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Abstract
Fine-grained category discovery using only
coarse-grained supervision is a cost-effective
yet challenging task. Previous training methods
focus on aligning query samples with positive
samples and distancing them from negatives.
They often neglect intra-category and inter-
category semantic similarities of fine-grained
categories when navigating sample distribu-
tions in the embedding space. Furthermore,
some evaluation techniques that rely on pre-
collected test samples are inadequate for real-
time applications. To address these shortcom-
ings, we introduce a method that successfully
detects fine-grained clusters of semantically
similar texts guided by a novel objective func-
tion. The method uses semantic similarities in
a logarithmic space to guide sample distribu-
tions in the Euclidean space and to form distinct
clusters that represent fine-grained categories.
We also propose a centroid inference mecha-
nism to support real-time applications. The
efficacy of the method is both theoretically jus-
tified and empirically confirmed on three bench-
mark tasks. The proposed objective function
is integrated in multiple contrastive learning
based neural models. Its results surpass exist-
ing state-of-the-art approaches in terms of Ac-
curacy, Adjusted Rand Index and Normalized
Mutual Information of the detected fine-grained
categories. Code and data are publicly available
at https://github.com/changtianluckyforever/F-
grained-STAR.

1 Introduction

Fine-grained analysis has drawn much attention
in many artificial intelligence fields, e.g., Com-
puter Vision (Chen et al., 2018; Li et al., 2021;
Wang et al., 2024a; Park and Ryu, 2024) and Nat-
ural Language Processing (Ma et al., 2023; Tian
et al., 2024; An et al., 2024), because it can pro-
vide more detailed features than coarse-grained
data. For instance, as illustrated in Figure 1, solely
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Figure 1: A fine-grained intent detection example. Left:
This panel illustrates the label hierarchy, transitioning
from coarse-grained to fine-grained granularity. Right:
This example demonstrates intent detection in a conver-
sation about car choices, showing how coarse-grained
analysis alone can lead to incorrect recommendations
by a life assistant due to a lack of fine-grained analysis.

based on coarse-grained analysis, the chatbot might
incorrectly recommend a roadster, which is un-
suitable for field adventures. Detecting the fine-
grained intent would allow the chatbot to recom-
mend an off-road vehicle that aligns with the user’s
requirements. However, annotating fine-grained
categories can be labor-intensive, as it demands
precise expert knowledge specific to each domain
and involved dataset. Addressing this challenge,
An et al. (2022) recently introduced Fine-grained
Category Discovery under Coarse-grained Super-
vision (FCDC) for language classification tasks
(details in Section 3). Solving FCDC tasks can
significantly benefit numerous practical applica-
tions, for example, fine-grained classification of
enterprise documents (Chen et al., 2023; Vellmer
et al., 2023), fine-grained dialogue intent detection
tasks (Tian et al., 2022; Lichouri et al., 2024), prod-
uct labeling on online shopping websites based on
text descriptions (Ghani and Fano, 2002; Parekh
et al., 2021), and so on. FCDC aims to reduce
annotation costs by leveraging the relative ease of
obtaining coarse-grained annotations, without re-
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quiring fine-grained supervisory information. This
approach has sparked significant research interest
in the automatic discovery of fine-grained language
categories (Ma et al., 2023; An et al., 2023a; Vaze
et al., 2024; Lian et al., 2024).

Existing methods for addressing FCDC are typi-
cally grouped into three groups (An et al., 2024):
language models, self-training methods, and con-
trastive learning methods. Language models (De-
vlin et al., 2019a; Touvron et al., 2023), including
their fine-tuned versions with coarse labels, gener-
ally perform poorly on this task due to a lack of fine-
grained supervision. Self-training methods (Caron
et al., 2018; Zhang et al., 2021) and their variants of-
ten employ clustering assignments as fine-grained
pseudo-labels, filtering out some noisy pseudo-
labels, and training with these labels. Dominant
contrastive learning methods (Chen et al., 2020;
Mekala et al., 2021; An et al., 2022, 2023a) typi-
cally identify positive and negative samples for a
given query by measuring their semantic distances.
The contrastive loss ensures that the query sample
moves closer to positive samples and further away
from negative samples. So these methods form
clusters of samples in the embedding space, with
each cluster representing a discovered fine-grained
category, without requiring fine-grained category
supervision.

However, past methods did not utilize compre-
hensive semantic similarities (CSS) in the log-
arithmic space to guide sample distributions in
the Euclidean space. We define CSS as the fine-
grained semantic similarities measured by bidirec-
tional Kullback-Leibler (KL) divergence in the log-
arithmic space between the query sample and each
available positive or negative sample. Although An
et al. (2024) recently explored similarities mea-
sured by rank order between the query sample and
positive samples, they ignore similarities with neg-
ative samples.

We propose a method (STAR) for detecting
fine-grained clusters of semantically similar texts
through a novel objective function, with the core
component considering CSS. This component
guides sample distributions in the Euclidean space
based on the magnitude of CSS in the logarithmic
space. Large semantic differences (low similarity)
in the logarithmic space between the query sam-
ple and an available sample push the query sample
further away in the Euclidean space, while small
semantic differences bring the query sample closer
to the available sample. Thus, samples form dis-

tinguishable fine-grained clusters in the Euclidean
space, with each cluster representing a discovered
category.

Additionally, clustering inference used by pre-
vious works (An et al., 2022, 2023a, 2024) cannot
support real-time scenarios, so we propose a variant
inference mechanism utilizing approximated fine-
grained cluster centroids, delivering competitive
results for the tasks considered.

Our main contributions in this work can be sum-
marized as follows:

• Method: STAR enhances existing contrastive
learning methods by leveraging comprehen-
sive semantic similarities in a logarithmic
space to guide sample distributions in the Eu-
clidean space, thereby making fine-grained
categories more distinguishable.

• Theory: We interpret STAR from the perspec-
tives of clustering and generalized Expecta-
tion Maximization (EM). Also, we conduct
loss and gradient analyses to explain the effec-
tiveness of using CSS for category discovery.

• Experiments: Experiments on three text
classification tasks (intent detection (Lar-
son et al., 2019), scientific abstract classi-
fication (Kowsari et al., 2017), and chatbot
query (Liu et al., 2021)) demonstrate new
state-of-the-art (SOTA) performance com-
pared to 22 baselines, validating the theoreti-
cal method.

2 Related Work

2.1 Fine-grained Category Discovery
Fine-grained data analysis is crucial in Natural Lan-
guage Processing (Guo et al., 2021; Ma et al., 2023;
Tian et al., 2024) and Computer Vision (Pan et al.,
2023; Wang et al., 2024b). However, effectively
discovering fine-grained categories from coarse-
grained ones remains challenging (Mekala et al.,
2021). Traditional category discovery methods of-
ten assume that known and discovered categories
are at the same granularity level (An et al., 2023b;
Vaze et al., 2024).

To discover fine-grained categories under the su-
pervision of coarse-grained categories, An et al.
(2022) introduces the FCDC task. Self-training
approaches, such as Deep Cluster (Caron et al.,
2018; An et al., 2023a), use clustering algorithms
to detect the fine-grained categories, assign pseudo-
labels to the clusters and their samples, and then
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train a classification model with these pseudo-
labels. Its variant, Deep Aligned Clustering (Zhang
et al., 2021), devises a strategy to filter out in-
consistent pseudo-labels during clustering. Con-
trastive learning has become prevalent in FCDC
tasks; Bukchin et al. (2021) and An et al. (2022)
develops angular contrastive learning tailored for
fine-grained classification. An et al. (2022) pro-
poses a weighted self-contrastive framework to
enhance the model’s discriminative capacity for
coarse-grained samples. Ma et al. (2023) and An
et al. (2023a) uses noisy fine-grained centroids
and retrieves neighbors as positive pairs, respec-
tively, applying constraints to filter noise. An et al.
(2024) advances this approach with neighbors that
are manually weighted as positive pairs. However,
previous efforts have not leveraged comprehensive
semantic similarities to guide sample distributions
and thereby to enhance fine-grained category dis-
covery.

2.2 Neighborhood Contrastive Learning
Contrastive learning enhances representation learn-
ing by bringing the query sample closer to posi-
tive samples and distancing it from negative sam-
ples (Chen et al., 2020). Prior research has focused
on constructing high-quality positive pairs. He
et al. (2020) utilizes two different transformations
of the same input as query and positive sample,
respectively. Li et al. (2020) introduces the use of
prototypes, derived through clustering, as positive
instances. Additionally, An et al. (2022) employs
shallow-layer features from BERT as positive sam-
ples and introduces a weighted contrastive loss.
This approach primarily differentiates data at a
coarse-grained level, and the manually set weights
limit its broader applicability.

To circumvent complex data augmentation,
neighborhood contrastive learning (NCL) is devel-
oped, treating the nearest neighbors of queries as
positive samples (Dwibedi et al., 2021). Zhong
et al. (2021) extends this by utilizing k-nearest
neighbors to identify hard negative samples, while
Zhang et al. (2022) selects a positive key from
the k-nearest neighbors for contrastive represen-
tation learning. However, these approaches often
deal with noisy nearest neighbors that include false-
positive samples. An et al. (2023a) addresses this
by proposing three constraints to filter out uncertain
neighbors, yet they overlooks semantic similarities
between query sample and each available sample.
An et al. (2024) represents semantic similarities us-

ing rank order among positive samples but neglects
similarities among negative samples. In contrast,
STAR uses comprehensive semantic similarities to
guide sample distributions in the Euclidean space,
offering richer features and a superior approach to
pure contrastive learning.

3 Problem Formulation

Given a set of coarse-grained categories Ycoarse =
{C1, C2, . . . , CM} and a coarsely labeled training
set Dtrain = {(xi, ci) | ci ∈ Ycoarse}Ni=1, where
N denotes the number of training samples, the task
of FCDC involves developing a feature encoder Fθ.
This encoder maps samples into a feature space,
further segmenting them into distinct fine-grained
categories Yfine = {F1, F2, . . . , FK}, without any
fine-grained supervisory information. Here, Yfine
represents sub-classes of Ycoarse. Model effective-
ness is evaluated on a testing set Dtest = {(xi, yi) |
yi ∈ Yfine}Li=1, with L as the number of test sam-
ples, utilizing features extracted by Fθ. For evalua-
tion consistency and fairness, only the number of
fine-grained categories K is used, aligning with
methodologies established in previous research
(Ma et al., 2023; An et al., 2022, 2023a).

4 Method

STAR leverages comprehensive semantic similar-
ities and integrates seamlessly with contrastive
learning baselines by modifying the objective func-
tion. We have developed variants for three base-
lines: PseudoPrototypicalNet (PPNet) (Boney and
Ilin, 2017; Ji et al., 2020), DNA (An et al., 2023a),
and DOWN (An et al., 2024). This section focuses
on STAR-DOWN because DOWN outperforms
other baselines, with additional method variants
detailed in Appendix A.3.

DOWN involves three steps: pre-training with
coarse-grained labels (Section 4.1), retrieving and
weighting nearest neighbors (Section 4.2), and
training with a contrastive loss. STAR-DOWN
follows the same first two steps but replaces the
third with a novel objective function (Section 4.3).
Like DOWN, STAR-DOWN iterates the last two
steps until the unsupervised metric, the silhouette
score of the clustering into fine-grained clusters,
does not improve for five consecutive epochs. The
detailed algorithm is provided in Appendix A.1.7.
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Figure 2: STAR-DOWN integrates the baseline DOWN with the STAR method (shown in the red dashed box). In the
visual representation, colors differentiate samples, squares represent features extracted by the Encoder, and circles
denote features extracted by the Momentum Encoder. Unidirectional arrows indicate proximity, while bidirectional
arrows signify distance between samples.

4.1 Multi-task Pre-training

As illustrated in Figure 2, the baseline DOWN (An
et al., 2024) utilizes the BERT Encoder Fθ to ex-
tract normalized feature embeddings qi = Fθ(xi)
for input xi, where θ represents the Encoder pa-
rameters. To ensure effective initialization for fine-
grained training, DOWN pre-trains the Encoder
on the coarsely labeled train set Dtrain with la-
bels Ycoarse. DOWN utilizes the sum of a cross-
entropy loss Lce and a masked language modeling
loss Lmlm for multi-task pre-training of the Encoder
(detailed in Appendix A.1.1).

4.2 Neighbors Retrieval and Weighting

The Momentum Encoder is a slowly evolving ver-
sion of the Encoder, commonly employed in self-
supervised learning (He et al., 2020; An et al.,
2023a). DOWN integrates the Momentum Encoder
to generate more consistent, stable, and better rep-
resentations over time (An et al., 2024).

In Figure 2, the Momentum Encoder Fθk with
parameters θk extracts and stores gradient-free nor-
malized neighbor features hi = Fθk(xi) in a dy-
namic data queue Q. To ensure consistency be-
tween the outputs of Fθk and Fθ, Fθk ’s parameters
are updated via a moving-average method (He et al.,
2020): θk ← mθk +(1−m)θ, where m is the mo-
mentum coefficient. For each query feature qi, in
order to facilitate semantic similarity capture and
fine-grained clustering, its top-k nearest neighbors
Ni are determined from Q using cosine similarity
(Sim): Ni = {hj | hj ∈ argtop

hl∈Q
k(Sim(qi, hl))},

where Sim(qi, hl) =
qTi hl

∥qi∥·∥hl∥ is the cosine similar-
ity function.

To counteract potential false positives in Ni,
DOWN utilizes a soft weighting mechanism based
on neighbor rank to balance information utility
against noise, with weights ωj of neighbor hj calcu-

lated as: ωj = ϕ · α− lij
k , where ϕ is a normalizing

constant for weights, α serves as the exponential
base, k is the retrieved neighbor count, and lij de-
notes the rank of hj as a neighbor to qi.

To align with the model’s evolving accuracy in
neighbor retrieval during training, DOWN periodi-
cally decreases α every five epochs, the values for
α in ωj are: αset = {150, 10, 5, 2}. The ωj of each
positive sample hj is used in Eqs. 3 and 4.

4.3 Training

4.3.1 Objective Function
Given a training batch Ntrain ∈ Dtrain, where
Yc is the set of coarse-grained labels of Ntrain,
DOWN trains the model using the loss:

Ltrain = Lce + LDOWN, (1)

LDOWN =
1

|Ntrain|
∑

qi∈Ntrain

Li
1. (2)

As shown in Eq. 3, DOWN uses a conventional
contrastive objective function in the Euclidean
space, while STAR-DOWN introduces a novel ob-
jective function in Eq. 4, leveraging CSS in the
logarithmic space to guide sample distributions in
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the Euclidean space, the temperature τ is a fixed
constant in Eq. 3 and Eq. 4:

Li
1 = −

∑

hj∈Ni

ωj · log
exp(qTi hj/τ)∑

hk∈Q
exp(qTi hk/τ)

. (3)

Li
2 =− γ

∑

hj∈Ni

ωj · log exp(−dKL(qi, hj)/τ)∑
hk∈Q

exp(−dKL(qi, hk)/τ)

−
∑

hj∈Ni

ωj · log exp(qTi hj/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)
.

(4)

During training, STAR-DOWN optimizes the
following objective function:

Ltrain = Lce + LSTAR, (5)

LSTAR =
1

|Ntrain|
∑

qi∈Ntrain

Li
2. (6)

As shown in Eq. 4, the term dKL(qi, hk) in Li
2

represents the bidirectional KL divergence in a log-
arithmic space between the query sample embed-
ding qi and the data queue sample embedding hk
(detailed in Appendix A.1.2). B is a trainable scalar
representing the exponential base.

The first term in Li
2 minimizes the KL diver-

gence between query samples and positive samples
(the retrieved top-k nearest neighbors Ni in Sec-
tion 4.2) while increasing it for negative samples
(the samples in data queue Q apart from the pos-
itive samples) in the logarithmic space, with γ as
a balancing hyperparameter. The second term in
Li
2 uses CSS in the logarithmic space, denoted by

BdKL(qi,hk), to guide query sample distribution in
the Euclidean space. qTi hk quantifies the cosine
similarity between normalized qi and hk, equiva-
lent to the negative Euclidean distance (detailed
in Appendix A.1.4). The value of the trainable
scalar B is updated during loss backpropagation, so
BdKL(qi,hk) is fully trainable and can integrate with
contrastive learning methods, making the STAR
method generic.

4.3.2 Loss Analysis
The loss Li

2 consists of two terms. The first is a
contrastive loss that optimizes sample distribution
in logarithmic space, ensuring that similar samples
have a small KL divergence dKL(qi, hk), while dis-
similar samples exhibit a large dKL(qi, hk). These
semantic similarities are then used as weights in
the second contrastive loss term qTi hk, optimizing
the sample distribution in Euclidean space.

KL divergences grow logarithmically, their scale
increases slowly, making it challenging to differ-
entiate semantic differences. In contrast, exponen-
tiation scales rapidly. To address this, we apply
exponentiation to amplify semantic distinctions,
using a trainable scalar base B and an exponent
dKL(qi, hk) from the logarithmic space. This re-
sults in weights of BdKL(qi,hk) for qTi hk.

Since STAR-DOWN discovers fine-grained cat-
egories in the Euclidean space, we analyze the sec-
ond term Li

2−2 of the loss Li
2, which optimizes

sample distributions in the Euclidean space:

Li
2−2 =−

∑

hj∈Ni

ωj · log exp(qTi hj/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

=
∑

hj∈Ni

ωj · (log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

− (qTi hj/τ)).
(7)

In the loss Li
2−2, BdKL(qi,hk) uses CSS in the

logarithmic space to guide sample distributions in
the Euclidean space. A large dKL(qi, hk) (low se-
mantic similarity) causes qi to distance itself from
hk in the Euclidean space, reducing qTi hk, while
a small dKL(qi, hk) allows qi to remain relatively
close to hk compared to negative samples. This
results in the formation of compact fine-grained
clusters, with each cluster representing a discov-
ered category.

Unlike traditional contrastive loss, which mul-
tiplies exp

(
qTi hk

τ

)
by 1, our STAR method in-

corporates logarithmic space semantic differences,
BdKL(qi,hk), as weights1 for each sample pair. This
is expressed as BdKL(qi,hk) · exp

(
qTi hk

τ

)
. As a

result, distant samples are pushed further apart in
Euclidean space, while closer samples remain near,
facilitating the formation of more distinct bound-
aries. We also analyze the STAR method from
the perspectives of gradient, clustering, and gen-
eralized EM. Detailed analyses are provided in
Appendix A.2.

4.4 Inference
Previous methods (An et al., 2023a, 2024) use
clustering inference on sample embeddings from
Fθ extracted from Dtest, which is unsuitable for
real-time tasks, such as intent detection, which re-
quire immediate response and cannot wait to collect
enough test samples for clustering. We introduce

1For interesting form similarities to physical laws within
the STAR method, see Appendix A.1.3.
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Dataset |C| |F| # Train # Test
CLINC 10 150 18000 1000
WOS 7 33 8362 2420

HWU64 18 64 8954 1031

Table 1: Statistics of datasets (An et al., 2023a). #:
number of samples. |C|: number of coarse-grained cate-
gories. |F|: number of fine-grained categories.

an alternative, centroid inference, suitable for both
real-time and other contexts. Using Fθ, we de-
rive sample embeddings from Dtrain and assign
fine-grained pseudo-labels through clustering. For
each fine-grained cluster, only the embeddings of
samples from the predominant coarse-grained cat-
egory (the category with the most samples in this
fine-grained cluster) are averaged to form centroid
representations. These approximated centroids are
used to determine the fine-grained category of each
test sample based on cosine similarity. A visual
explanation is in Appendix A.1.5.

5 Experiments

5.1 Experimental Settings

5.1.1 Datasets
We conduct experiments on three bench-
mark datasets: CLINC (Larson et al., 2019),
WOS (Kowsari et al., 2017), and HWU64 (Liu
et al., 2021). CLINC is an intent detection dataset
spanning multiple domains. WOS is used for paper
abstract classification, and HWU64 is designed for
assistant query classification. Dataset statistics are
provided in Table 1.

5.1.2 Baselines for Comparison
We compare our methods against the following
baselines. Language models: BERT (Devlin
et al., 2019b), BERT with coarse-grained fine-
tuning, Llama2 (Touvron et al., 2023), Llama2
with coarse-grained fine-tuning and GPT4 (Achiam
et al., 2023). Self-training baselines: DeepClus-
ter (DC) (Caron et al., 2018), DeepAlignedClus-
ter (DAC) (Zhang et al., 2021), and PseudoPro-
totypicalNet (PPNet) (Boney and Ilin, 2017; Ji
et al., 2020). Contrastive learning baselines: Sim-
CSE (Gao et al., 2021), Ancor (Bukchin et al.,
2021), Delete (Wu et al., 2020), Nearest-Neighbor
Contrastive Learning (NNCL) (Dwibedi et al.,
2021), Contrastive Learning with Nearest Neigh-
bors (CLNN) (Zhang et al., 2022), Soft Neigh-
bor Contrastive Learning (SNCL) (Chongjian
et al., 2022), Weighted Self-Contrastive Learn-

ing (WSCL) (An et al., 2022), Denoised Neigh-
borhood Aggregation (DNA), and Dynamic Or-
der Weighted Network (DOWN) (An et al., 2023a,
2024). We also explore variants incorporating the
cross-entropy loss (+CE).

5.1.3 Evaluation Metrics
To evaluate the quality of the discovered fine-
grained clusters, we use the Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) and Normalized
Mutual Information (NMI) (Lancichinetti et al.,
2009). For assessing classification performance,
we use clustering Accuracy (ACC) (Kuhn, 2010;
An et al., 2023a). Detailed descriptions of these
metrics are provided in Appendix A.5.

5.1.4 Implementation Details
To ensure fair comparisons with baselines, we use
the BERT-base-uncased model as the backbone for
all STAR method variants. We adhere to the hy-
perparameters used by the integrated baselines to
demonstrate the effectiveness of our STAR method.
The learning rate for both pre-training and train-
ing is 5e−5, using the AdamW optimizer with a
0.01 weight decay and 1.0 gradient clipping. The
batch size for pre-training, training, and testing is
64. The temperature τ is set to 0.07. The expo-
nential base B in loss is set to 10. The number
of neighbors k is set to {120, 120, 250} for the
CLINC, HWU64, and WOS datasets, respectively.
Epochs for pretraining and training are set to 100
and 20, respectively. The γ values are {0.03, 0.05,
0.1} for the CLINC, HWU64, and WOS datasets.
The momentum coefficient m is set to 0.99. Further
details are provided in Appendix A.4.

5.1.5 Research Questions
The following research questions (RQs) are inves-
tigated: 1. What is the impact of STAR method
on FCDC tasks? 2. What are the effects of the
proposed real-time centroid inference compared
to traditional clustering inference? 3. How does
each component of the STAR method affect perfor-
mance? 4. How can we effectively and efficiently
set the base for the exponential function in the
STAR method?

5.2 Result Analysis (RQ1)
As shown in Table 2, STAR method variants outper-
form SOTA methods across all datasets and metrics,
validating the effectiveness of the STAR method in
FCDC tasks. Language models like BERT, Llama2
and GPT4 (Devlin et al., 2019b; Touvron et al.,
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Methods HWU64 CLINC WOS
ACC ARI NMI ACC ARI NMI ACC ARI NMI

BERT (Devlin et al., 2019b) 33.52 17.04 56.90 34.37 17.61 64.75 31.97 18.36 45.15
BERT + CE 37.89 33.68 74.63 43.85 32.37 78.58 38.29 36.94 64.72
Llama2 (Touvron et al., 2023) 19.27±1.21 5.21±0.46 44.34±0.85 20.77±2.61 5.83±1.52 49.7±3.68 9.85±1.14 1.26±0.75 18.27±2.28
Llama2 + CE 32.40±5.46 17.32±5.95 57.53±5.78 45.69±6.85 29.38±6.55 72.66±7.13 18.51±1.50 7.8±1.18 29.66±3.23
GPT4 (Achiam et al., 2023) 10.77±1.86 0.14±0.05 35.17±3.68 9.56±2.12 0.11±0.06 46.69±3.24 7.56±1.51 0.15±0.04 27.78±2.98
DC (Caron et al., 2018) 18.05 43.34 29.74 26.40 12.51 61.26 29.17 13.98 53.27
DAC (Zhang et al., 2021) 29.14 12.89 52.99 29.16 14.15 62.78 28.47 15.94 43.52
DC + CE 41.73 27.81 66.81 30.28 13.56 62.38 38.76 35.21 60.30
DAC + CE 42.19 28.15 66.50 42.09 28.09 72.78 39.42 33.67 61.60
PPNet (Ji et al., 2020) 58.36±2.51 47.63±1.96 79.75±1.02 70.15±1.86 59.31±0.96 85.08±0.81 62.59±1.41 50.81±1.21 72.19±0.68
STAR-PPNet (ours) 63.19±2.38 52.21±1.33 81.66±1.21 73.21±1.97 61.87±0.79 86.16±0.47 66.15±1.33 53.61±1.24 73.82±0.74
Delete (Wu et al., 2020) 21.30 6.52 44.13 47.11 31.28 73.39 24.50 11.68 35.47
SimCSE (Gao et al., 2021) 24.48 8.42 46.94 40.22 23.57 69.02 25.87 13.03 38.53
Ancor + CE 32.90 30.71 74.73 44.44 31.50 74.67 39.34 26.14 54.35
NNCL (Dwibedi et al., 2021) 32.98 30.02 73.24 17.42 13.93 67.56 29.64 28.51 61.37
SimCSE + CE 34.04 31.81 74.86 52.53 37.03 77.39 41.28 34.47 61.62
Delete + CE 35.13 31.84 74.88 47.87 33.79 76.25 41.53 33.78 61.01
CLNN (Zhang et al., 2022) 37.21 34.66 75.27 19.96 14.76 68.30 29.48 28.42 60.99
Ancor (Bukchin et al., 2021) 37.34 34.75 74.99 45.60 33.11 75.23 41.20 37.00 65.42
SNCL (Chongjian et al., 2022) 42.32 38.17 76.39 55.01 45.64 82.93 36.27 33.62 62.35
WSCL (An et al., 2022) 59.52 49.34 79.31 74.02 62.98 88.37 65.27 51.78 72.46
DNA (An et al., 2023a) 70.81 59.66 83.31 87.66 81.82 94.69 74.57 63.30 76.86
STAR-DNA (ours) 75.79±0.93 65.27±1.12 85.34±0.36 89.25±0.17 83.47±0.27 95.11±0.05 77.19±0.81 64.97±0.75 77.91±0.76
DOWN (An et al., 2024) 78.92 68.17 86.22 91.79 86.70 96.05 80.00 67.09 78.87
STAR-DOWN (ours) 80.31±0.26 70.22±0.59 87.28±0.31 92.45±0.38 87.05±0.17 96.20±0.07 81.98±0.67 69.27±0.60 79.99±0.40

Table 2: The average performance (%) in terms of Accuracy (ACC), Adjusted Rand Index (ARI), and Normalized
Mutual Information (NMI) on three datasets for the FCDC language task. To ensure fair comparisons with previous
works (An et al., 2022, 2023a, 2024) and demonstrate the effectiveness of STAR, we use the same clustering
inference mechanism and also average the results over three runs with identical common hyperparameters. Some
baselines results are cited from aforementioned previous works, where standard deviations are not originally
provided.

Methods HWU64 CLINC WOS
ACC ARI NMI ACC ARI NMI ACC ARI NMI

STAR-DOWN (clustering) 80.31±0.26 70.22±0.59 87.28±0.31 92.45±0.38 87.05±0.17 96.20±0.07 81.98±0.67 69.27±0.60 79.99±0.40
STAR-DOWN (centroid) 79.44±0.51 69.13±0.75 86.97±0.40 92.60±0.45 87.16±0.53 96.21±0.09 81.89±0.53 69.05±0.39 79.78±0.32

Table 3: Comparison of clustering and centroid inference mechanisms. "Clustering" clusters test set sample
embeddings to determine each sample’s fine-grained category, while "Centroid" infers the category by comparing
each test sample’s cosine similarity to fine-grained centroids.

2023; Achiam et al., 2023) (GPT4 prompt in Ap-
pendix A.6) perform poorly on the FCDC task due
to the lack of fine-grained supervisory informa-
tion. Self-training methods like DC, DAC, and PP-
Net (Caron et al., 2018; Zhang et al., 2021; Ji et al.,
2020) also struggle because they rely on noisy fine-
grained pseudo-labels and overlook comprehensive
semantic similarities (CSS). Contrastive learning
methods such as SNCL (Chongjian et al., 2022) and
WSCL (An et al., 2022) perform better by lever-
aging positive pairs. DNA (An et al., 2023a) and
DOWN (An et al., 2024) further enhance feature
quality by filtering false positives and weighting
them by rank. However, these methods still do not
use CSS for sample distributions. Integrating the
STAR method with existing baselines enhances per-
formance across all datasets, consistently improv-
ing sample distributions in the Euclidean space.

The superior performance of STAR is attributed
to three factors: First, bidirectional KL diver-

gence measures CSS, pushing negative samples
further away and relatively bringing positive sam-
ples closer based on CSS magnitude, making fine-
grained clusters easier to distinguish. Second, the
base B of the exponential in Eq. 4 is a trainable
scalar, balancing CSS magnitude and semantic
structure. Third, STAR variants iteratively boot-
strap model performance in neighborhood retrieval
and representation learning through a generalized
EM process (detailed in Appendix A.2.3).

5.3 Inference Mechanism Comparison (RQ2)

Previous methods (Chongjian et al., 2022; An et al.,
2023a, 2024) perform a nearest neighbor search
over the examples of the found fine-grained clus-
ters for fine-grained category prediction (we refer
to this technique as cluster inference). We speed up
this process making it better suitable for real-time
tasks by developing a centroid inference mecha-
nism (see Section 4.4). Results in Table 3 demon-
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Methods ACC ARI NMI
ours 80.31±0.26 70.22±0.59 87.28±0.31
w/o CE 78.61±0.44 67.32±0.86 85.62±0.36
w/o KL loss 78.97±0.32 68.03±0.36 85.81±0.16
w/o KL weight 79.26±0.42 68.86±0.37 86.21± 0.07
w/o KL weight and loss 78.96±0.15 68.21±0.22 86.32±0.10

Table 4: Results (%) of the ablation study for STAR-
DOWN on the HWU64 Dataset.

strates that results of centroid inference are compet-
itive with cluster inference. When results are of the
former are lower, this is due to two factors: cluster-
ing inference leverages inter-relations among test
set samples for richer features, while centroid infer-
ence depends on centroids derived from noisy sam-
ples with fine-grained pseudo-labels. Despite these
issues, centroid inference remains a viable option
for real-time applications, balancing immediate an-
alytical needs with slight performance trade-offs.

5.4 Ablation Study (RQ1 & RQ3)

We examine the impact of various components of
the STAR method in STAR-DOWN, as detailed in
Table 4. Our results yield the following insights.
(1) Excluding coarse-grained supervision informa-
tion during training (w/o CE) reduces model per-
formance, as this information is crucial for effec-
tive representation learning. (2) Omitting the first
loss term (w/o KL loss) from Eq. 4 diminishes
performance. The KL loss term aligns the KL di-
vergence between data samples and the query with
their semantic similarities. Without it, BdKL(qi,hk)

fails to guide the query sample distribution based
on semantic similarities in Eq. 4. (3) Removing
the KL weight BdKL(qi,hk) from Eq. 4 (w/o KL
weight) reduces effectiveness. The loss no longer
utilizes fine-grained semantic similarities measured
by BdKL(qi,hk) in the logarithmic space to direct
the query sample distribution in comparison to all
samples. (4) Eliminating both the KL loss term
and the KL weight in Eq. 4 leads to a performance
decline. This omission prevents the optimization of
the query sample towards positive samples in the
logarithmic space and fails to leverage fine-grained
semantic similarities in the logarithmic space to
influence the distribution of query samples relative
to all samples in the Euclidean space.

5.5 Exponential Base Impact (RQ4)

In the STAR method’s loss equation (Eq. 4),
BdKL(qi,hk) modulates the distribution of qi and
hk in the Euclidean space based on their semantic

Base value ACC ARI NMI
trainable B (ours) 80.31±0.26 70.22±0.59 87.28±0.31
e 79.96±0.12 68.89±0.55 86.66±0.10
10 80.22±0.27 69.61±0.65 87.08±0.30
16 80.73±0.32 70.14±0.58 87.25±0.36
66 80.57±0.38 70.20±0.52 87.07±0.15

Table 5: Averaged results (%) and their standard devia-
tions over three runs of multiple STAR-DOWN methods
with five different base values on the HWU64 dataset.
To set base value conveniently, we set B as a trainable
scalar.

similarity in the logarithmic space, as quantified
by the bidirectional KL divergence. The base B is
used to enhance semantic differences, improving
the discriminability of fine-grained categories. We
experimented with multiple constant values and a
trainable configuration for B, with multiple STAR-
DOWN results presented in Table 5. The multiple
STAR-DOWN methods with various base values
consistently outperform the DOWN method (Ta-
ble 2), demonstrating the effectiveness and robust-
ness of the STAR method regardless of the base
value B. Notably, base values that are either too
low (e.g., e) or too high (e.g., 66) disrupt the seman-
tic representation by inadequately or excessively
emphasizing semantic similarities in the logarith-
mic space. To set base value conveniently, we set B
as a trainable scalar, achieving favorable outcomes
as indicated in Table 5.

5.6 Inference of Category Semantics

Prior works (An et al., 2023a, 2024) only discov-
ered fine-grained categories and assigned them nu-
meric indices without elucidating the categories se-
mantics, thus constraining their broader application.
We propose utilizing the commonsense reasoning
capabilities of large language models (LLMs) to
infer the semantics of these categories. Specifically,
we employ a trained encoder, Fθ, to extract embed-
dings from all train set samples and cluster these
embeddings to assign fine-grained pseudo-labels
to each train set sample. For each fine-grained
category indicated by a specific pseudo-label, we
aggregate all predicted samples from the training
set and use an LLM to deduce the category seman-
tics. Details on the LLM prompt are provided in
Appendix A.7.

5.7 Error Analysis

As shown in the results of Table 6, considering this
is an unsupervised experiment, the majority of fine-
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Category ACC Category ACC Category ACC Category ACC

alarm_query 63.16 datetime_convert 100.0 general_explain 53.85 iot_hue_lightoff 89.47
alarm_remove 72.73 datetime_query 57.89 general_joke 91.67 iot_hue_lighton 66.67
alarm_set 84.21 email_addcontact 100.0 general_negate 100.0 iot_hue_lightup 35.72
audio_volume_down 87.5 email_query 73.68 general_praise 100.0 iot_wemo_off 88.89
audio_volume_mute 80.0 email_querycontact 79.95 general_quirky 42.11 iot_wemo_on 85.72
audio_volume_up 76.92 email_sendemail 63.16 general_repeat 73.68 lists_createoradd 94.74
calendar_query 63.16 general_affirm 100.0 iot_cleaning 100.0 lists_query 84.21
calendar_remove 84.21 general_commandstop 100.0 iot_coffee 100.0 lists_remove 94.74
calendar_set 84.21 general_confirm 89.47 iot_hue_lightchange 73.68 music_likeness 88.89
cooking_recipe 89.47 general_dontcare 100.0 iot_hue_lightdim 58.33 music_query 63.16
music_settings 100.0 qa_maths 92.86 transport_taxi 100.0 news_query 78.95
qa_stock 100.0 transport_ticket 89.47 recommendation_events 78.95 transport_traffic 94.74
play_audiobook 89.47 recommendation_locations 100.0 play_game 89.47 play_music 89.47
qa_currency 100.0 takeaway_order 78.95 qa_definition 89.47 qa_factoid 52.63
recommendation_movies 100.0 weather_query 89.47 transport_query 78.95 social_post 73.68

Table 6: The error analysis analyzing the discovered fine-grained categories from STAR-DOWN method on the
HWU64 dataset. The numerical values represent the classification accuracy (ACC) for each fine-grained category.

grained category samples, such as play_audiobook
and qa_currency, are classified with reasonable
accuracy, demonstrating the qualitative effective-
ness of our unsupervised method, STAR-DOWN.
However, certain fine-grained categories, such as
datetime_query, exhibit lower classification perfor-
mance compared to others. A possible reason is
that queries often contain descriptive text, which
can distract from correctly classifying the text into
the intended query category. For example, the
query "tell me what time it is in Dallas, Texas"
falls under the datetime_query category, but its de-
scriptive nature may lead to misclassification into
location-related categories.

Additionally, some fine-grained categories have
very nuanced semantic differences, making them
particularly challenging for fine-grained discov-
ery tasks. Examples include general_quirky,
iot_hue_lightdim, iot_hue_lightup, qa_factoid and
so on. For instance, the iot_hue_lightup category
refers to increasing light brightness, which must
be carefully distinguished from simply turning the
light on.

5.8 Visualization

We visualize the sample embeddings of STAR-
DOWN in Figure 3. The results demonstrate that
our method forms distinguishable clusters for fine-
grained categories, proving STAR’s effectiveness
in separating dissimilar samples and clustering sim-
ilar ones. Additionally, we visualize the gener-
alized EM perspective of STAR-DOWN in Ap-
pendix A.1.6.

Figure 3: The t-SNE visualization of sample embed-
dings from STAR-DOWN method on the HWU64
dataset, with different colors representing different
coarse-grained categories. The distinct clusters repre-
sent the discovered fine-grained categories.

6 Conclusion

We propose the STAR method for fine-grained cat-
egory discovery in natural language texts, which
utilizes comprehensive semantic similarities in the
logarithmic space to guide the distribution of tex-
tual samples, including conversational intents, sci-
entific paper abstracts, and assistant queries, in the
Euclidean space. STAR pushes query samples fur-
ther away from negative samples and brings them
closer to positive samples based on the comprehen-
sive semantic similarities magnitude. This process
forms compact clusters, each representing a dis-
covered category. We theoretically analyze the
effectiveness of STAR method. Additionally, we
introduce a centroid inference mechanism that ad-
dresses previous gaps in real-time evaluations. Ex-
periments on three natural language benchmarks
demonstrate that STAR achieves new state-of-the-
art performance in fine-grained category discovery
tasks for text classification.
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Limitations

Although the proposed STAR method, inte-
grated with existing contrastive learning methods,
achieves superior performance in fine-grained cate-
gory discovery tasks, its variants require additional
memory to store a data queue for neighbors re-
trieval and feature learning.

Ethical Consideration

Our study introduces a novel method that leverages
comprehensive semantic similarities to improve the
distinction of fine-grained clusters in fine-grained
category discovery tasks. This contribution has no
direct negative social impacts.
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A Appendix

A.1 STAR-DOWN

A.1.1 DOWN Pre-train and Neighbors
Retrieval

DOWN (An et al., 2024) pre-trains the Encoder to
incorporate coarse-grained and general knowledge.
The pre-training loss Lpre is defined as the sum of

the cross-entropy loss Lce and the masked language
modeling loss Lmlm:

Lpre = Lce + Lmlm, (8)

given that Dtrain is the train set and Ycoarse repre-
sents the coarse-grained labels for the training set,
let Ntrain ∈ Dtrain be a training batch with coarse
labels Yc.

The cross-entropy loss for a single training batch
is calculated as the average loss over all samples
in the batch. Here, ŷi denotes the predicted proba-
bility distribution for the i-th sample in the batch,
and yi represents the ground truth probability dis-
tribution for the i-th sample in the batch. The cross-
entropy loss Lce for the training batch Ntrain is
given by:

Lce = −
1

|Ntrain|

|Ntrain|∑

i=1

C∑

c=1

yi,c log(ŷi,c), (9)

in this context: C is the number of categories,
yi,c is a binary indicator (0 or 1) indicating whether
category label c is the correct classification for sam-
ple i, ŷi,c is the predicted probability for category
c for sample i.

The masked language modeling (mlm) loss Lmlm
for the training batch Ntrain is expressed as the
average negative log-likelihood of the true token
given the masked context for each token in each
sample in the batch:

Lmlm = − 1

|Ntrain|

|Ntrain|∑

i=1

1

T

T∑

j=1

log p(x̂i,j | xmasked
i,j ).

(10)

In this equation: Ntrain is a training batch. T
is the length of each training sequence. x̂i,j is
the predicted token. xmasked

i,j is the masked token.
p(x̂i,j | xmasked

i,j ) is the predicted probability of the
true token x̂i,j given the masked input xmasked

i,j .

A.1.2 KL Divergence
In this section, we calculate the bidirectional KL
divergence between the query sample embedding
qi and positive or negative sample embedding hk
with the function dKL(qi, hk).

We assume that sample embeddings follow the
Gaussian distributions. Specifically, we use pro-
jection networks fµ and fΣ to produce Gaussian
distribution parameters:
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µi = fµ(qi), Σi = ELU(fΣ(qi)) + (1 + ϵ),

µk = fµ(hk), Σk = ELU(fΣ(hk)) + (1 + ϵ),

where µi, µk ∈ Rl and Σi,Σk ∈ Rl×l represent
the mean and diagonal covariance of the Gaussian
embeddings, respectively. The covariances have
nonzero elements only along the diagonal. The
functions fµ and fΣ are implemented as ReLU
followed by single-layer networks. ELU (exponen-
tial linear unit) ensures numerical stability, with
ϵ ≈ e−14. Here, l, the Gaussian embedding dimen-
sion, is 128.

Given the Gaussian distribution parameters
µi, µk ∈ Rl and Σi,Σk ∈ Rl×l, we define the cor-
responding Gaussian distributionsNi = N (µi,Σi)
andNk = N (µk,Σk) for the query sample embed-
ding qi and the positive or negative sample embed-
ding hk.

The bidirectional KL divergence between the
query sample embedding qi and the positive or neg-
ative sample embedding hk is calculated using the
function dKL(qi, hk), which measures fine-grained
semantic similarities:

dKL(qi, hk) =
1

2
(DKL[Ni∥Nk] +DKL[Nk∥Ni]) ,

(11)
where

DKL[Ni∥Nk] = DKL[N (µi,Σi)∥N (µk,Σk)]

=
1

2
(Tr(Σ−1

k Σi) + (µk − µi)
TΣ−1

k (µk − µi)

− l + log
|Σk|
|Σi|

).

(12)

A.1.3 Form Similarity

F = G
m1m2

r2
. (13)

In astronomy, gravitational force is crucial for de-
termining the orbits of celestial bodies. According
to the formula, the mass of the bodies significantly
influences their orbital paths.

Inspired by astronomy, we use fine-grained com-
prehensive semantic similarities between the query
sample and each available positive or negative sam-
ple to guide sample distributions in the embedding
space, where the similarities are measured by bidi-
rectional KL divergence, as shown in Eq. 14:

a

b

c

Figure 4: Cosine rule. a, b, and c denote the lengths
of the triangle’s sides, and γ represents the angle. The
cosine rule is used in the Appendix A.1.4.

BdKL(qi,hk) =
(
elog(B)

)dKL(qi,hk)

= elog(B)·dKL(qi,hk)

= elog(B)·(logM+logm)

= elog(B)·log(Mm)

= eB
′·log(Mm).

(14)

Since bidirectional KL divergence is asymmet-
rical, it consists of two components: logM and
logm.

In the STAR method, the bidirectional KL di-
vergence BdKL(qi,hk) is a key component of the
loss function (Eq. 4) that guides sample distribu-
tions. It can be decomposed into two divergence
components, log(Mm), which is analogous to the
gravitational force term m1m2.

A.1.4 Cosine Similarity Conversion
In trigonometry, cosine rule relates the lengths of
the sides of a triangle to the cosine of one of its
angles. In Figure 4, for a triangle with sides a, b,
and c, with γ being the angle opposite side c, the
law of cosines is expressed as:

c2 = a2 + b2 − 2ab cos γ (15)

In this context, we use cos γ to represent the
cosine similarity between qi and hk, and c to denote
the Euclidean distance between the query sample
qi and the positive or negative sample hk. Given
that the sample embeddings are normalized to have
a length of 1, we have the following relationship:

c2 = 1 + 1− 2 cos γ,

thus,

c2
c
= − cos γ.

Here, qTi hk quantifies the cosine similarity be-
tween qi and hk, so
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Figure 5: The centroid inference mechanism. Triangles
represent samples with the same fine-grained pseudo
label; different colors denote various coarse-grained la-
bels. Only samples with predominant coarse-grained
labels, represented by blue triangles, are used to approx-
imate fine-grained centroids; all others are excluded.

c2
c
= −qTi hk.

The cosine similarity and the negative Euclidean
distance represents the similar mathematical mean-
ing. Therefore, a smaller Euclidean distance be-
tween two samples corresponds to a larger cosine
similarity. The STAR-DOWN procedure is out-
lined in Algorithm 1. In Step 3, STAR-DOWN
introduces a novel contrastive loss, as specified in
Eq. 5. To ensure fair validation of its effective-
ness, STAR-DOWN adheres to Steps 1 and 2 of the
DOWN procedure.

A.1.5 Centroid Inference
As shown in Figure 5, we introduce centroid infer-
ence, an alternative inference suitable for real-time
and other contexts. Using Fθ, we derive sample
embeddings from Dtrain and assign fine-grained
pseudo-labels through clustering. For each fine-
grained cluster, only the embeddings of samples
from the predominant coarse-grained category are
averaged to approximate centroid representations.
These approximated centroids are then used to de-
termine the fine-grained category of each test sam-
ple based on cosine similarity.

A.1.6 Visualization
To verify the generalized EM perspective of STAR-
DOWN, we visualize the true neighbor rate and
model performance curves using three metrics dur-
ing the training process, as shown in Figures 6a
and 6b. The results indicate that STAR-DOWN
progressively retrieves more accurate neighbors
and improves model performance across the three
metrics throughout the training. This improvement

is due to the positive feedback loop where more
accurate neighbor retrieval enhances feature learn-
ing, and enhanced feature learning, in turn, leads
to more accurate neighbor retrieval. Thus, STAR-
DOWN effectively estimates true neighbors in the
E-step and obtains better representations in the M-
step, with two steps alternately performed to grad-
ually enhance each other.

A.1.7 Algorithm Procedure
The STAR-DOWN procedure is outlined in Algo-
rithm 1. In Step 3, STAR-DOWN introduces a
novel contrastive loss, as specified in Eq. 5. To
ensure fair validation of its effectiveness, STAR-
DOWN adheres to Steps 1 and 2 of the DOWN
procedure.

A.2 STAR-DOWN Analyses

The STAR method upgrades the original con-
trastive loss Li

1 in Ltrain to the new loss Li
2 as

shown in Eq. 16. The first term in Li
2 optimizes the

method in the logarithmic space, increasing the KL
divergence magnitude in accordance with seman-
tic differences. The second term, Li

2−2, optimizes
sample distributions in the Euclidean space. Since
fine-grained category discovery occurs in the Eu-
clidean space, our analyzes focus on Li

2−2, which
optimizes the distributions of query samples within
the Euclidean space:

Li
2 =− γ

∑

hj∈Ni

ωj · log exp(−dKL(qi, hj)/τ)∑
hk∈Q

exp(−dKL(qi, hk)/τ)

−
∑

hj∈Ni

ωj · log exp(qTi hj/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)
,

(16)

Li
2−2 =−

∑

hj∈Ni

ωj · log exp(qTi hj/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

=
∑

hj∈Ni

ωj · (log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

− (qTi hj/τ)).
(17)

A.2.1 Gradient Analysis
From the gradient perspective, the gradient op-
timizes the method to project samples into the
Euclidean space, where samples form into fine-
grained clusters and each cluster represents a dis-
covered fine-grained category. Each query sam-
ple qi has multiple positive samples hj ∈ Ni. To
simplify the understanding of the STAR method’s
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(a) True Neighbor Rate (TNR) during training. (b) Model performance during training.

Figure 6: The validation of generalized EM perspective on the HWU64 dataset.

gradient, we focus on the loss component related
to a specific hj from the loss Li

2−2. This gives us:

Lij
2−2 =− ωj · log exp(qTi hj/τ)∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

=ωj · (log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

− (qTi hj/τ)).
(18)

For the query sample qi, we investigate the gra-
dient related to the negative sample hn ∈ Q. With
the loss Lij

2−2, the gradient becomes:

∂Lij
2−2

∂[qTi hn]
=

ωj

τ
· BdKL(qi,hn) · exp(qTi hn/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)
. (19)

The larger the semantic difference in BdKL(qi,hn),
the larger the gradient with regards to qTi hn, the
more qTi hn will decrease to push qi away from hn.

For the gradient relevant to the positive sample
hj ∈ Ni, with the upgraded loss Lij

2−2:

∂Lij
2−2

∂[qTi hj ]
= −ωj

τ
·(1− BdKL(qi,hj) · exp(qTi hj/τ)∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)
).

(20)

A smaller semantic difference in BdKL(qi,hj) re-
sults in a larger gradient magnitude with respect
to qTi hj , thereby increasing qTi hj and bringing qi
closer to hj .

Overall, the gradient optimizes sample distribu-
tions in the Euclidean space by leveraging com-
prehensive semantic similarities in the logarithmic
space. Large semantic differences (low semantic
similarities) between the query sample and an avail-
able sample push the query sample further away in
the Euclidean space, while small semantic differ-
ences (high semantic similarities) bring the query

sample closer. Consequently, samples form dis-
tinguishable fine-grained clusters in the Euclidean
space, with each cluster representing a discovered
category.

A.2.2 Clustering Perspective Interpretation
From the clustering perspective, the loss Li

2−2 can
be written as:

Li
2−2 =−

∑

hj∈Ni

ωj · log exp(qTi hj/τ)∑
hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

=
∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

−
∑

hj∈Ni

ωj · (qTi hj/τ)

=
∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

− 1

τ
qTi (

∑

hj∈Ni

ωj · hj)

=
∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

− qTi ci/τ

=
∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

+
1

2τ

{
(qi − ci)

2 − ∥qi∥2 − ∥ci∥2
}

c
=

∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)

+
1

2τ
(qi − ci)

2,

(21)

where ci =
∑

hj∈Ni

ωj ·hj is the weighted average of

query qi neighbors’ embeddings, c
= indicates equal

up to a multiplicative and/or an additive constant.
∥qi∥2 = 1 because of normalization, and ∥ci∥2 is a
constant since the neighbor embedding hj is from
the dynamic queue without gradient.

In Eq. 21, the loss term Li
2−2 indicates that, from
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a clustering perspective, query samples will clus-
ter around the neighbor centroids. These query
samples will be distributed in the Euclidean space
based on the comprehensive semantic similarities
in the logarithmic space between the query sam-
ple and each available positive or negative sample,
as measured by BdKL(qi,hk), effectively distancing
dissimilar samples, so that samples could form dis-
tinguishable clusters and each cluster represents a
discovered fine-grained category.

A.2.3 Generalized EM Perspective
Interpretation

From the generalized EM perspective, If we treat
the centers of the weighted neighbors C = {ci}Ni=1

as hidden variables, we can interpret our model
from the Expectation Maximization (EM) perspec-
tive following (An et al., 2023a).

At the E-step, we estimate the hidden variables
by retrieving neighbors and weighting the neigh-
bors’ embeddings.

{ci|θ, qi, Q}Ni=1 =
∑

hj∈Ni

ωj · hj , (22)

where θ represents the parameters of Encoder, Q
is the data queue, Ni is the positive samples set of
the query sample qi.

At the M-step, we optimize the Encoder parame-
ters θ:

argmin
θ

∑

qi∈Ntrain

(
1

2τ
(qi − ci)

2

+
∑

hj∈Ni

ωj · log
∑

hk∈Q

BdKL(qi,hk) · exp(qTi hk/τ)),

(23)

where Ntrain is the training batch, and hk is the
positive or negative sample from data queue Q.

Accurate neighbors enhance representation
learning, which in turn facilitates the retrieval of
more accurate neighbors. This iterative process
enables STAR-DOWN to progressively improve
performances in both representation learning and
neighborhood retrieval. Detailed empirical results
are presented in Appendix A.1.6.

A.3 STAR Method Variants

A.3.1 STAR-DNA
DNA (An et al., 2023a) is a promising contrastive
learning based method to solve the fine-grained
category discovery task. DNA has three steps.

Step 1: pre-training:

Lpre = Lce. (24)

DNA pre-trains the Encoder Fθ to learn the
coarse-grained information with Eq. 24.

Step 2: neighbors retrieval and refinement:
DNA retrieves positive samples from the data

queue Q for each query sample qi and applies
three principles to eliminate potential false-positive
neighbors: Label Constraint, Reciprocal Con-
straint, and Rank Statistic Constraint. The resulting
positive set is Si.

Step 3: training:
DNA trains the model parameters with the fol-

lowing loss:

L = − 1

|D|
∑

qi∈D

1

|Si|
∑

hj∈Si

log
exp(qTi hj/τ)∑

hk∈Q exp(qTi hk/τ)
.

(25)

D denotes the training batch, Si represents the pos-
itive set for qi, and τ is the temperature parameter.

DNA iteratively performs steps 2 and 3 to en-
hance model performance. However, DNA does
not utilize fine-grained semantic similarities to
guide the distributions of query samples. To en-
sure a fair comparison, STAR-DNA upgrades the
training loss in step 3 while following the same
initial two steps as DNA.

STAR-DNA introduces a new loss function in
step 3 to discover fine-grained semantic similari-
ties:

L = −γ
1

|D|
∑

qi∈D

1

|Si|
∑

hj∈Si

log
exp(

−dKL(qi,hj)

τ
)

∑
hk∈Q

exp(−dKL(qi,hk)
τ

)

− 1

|D|
∑

qi∈D

1

|Si|
∑

hj∈Si

log
exp(

qTi hj

τ
)

∑
hk∈Q

BdKL(qi,hk) · exp( q
T
i hk

τ
)
.

(26)

A.3.2 STAR-PPNet
The Prototypical Network with pseudo-
labels (Boney and Ilin, 2017; Ji et al., 2020)
(PPNet) is a widely used approach for fine-grained
unsupervised classification tasks. PPNet typically
involves two steps: in step 1, it employs a cluster-
ing algorithm to assign pseudo fine-grained labels
to each query sample qi in the train set Dtrain. In
step 2, it trains using these pseudo-labels with loss
Eq. 27 to cluster query samples with the same
fine-grained pseudo label, thereby discovering
fine-grained categories:
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L = − 1

|Ntrain|

|Ntrain|∑

i=1

Li, (27)

Li = log
exp(−d(qi,pc))∑C

c′=1 exp(−d(qi,pc′))
. (28)

Ntrain is the training batch, C is the number of
fine-grained pseudo-categories, qi is the query sam-
ple embedding from the training set Dtrain, d(·, ·)
is typically the Euclidean distance, and pc is the
prototype embedding of category c, computed as
the mean of the embeddings of the support set ex-
amples of category c, pc′ is the prototype embed-
ding of category c′, c′ is a category among C fine-
grained categories:

pc =
1

Nc

Nc∑

i=1

qci , (29)

where Nc is the number of samples in category c
and qci is the embedding of query sample with the
pseudo fine-grained label of category c.

STAR-PPNET incorporates the fine-grained se-
mantic similarities between the query sample and
cluster centroids into the loss:

L = − 1

|Ntrain|

|Ntrain|∑

i=1

Li, (30)

Li = log
exp(−d(qi,pc))∑C

c′=1 B
dKL(qi,p′

c) · exp(−d(qi,pc′))

+ γ log
exp(−dKL(qi,pc))∑C

c′=1 exp(−dKL(qi,pc′))
,

(31)

A.4 Implementation Details
For comparison, we use the same BERT model,
bert-base-uncased, for feature extraction as in the
original baseline papers. We employ GPT4 (ver-
sion gpt-4-0125-preview) and Llama2 with 7B pa-
rameters. We fine-tune Llama2 with the LoRA tech-
nique, where the LoRA rank is 8, and the LoRA
α is 32. The sample feature dimension in the em-
bedding space is 768, and for calculating KL di-
vergence, it is 128. The number of neighbors k is
set to {120, 120, 250} for the CLINC, HWU64,
and WOS datasets, respectively. We use random
seeds {0, 1, 2}. The dimension for Rank Statistic
Constraint in the DNA baseline is set to 5. The
PyTorch version is 1.11.0.

A.5 Evaluation Metrics
The formula of ARI (Hubert and Arabie, 1985) is:

ARI =
RI − E(RI)

max(RI)− E(RI)
, (32)

where RI is the rand index and the E(RI) is the
expectation of RI . Given a test set with n samples,
a sample pair is simply any two distinct samples
chosen from the test set. a: Number of pairs in the
same cluster in both predicted labels and ground
truth labels. b: Number of pairs in different clusters
in both predicted labels and ground truth labels. c:
Number of pairs in the same cluster in predicted
labels but different in ground truth labels. d: Num-
ber of pairs in different clusters in predicted labels
but same in ground truth labels.

RI =
a+ b

a+ b+ c+ d
. (33)

The formula of Normalized Mutual Information
(NMI) (Lancichinetti et al., 2009) is:

NMI =
2 ∗ I(ŷ; y)

H(ŷ) +H(y)
, (34)

where ŷ is the prediction from clustering and y is
the ground truth. I(ŷ; y) is the mutual information
between ŷ and y, H(ŷ) and H(y) represent the
entropy of ŷ and y, respectively.

ACC (Kuhn, 2010; An et al., 2023a) is the metric
to evaluate the clustering accuracy:

ACC =

∑N
i=1 I{P(ŷi) = yi}

N
, (35)

where I{·} is the indicator function, it returns 1 if
the condition inside the braces is true, and 0 oth-
erwise. In this formula, it checks whether the pre-
dicted label P(ŷi) matches the true label yi. ŷi is
the prediction from clustering and yi is the ground-
truth label, N is the number of samples, and P(·) is
the permutation map function from the Hungarian
algorithm (Kuhn, 2010).

A.6 Baseline GPT4 Prompt
The following prompt is designed for GPT4 using
the HWU64 dataset. To adapt it for other datasets,
simply adjust the number of coarse-grained classes
and the index of fine-grained classes accordingly.

Our dataset comprises two tab-separated value
(TSV) files:

• coarse_label_GPT4.tsv: This file contains
text content and corresponding coarse-grained
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class labels for each line. The training set en-
compasses a total of 18 distinct coarse-grained
classes.

• test_GPT4.tsv: This file consists of multiple
lines, each containing a single text entry.

The objective is to assign fine-grained class
labels to the text content in the test_GPT4.tsv
file. Each fine-grained class will be represented
by a unique integer identifier ranging from 0
to 63. Each fine-grained class is a sub-class
of the existing coarse-grained classes defined in
coarse_label_GPT4.tsv.

Please complete the following tasks according
to your understanding:

1. Prediction: Assign a fine-grained class label
(integer from 0 to 63) to each text content in
the test_GPT4.tsv file.

2. Output: Print the predicted labels in order,
corresponding to the order of text entries in
the test file. Collect all the predicted labels in
a list.

3. Explanation: Provide a semantic explanation
(meaning description) for each predicted fine-
grained class label.

A.7 Category Semantics Inference Prompt
In order to infer the discovered fine-grained cat-
egory semantics, we leverage the commonsense
reasoning capabilities of GPT4.

The following prompt is employed:
Can you please check what i last said. Could

you please check and confirm my last command. I
like you check question please. Did you get what
just said correctly? I like you check it please. Did
you get my last instruction correctly? Please can
you check and confirm what just said. Would you
check the details please. ...... Lower the lights
in the house. Please can you confirm the com-
mand. Could you please check and confirm the de-
tail. Would you check and confirm question please.
Please confirm details. Will you please check and
confirm it. Please would you check instruction.
Would you please check question. Could you please
check the detail. Could you please check and con-
firm details. Check the last thing said please. What
you just said was not so clear to me. I would like
you check and confirm it please. Did you get what
said correctly? I like you to check and confirm
what i said please.

Hello. The provided sentence samples originate
from the domain of assistant query classification.
Predominantly, these samples fit into a specific cat-
egory, though a minority are noisy and do not align
with the primary category. Could you please iden-
tify and name this category, and clarify its defini-
tion?

The ground truth semantics of this discovered
fine-grained category is: general-confirm in the
assistant query domain.

The outputs from GPT4 are as follows:
The primary category for the majority of the

sentence samples you’ve provided seems to be
"confirmation requests." This category comprises
sentences where the speaker asks the assistant to
confirm if a command or a query was understood
or executed correctly. The requests often seek ver-
ification or validation of an action that was pre-
sumably communicated earlier, either explicitly or
implicitly.

Definition of Confirmation Requests: Confirma-
tion requests are communications aimed at verify-
ing whether an earlier instruction, command, or
statement was received, understood, and/or pro-
cessed correctly. This category is common in user-
assistant interactions where clarity and confirma-
tion of understanding are critical to ensure accu-
rate task execution.

Clearly, this method offers a practical and heuris-
tic approach to deducing category semantics.
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Algorithm 1: STAR-DOWN
Initialize pre-training epoch P , training epoch E,
Encoder Fθ, Momentum Encoder Fθk , and train set Dtrain

Step 1: pre-training
for epoch =0,...,P-1 do

Initialize pre-training batch size
for Npre ∈ Dtrain do

The Encoder Fθ is trained with pre-training batch Npre using loss Lpre (Eq. 8)
Update Encoder parameters θ

end
end
for epoch =0,...,E-1 do

Initialize nearest neighbors number K
Step 2: neighbors retrieval & weighting
Construct the gradient-free data queue: Q = Fθk(Dtrain).
Each query sample xi ∈ Dtrain, the normalized feature: qi = Fθ(xi).
Each xi ∈ Dtrain, retrieve K nearest neighbors to form the positive samples set Ni:
Ni = {hj | hj ∈ argtop

hl∈Q
k(CosineSimilarity(qi, hl))}

Each neighbor hj ∈ Ni is weighted: ωj = ϕ · α− lij
k (described in Section 4.2).

Step 3: training
Initialize training batch size
for Ntrain ∈ Dtrain do

The Encoder Fθ is trained with training batch Ntrain and associated neighbors set Ni and
Q using loss Ltrain (Eq. 5)

Update Encoder and Momentum Encoder parameters θ and θk
end

end
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