method.

According to the conclusion that different layers
of the model store different information, we dis-
cover that different PEFT methods exhibit vastly
different performance across layers. Meanwhile,
based on the research in the paper (Patel et al.,
2021) and our perspective that LoRA, which modi-
fies the model’s original parameters, is more suit-
able for capturing specific information at the lower
layers, while prefix, which adds virtual tokens be-
fore input, is more suitable for capturing abstract
information at the higher layers. We believe using
LoRA and Prefix methods separately to adapt to
the information stored in different layers can be
explored to develop PEFT methods that are both
resource-efficient and effective.

Based on the survey conducted in section 3, we
have introduced two methods: Hybrid LoRA-Prefix
Tuning (HLPT), and Half Hybrid LoRA-Prefix Tun-
ing (H2LPT), as depicted in Figure 3, our methods
utilize LoRA added to the majority of lower layers
in the model (LoRA is applied to the feed-forward
network layers), while Prefix is applied in a smaller
portion of the upper layers. A learnable gating unit
is introduced for all models. This unit generates a
(0,1) parameter based on the input of the attention
layer and the feed-forward neural network for Pre-
fix and LoRA separately through a Linear Layer,
and this parameter is multiplied with Prefix param-
eters and the scaling of LoRA, resulting in adjusted
parameters to help the model adapt more effec-
tively to various downstream tasks and unleash the
potential of PEFT.

To be specific, according to the performance
shown in figure 2, in the experiments of this pa-
per, HLPT involves using an improved LoRA in
the bottom 3/4 of the model’s layers and an en-
hanced Prefix method in the remaining 1/4 of the
layers. H2LPT is a further refinement, a method
that only fine-tunes the bottom 3/8 (3/7 for GPT-
J) and the top 1/8 (1/7 for GPT-J) of the layers.
The experiments in Section 5.2 and Appendix D
further demonstrate our methods and the general
applicability of this allocation approach.

3491

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Hidden States

Multi-Head

Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

P P
K V

Gate×

top

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Hidden States

Multi-Head

Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Hidden States

Multi-Head

Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

top

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm
bottom

Hidden States

Multi-Head

Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Hidden States

Multi-Head

Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

top

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm
bottom

medium

Hidden States

Multi-Head Attention

Add & Norm

Feed Forward

Q K V

Add & Norm

Wdown

+
Wup

bottom
Gate

×
HLPT 𝐇𝟐LPT

：bottom ：medium ：top

Figure 3: This is an illustration of the proposed two method in this paper. In the diagram, green and pink represent
operations on the bottom and top Transformer layers, while white indicates middle layers without any operations.
On the left are the two methods proposed in this paper, and on the right, specific operations are illustrated.

4.2 Details
The attention and FFN components of the trans-
former serve as the foundation of the method pro-
posed in this paper, and the computations for these
two components of the Transformer model are as
follows:

Attention(Q,K, V) = softmax(
QKT

√
d

)V (1)

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2)

where Q = xWQ .The formulas for K and V fol-
low the same logic. The LLaMA model used in
this paper is further improved, and the computa-
tion of the feed-forward neural network layer is as
follows:

FFNLLaMA(x) = (Swish1(xW1)⊗ xV)W2

(3)

4.3 Prefix Tuning at Top
Prefix tuning introduces virtual tokens of length "l"
in the Transformer model. These tokens are used
to concatenate with the original input "keys" and
"values" parameters of the multi-head attention.
Specifically, virtual tokens Pk ∈ Rl×dhidden and
Pv ∈ Rl×dhiddenare generated randomly and added
in front of the input parameters Q and V . There-
fore, the computation in the Transformer becomes
as follows:

Attention(Q,K ′, V ′) = softmax(
QK ′T
√
d

)V ′

(4)
where K ′ = [Pk : K],V ′ = [Pv : V]. During
fine-tuning for adaptation to downstream tasks, the
model adjusts only Pk and Pv.

To enable the model to adapt to various down-
stream tasks, a gating unit is introduced. This unit
takes the input x of the model at that layer and
passes it through an Linear Layer to obtain an out-
put gp ∈ (0, 1). This output is then multiplied with
the Pk and Pv, and the new virtual token is added
at the front of the model as follows:

P ′
k = gpPk;P

′
v = gpPv (5)

where gp = Linear(x)

4.4 LoRA at Bottom
LoRA introduces parallel low-rank parameters
to the multi-head attention mechanism. Specifi-
cally, two parameters, Wdown ∈ Rdhidden×r and
Wup ∈ Rr×dhidden , are added alongside the query
and value attention. The original multi-head pa-
rameter is Wq, and for the calculation of Q, the
formula is as follows:

Q = x(WQ + αWdownWup) (6)

Where α is a fixed parameter used to adapt to
different downstream tasks. In this work, drawing
from the previous work (He et al., 2022a), LoRA is
applied to W2 of the feed-forward neural network
(FFN) with the following calculation formula:

FFN(x) =ReLU(xW1 + b1)(W2+

αWdownWup) + b2
(7)

For the LLaMA model, LoRA is also applied to
W2 of the FFN, with the following formula.

FFNLLaMA(x) =(Swish1(xW1)⊗ xV)(W2+

αWdownWup)

(8)

3492

Just like Prefix tuning, LoRA also incorporates a
gate mechanism. Here, gl ∈ (0, 1) is computed
using the input of the feed-forward neural network
hFN . The output is then multiplied with the fixed
α. The new learnable α′ is as follows:

α′ = glα (9)

where gl = Linear(hFN)

5 Experiment

5.1 Setup
Followed by prior work (Hu et al., 2023),We con-
duct experiments on six math reasoning datasets
using large language models, GPT-J-6B (Wang and
Komatsuzaki, 2021) and LLaMA-7B/LLaMA-13B
(Touvron et al., 2023), with pre-trained parame-
ters from Hugging Face (Wolf et al., 2020).The
datasets are (1) the SVAMP (Patel et al., 2021),
(2) the AQuA (Ling et al., 2017), (3) the AddSub
(Hosseini et al., 2014) dataset, (4) the MultiArith
(Roy and Roth, 2016) dataset, (5) the SingleEQ
(Koncel-Kedziorski et al., 2015) dataset, and (6)
the GSM8K (Cobbe et al., 2021).

5.2 Main results
In Table 1, we present our main results, compar-
ing our proposed two methods, HLPT and H2LPT,
with the original LoRA and Prefix-tuning methods
on three models. (As any improvements made to
the classical LoRA and prefix methods can be in-
corporated into our method with the expectation of
achieving better results.) In all four methods, HLPT
has a parameter count that is similar to the baseline,
while H2LPT has approximately half the parameter
count. Furthermore, we also experiment with the
parallel adapter proposed in the paper (He et al.,
2022a) that inspired our work, and this method
achieves slightly inferior results compared to our
approach, despite having an order of magnitude
larger number of parameters compared to our meth-
ods. For LLaMA-7B, our two proposed methods
show an increase of up to 35% compared to the
baseline. For LLaMA-13B and GPT-J, there is an
increase of up to 20% and 8%, respectively.

It’s worth noting that, the method of reducing
training parameters by almost half, H2LPT, per-
forms better when using LLaMA-13B. This demon-
strates the potential of this method, and also leads
us to notice that not all layers need fine-tuning;
there may be redundancy in inter-layer informa-
tion storage, and fine-tuning only a subset of layers

can even yield better results with limited source.
Additionally, to demonstrate the robustness and
versatility of our experiments, we split the orig-
inal dataset of almost 3k data into 1k and 0.5k
data using seed=42 separately, and conducte ex-
periments using the LLaMA model(the results of
GPT-J model can be seen in Appendix D). The
results, as shown in Table 2, reveal that the base-
line method significantly declines as the dataset
size decreases (the Prefix method even struggle to
complete tasks and generate fluent conversations
with less data), while our proposed methods re-
main relatively stable and obviously outperform
the baseline.

The hybrid methods used in this paper can make
the model converge more smoothly, as shown in
Figure 4. On both the training and validation
datasets, the HLPT method proposed in this paper
consistently exhibits a significantly better conver-
gence trend compared to the baseline.

5.3 Ablation
To compare the impact of various modifications on
model performance, we conduct ablation experi-
ments, including experiments on placing LoRA on
the attention layer and whether to include gates. As
shown in Table 3, we find removing any of these
methods would affect the model’s performance to
some extent, indicating the effectiveness of both
of methods. Among these, gate serves as a sup-
plementary function, aiding in adjustments based
on different datasets for various models, and plac-
ing LoRA on the FFN amplifies the gap between
it and the Prefix method, further highlighting the
effectiveness of our proposed approach for rational
fine-tuning of layers based on their interplay.

5.4 Discussion of Parameters
To validate the effectiveness of our methods in
reducing training parameters while maintaining
performance, we conduct experiments to compare
them with LoRA, which shows better results in our
experiment, using LLaMA-7B. We reduce LoRA’s
hyperparameter r to 4, halving the training param-
eters to compare with the H2LPT. Furthermore,
we compare both methods in extreme cases by us-
ing our proposed HLPT method and reducing the
number of fine-tuned layers to 4 (3 at bottom and
1 at top) and decreasing LoRA’s r to 1. In both
cases, we reduce the parameter count to 1/8 of the
original, and as shown in Table 4, our methods
demonstrate the best performance, confirming their

3493

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LLaMA-7B

Prefix 42.50 23.53 58.23 60.00 66.67 15.91 44.47
LoRA 56.00 19.61 77.22 90.00 87.25 23.48 58.93
Parallel 63.00 25.49 75.95 86.36 83.33 23.11 59.54
HLPT 60.50 17.65 78.48 90.91 83.33 28.79 59.94
H2LPT 60.00 15.69 73.42 86.36 84.31 28.79 58.09

LLaMA-13B
Prefix 58.00 29.41 72.15 78.18 82.35 22.73 57.14
LoRA 67.50 29.41 86.08 92.73 89.22 34.09 66.50
Parallel 69.00 17.65 81.01 93.64 86.27 27.27 62.47
HLPT 73.50 31.37 84.81 90.91 91.18 37.88 68.27
H2LPT 69.50 31.37 88.61 94.55 90.20 35.61 68.30

GPT-J-6B
Prefix 41.50 9.80 67.09 75.45 71.57 9.85 45.88
LoRA 47.50 7.84 60.76 70.00 76.47 10.61 45.53
Parallel 42.50 19.61 56.96 78.18 66.67 12.88 46.13
HLPT 49.00 13.73 67.09 82.73 70.59 15.15 49.71
H2LPT 50.50 17.65 69.62 73.64 68.63 14.39 49.07

Table 1: The results on six different mathematical reasoning datasets. The answer is the accuracy of calculations
obtained using the zero-shot learning method on LLaMA-7B, LLaMA-13B, and GPT-J presented in the table.(HLPT:
Hybrid LoRA-Prefix Tuning; H2LPT:Half Hybrid LoRA-Prefix Tuning; bold: the best score; underline: the second
best)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LLaMA-7B(1000)

Prefix 23.00 25.49 48.10 21.82 58.82 4.55 30.30
LoRA 44.50 23.53 75.95 81.82 82.35 21.59 54.96
HLPT 53.00 17.65 73.42 86.36 78.43 21.21 55.01
H2LPT 54.00 27.45 73.42 82.73 79.41 20.08 56.18

LLaMA-7B(500)
Prefix 0.00 0.00 1.96 0.00 0.00 0.00 0.33
LoRA 43.00 15.69 70.89 58.18 78.43 14.39 46.76
HLPT 45.00 15.69 72.15 55.45 69.61 14.39 45.38
H2LPT 48.00 23.53 67.09 51.82 74.51 15.91 46.80

LLaMA-13B(1000)
Prefix 41.00 23.53 60.76 65.45 63.73 14.02 44.75
LoRA 67.00 27.45 78.48 82.73 90.20 28.41 62.38
HLPT 69.50 23.53 86.08 89.09 90.20 33.33 65.28
H2LPT 65.00 19.61 78.48 93.64 90.20 34.09 63.50

LLaMA-13B(500)
Prefix 15.00 21.57 32.91 7.27 43.14 4.55 20.74
LoRA 57.50 25.49 74.68 74.55 84.31 28.03 57.43
HLPT 59.50 27.45 79.75 73.64 87.25 22.35 58.32
H2LPT 58.50 19.61 86.08 70.00 86.27 25.00 57.58

Table 2: The experimental results of the model using the LLaMA model with dataset sizes of 1k and 0.5k.(bold:
the best score; underline: the second best)

3494

Setting SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
HLPT 60.50 17.65 78.48 90.91 83.33 28.79 59.94
w/o gate 62.50 25.49 78.48 90.91 77.45 23.86 59.78
on atten 59.00 25.49 78.48 88.18 83.33 21.21 59.28
H2LPT 60.00 15.69 73.42 86.36 84.31 28.79 58.09
w/o gate 58.50 23.53 75.95 85.45 84.31 20.08 57.97
on atten 57.50 19.61 73.42 86.36 81.37 21.21 56.58

Table 3: Ablation experiments conducted on LLaMA-7B for HLPT and H2LPT. These experiments involve removing
the gate and parallelizing LoRA back to attention layers(on atten), respectively.(bold: the best score)

Setting SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
H2LPT 60.00 15.69 73.42 86.36 84.31 28.79 58.09
LoRA- 52.00 23.53 74.68 86.36 86.27 24.24 57.85
HLPT*- 47.50 27.45 72.15 73.64 83.33 19.32 53.90
LoRA*- 46.00 21.57 67.09 77.27 82.35 20.83 52.52

Table 4: Comparison between H2LPT and LoRA-, HLPT– and LoRA– on LLaMA-7B. (LoRA-:LoRA with r=4;
HLPT*-: HLPT with four layers to fine-tune; LoRA*-: LoRA with r=1).

Figure 4: The comparison of HLPT method(orange) in terms of smoothing the optimization process relative to
LoRA(blue) and Prefix(green) methods. The x-axis represents the training epochs, and the y-axis represents the loss
on the training and validation datasets. All experiments are conducted on the LLaMA-7B model.

effectiveness.

Setting Params Time Avg.
LLaMA-7B

Prefix 7.86M(100.0%) 100.0% 100.0%
LoRA 4.19M(53.33%) 71.0% 181.4%
HLPT 4.51M(57.32%) 71.7% 181.6%
H2LPT 2.25M(28.66%) 65.5% 185.4%

LLaMA-13B
Prefix 12.29M(100.0%) 100.0% 100.0%
LoRA 6.55M(53.3%) 85.1% 139.4%
HLPT 7.06M(57.5%) 84.2% 145.9%
H2LPT 3.53M(28.7%) 80.9% 141.9%

Table 5: Comparison in terms of parameters, time,
and performance. Experiments were conducted on the
LLaMA model trained with 1000 samples. ’Params’
refers to trainable parameters, ’Times’ indicates the to-
tal time the model was tested on six datasets, and all
percentages are results obtained with Prefix as the base-
line method.

In order to reveal the impact of reducing param-
eter count by nearly half in this paper, we conduct
experiments using the LLaMA model with 1k train-
ing samples, as shown in Table 5. Our methods can
even improve accuracy by 85.4% while reducing
parameters by 71.3%. All of the above experiments
confirm the value of this research.

6 Conclusion

In this paper, we have explored different layer-
specific fine-tuning methods corresponding to the
varying information stored at different layers of
the model and the function of fine-tuning only a
subset of layers, further pushing the boundaries of
the PEFT approach. We conducted extensive ex-
periments to analyze various allocation methods.
In the process, we introduced the HLPT method,
which involves improved LoRA in the majority of
lower layers and enhanced Prefix in the minority
of top layers. Building upon this, we propose the

3495

H2LPT method, which omits fine-tuning in the in-
termediate layers. A large number of experiments
have all demonstrated the effectiveness and robust-
ness of our proposed methods on LLMs. These
methods can even achieve significantly better per-
formance in terms of generation capability than the
baseline with fewer parameters and inference time
while they can smooth training convergence. All
experiments highlight the enormous potential of
utilizing different fine-tuning methods for layers
with varying information storage.

7 limitation

While a significant number of experiments have
demonstrated the effectiveness of our methods
and justified the rationality of using different fine-
tuning approaches for different layers, our pro-
posed HLPT and H2LPT methods still have some
limitations. Firstly, we conduct experiments only
on large language models with a decoder-only
structure. However, this is not a significant lim-
itation given that decoder-only structures are com-
monly used in large language models today. Sec-
ondly, for the H2LPT method, although it has been
shown to achieve better performance, this approach
still has many areas worth exploring. There is still
significant room for development in fine-tuning
based on partial layers, and it may even be pos-
sible to explore layer allocation methods based
on training-time gradient backpropagation to fur-
ther reduce resource consumption during training.
While our experimental results in this paper explore
the interplay between layers during fine-tuning and
our methods have demonstrated promising bene-
fits, there are still more experiments worth further
exploration to further fully substantiate our conclu-
sion due to the limited resources in our experiment.

In the future, we will endeavor to conduct more
experiments with additional datasets and models,
make improvements to these methods, and fur-
ther explore, in conjunction with theory, methods
that align with the differential information storage
across layers.

8 Ethic statement

The primary aim of our paper is to investigate
and enhance the performance and efficiency of the
PEFT method, making fine-tuning of state-of-the-
art models for downstream tasks more accessible.
We believe that the methods and open-source code
in this work do not pose any potential risk. Addi-

tionally, all our experiments are conducted using
open-source datasets and models.

References
Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,

et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022a. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang,
and Dacheng Tao. 2022b. SparseAdapter: An easy
approach for improving the parameter-efficiency of
adapters. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2184–2190,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

3496

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.18653/v1/2022.findings-emnlp.160
https://doi.org/10.18653/v1/2022.findings-emnlp.160
https://doi.org/10.18653/v1/2022.findings-emnlp.160

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533, Doha, Qatar. Association for Com-
putational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022. Sparse structure search for delta tuning. Ad-
vances in Neural Information Processing Systems,
35:9853–9865.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-
Peng Lim, Roy Ka-Wei Lee, Lidong Bing, and Sou-
janya Poria. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
Khabsa. 2022. UniPELT: A unified framework for

parameter-efficient language model tuning. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6253–6264, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Yusheng Su, Chi-Min Chan, Jiali Cheng, Yujia Qin,
Yankai Lin, Shengding Hu, Zonghan Yang, Ning
Ding, Xingzhi Sun, Guotong Xie, et al. 2023. Ex-
ploring the impact of model scaling on parameter-
efficient tuning. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 15062–15078.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, et al. 2021. On transferability
of prompt tuning for natural language processing.
arXiv preprint arXiv:2111.06719.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0:
Large-scale knowledge enhanced pre-training for lan-
guage understanding and generation. arXiv preprint
arXiv:2107.02137.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Samuel R. Bowman, Dipanjan

3497

https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626

Das, and Ellie Pavlick. 2019. What do you learn
from context? probing for sentence structure in con-
textualized word representations. In International
Conference on Learning Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6
billion parameter autoregressive language model.

Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou,
Zhiyuan Liu, and Juanzi Li. 2022. Finding skill
neurons in pre-trained transformer-based language
models. arXiv preprint arXiv:2211.07349.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246–2251, Online.
Association for Computational Linguistics.

A Scientific Artifacts

The datasets we use include the mathematical rea-
soning dataset SVAMP (Patel et al., 2021), AQuA
(Ling et al., 2017), AddSub (Hosseini et al., 2014),
MultiArith (Roy and Roth, 2016), the SingleEQ
(Koncel-Kedziorski et al., 2015), GSM8K (Cobbe
et al., 2021), and the commonsense inference
dataset ARC (Clark et al., 2018), Boolq (Clark
et al., 2019), WinoGrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019),
and OBQA (Mihaylov et al., 2018). The pre-trained
models we utilize are LLaMA-7B/13B (Touvron
et al., 2023), and GPT-J-6B (Wang and Komat-
suzaki, 2021). All the aforementioned datasets and
models are open-source, and our work is solely
for scientific research purposes, aligning with their
original intent.

B Reproducibility Statement

Data Usage: The datasets and hyperparameter set-
tings in this paper are mainly referenced from the
prior work (Hu et al., 2023)’s open-source code.
For the mathematical reasoning tasks, due to re-
source limitations, we choose the version with the
smallest dataset in this work (Hu et al., 2023), and
this dataset utilized a subset of the data from some
of the datasets mentioned above in Appendix A.
All six datasets are combined by randomly select-
ing 80% of each, resulting in a total of 3260 data
points for training. Testing is then performed on the
remaining data for each dataset. For commonsense
inference tasks, considering the resource, 15k ver-
sion of this work (Hu et al., 2023) are used for train-
ing, and testing is conducted on the seven datasets
mentioned above. During training and testing, a
prompt is added to the data: ‘Below is an instruc-
tion that describes a task, paired with an input that
provides further context. Write a response that
appropriately completes the request.’

Hyperparameter Settings: During training, we
largely follow the prior work(Hu et al., 2023)’s
open-source code in regard to hyper-parameters.
The ‘r’ value for LoRA is set to 8, and the Prefix
added token length ‘l’ is 20 in our hybrid methods.
In this setup, the parameter quantities of LoRA
and Prefix methods at each layer are very close,
enabling a fair comparison of their performance
at different layers. Bedides, the learning rate for
our hybrid methods to 3e-3, and the regularization
parameter α in Eq 5 of the main text is set to 2. For
the prefix method, the learning rate is set to 3e-2,
and the length of virtual tokens is set to 30. The
learning rate for original LoRA method is set to
3e-4, ‘r’ value for LoRA is set to 8. The bottleneck
size for the parallel adapter method is set to 256,
and the learning rate is set to 3e-4. For the sake of
fair comparison, the remaining hyprerparameters
are set the same for each model and method. At
the same time, to ensure comparability and repro-
ducibility of experiments, the random seed for all
experiments is set to 42 and all training epochs are
set to 3. In my methods, the linear part of our gat-
ing unit are initialized using the Kaiming uniform
approach.

Model Usage: In this paper, we utilize three
large models: LLaMA-7B/13B (Touvron et al.,
2023), and GPTJ-6B (Wang and Komatsuzaki,
2021). All training and testing experiments are con-
ducted using either a single Nvidia A40 or Nvidia

3498

https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204

RTX4090.

C Background of Large Language
Models

LLMs trained on extensive text corpora have
demonstrated their ability to perform new tasks
from textual instructions or a few examples(Brown
et al., 2020). Many new open-source large lan-
guage models trained on open datasets have started
to emerge such as LLaMA(Touvron et al., 2023)
and GPT-J(Wang and Komatsuzaki, 2021). These
models contribute to democratizing research on
LLMs, as they can be run on a single GPU. With the
widespread adoption of these large language mod-
els, a trend to utilize zero-shot leaning and model
generation capabilities to accomplish various down-
stream tasks has emerged and the model’s gener-
ation capability becomes increasingly important.
These new LLMs can even outperform larger mod-
els on downstream tasks.(Hoffmann et al., 2022)

D Supplementary Experiments

Due to space constraints in the main text, we
present the complete comparative experiments here.
As shown in Table 6, we obtain consistent results
with the LLaMA model in Table 2 using the GPT-
J-6B model. Our method maintains stable perfor-
mance even with a significant reduction in training
data and outperforms the baseline methods. At
the same time, with a dataset size of 1000, H2LPT
can even achieve the best average results, further
highlighting the superiority of our method of fine-
tuning by ignoring half of the layers.

Despite the findings of this paper (Su et al., 2023)
indicating a reduction in differences among various
PEFT methods as model size increases, the differ-
ences between them cannot be ignored. As demon-
strated by the experiments in this paper (Hu et al.,
2023), even with the LLaMA-13B model, there
are still noticeable discrepancies among different
methods. Additionally, we conduct extended exper-
iments using GPT-J-6B on commonsense reasoning
datasets (the learning rate for the H2LPT method
on this datasets was set to 5e-3. The other set-
tings remain unchanged.), and the results showed
on table 7 further validate the effectiveness, gener-
alizability, and value of our methods.

We add the detaile results of the experiments
shown in Figure 2 of the main text, where LoRA
and Prefix occupy different proportions, across

each six dataset. The experimental results are pre-
sented in Table 8.

We also supplement the specific accuracy for
each dataset from the experiment in Figure 2, where
half of the layers were omitted, and conduct further
extended experiments. The results can be found in
table 9. In the extended experiments using LLaMA-
7B, 75% of the layers are omitted, we only using
LoRA in the bottom 6 layers and Prefix in the top 2
layers. It can be found that the accuracy drop across
six mathematical reasoning datasets was minimal,
demonstrating the value of this layer-omission fine-
tuning method.

E Further Explaination of Using LoRA
and Prefix

Our hybrid method is mainly inspired by this paper
(He et al., 2022a). Since the basic PEFT paradigms
mainly include adapter, prefix, and LoRA, this pa-
per analyzed the similarities and differences among
them and concluded that fine-tuning methods par-
allel to the FFN and adding virtual tokens before
the attention mechanism yield better results, which
is similar to LoRA and prefix. Therefore, we chose
the LoRA and prefix method.

Additionally, the adapter method normally has
significantly higher parameter counts compared to
LoRA and prefix, yet only achieved average results
in experiments, whereas LoRA and prefix have
similar less tunable parameter counts. The results
between these three methods on six mathematical
reasoning datasets using LLaMA-7B can be found
in table 10.

3499

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
GPT-J-6B(1000)

Prefix 32.50 25.49 56.96 53.64 61.76 8.33 39.78
LoRA 34.00 3.92 53.16 61.82 64.71 9.09 37.78
HLPT 39.00 3.92 65.82 70.91 63.73 9.09 42.08
H2LPT 39.00 27.45 65.82 68.18 68.63 6.06 45.86

GPT-J-6B(500)
Prefix 21.00 29.41 43.04 10.91 50.98 6.44 26.96
LoRA 28.00 1.96 59.49 24.55 59.80 3.79 29.60
HLPT 35.00 23.53 58.23 32.73 56.86 6.44 35.46
H2LPT 29.00 3.92 49.37 27.27 53.92 3.03 27.75

Table 6: The experimental results of the model using the GPT-J model with dataset sizes of 1k and 0.5k.(bold: the
best score; underline: the second best)

Method ARC-c ARC-e Boolq WinoG PIQA SIQA OBQA Avg.
Prefix 15.61 17.13 0.03 0.24 25.73 8.75 5.60 10.44
LoRA 23.89 28.54 62.17 49.49 56.26 39.71 31.80 41.69
HLPT 38.99 55.60 43.46 50.91 54.84 50.72 43.40 48.27
H2LPT 36.01 55.18 60.86 49.33 48.42 45.85 41.60 48.18

Table 7: The extended experiments on commonsense reasoning datasets using GPT-J-6B (bold: the best score)

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LLaMA-7B

(5:27) 51.50 9.80 70.89 78.18 78.43 18.56 51.23
(8:24) 59.00 17.65 68.35 80.00 81.37 26.14 55.42
(11:21) 58.50 13.73 74.68 84.55 83.33 19.70 55.75
(16:16) 60.50 15.69 78.48 89.09 83.33 25.38 58.75
(21:11) 62.50 25.49 74.68 89.09 82.35 20.08 59.03
(24:8) 62.50 25.49 78.48 90.91 77.45 23.86 59.78
(27:5) 59.00 17.65 75.95 91.82 77.45 25.00 57.81

Table 8: The specific results of figure 2 (a) on six different mathematical reasoning datasets.

Method SVAMP AQuA AddSub MultiArith SingleEQ GSM8K Avg.
LLaMA-7B

original 62.50 25.49 78.48 90.91 77.45 23.86 59.78
method1 58.50 23.53 75.95 85.45 84.31 20.08 57.97
method2 52.00 29.41 82.28 85.45 76.47 21.21 57.80
method3 59.50 27.45 72.15 88.18 78.43 21.21 57.82
method4 49.00 35.29 77.22 84.55 74.51 22.73 57.22
25%layers 52.50 15.69 73.42 80.82 83.33 23.11 54.81

Table 9: The specific results of figure 2 (c) and the extended experiments on six different mathematical reasoning
datasets.

Method Params SVAMP AQuA AddSub MultiA SingleEQ GSM8K Avg.
LoRA 5.24M 58.50 23.53 75.95 92.73 88.24 24.24 60.53
Adapter 201.33M 53.50 23.53 74.68 86.36 75.49 20.08 55.61
prefix 7.86M 42.50 23.53 58.23 60.00 66.67 15.91 44.47

Table 10: Comparison of LoRA, Prefix, and Adapter methods using the LLaMA-7B model on mathematical
reasoning datasets.

3500

