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Abstract

Despite tremendous advancements, current
state-of-the-art Vision-Language Models
(VLMs) are still far from perfect. They tend to
hallucinate and may generate biased responses.
In such circumstances, having a way to assess
the reliability of a given response generated
by a VLM is quite useful. Existing methods,
such as estimating uncertainty using answer
likelihoods or prompt-based confidence gener-
ation, often suffer from overconfidence. Other
methods use self-consistency comparison
but are affected by confirmation biases. To
alleviate these, we propose Decompose and
Compare Consistency (DeCC) for reliability
measurement. By comparing the consistency
between the direct answer generated using the
VLM’s internal reasoning process, and the
indirect answers obtained by decomposing the
question into sub-questions and reasoning over
the sub-answers produced by the VLM, DeCC
measures the reliability of VLM’s direct an-
swer. Experiments across six vision-language
tasks with three VLMs show DeCC’s reliability
estimation achieves better correlation with task
accuracy compared to the existing methods.
The code is publicly available at https:
//github.com/MyLittleChange/DeCC.

1 Introduction

Automatic measurement of reliability of responses
generated by AI systems such as vision-language
models (VLMs) is useful for deciding whether to
trust a response or not, which in turn is neces-
sary to build secure systems and enable further
improvements (Varshney and Baral, 2023). Exist-
ing reliability estimation methods often estimate
the model’s uncertainty using answer likelihoods
or prompt the model to generate a confidence
value (Xiong et al., 2024; Tian et al., 2023; Mielke
et al., 2022). These methods often fail to correlate
well with task accuracy because models are not
well-calibrated and tend to be overconfident (Chen
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Figure 1: DeCC begins by decomposing the question
into multiple sub-questions. The candidate VLM an-
swers these sub-questions, creating sub-QA pairs. Both
the candidate VLM and an LLM independently reason
over these pairs to derive reasoned answers. We then
compare the direct answer with the reasoned answers to
assess reliability. We also explore how different consis-
tency comparison settings impact DeCC’s effectiveness.

et al., 2023b). Other methods attempt to incorpo-
rate calibrated confidence generation as a training
goal (Lin et al., 2022; Ye and Durrett, 2022; Oh
et al., 2024), but retraining the model is inefficient
and even impractical for measuring the reliability
of multiple VLMs or closed-source models. Some
works use self-consistency to measure reliability by
comparing the consistency among multiple gener-
ated answers (Wang et al., 2022; Chen et al., 2024a,
2023a), but self-consistency might suffer from con-
firmation biases (Feng et al., 2024).

To better measure VLMs’ answer reliability, we
propose a method called Decompose and Compare
Consistency (DeCC). As shown in Fig 1, we first
decompose the original question into several sub-
questions. The candidate VLM then answers these
sub-questions, generating a sequence of sub-QA
pairs. We use both the candidate VLM and a
separate LLM, acting as two independent agents,
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to reason over the sub-QA pairs and obtain their
respective reasoned answers. We then compare
the consistency between these reasoned answers
and the answer generated directly by the VLM
to measure the reliability of the VLM’s direct an-
swer. Using the candidate VLM to reason over
sub-QA pairs provides insights into how robustly
the VLM understands the question. However, such
self-consistency can sometimes introduce confir-
mation biases (Feng et al., 2024). Thus, we also
employ an LLM to reason over the sub-QA pairs
separately. We test both single-agent and multi-
agent settings. For the single-agent setting, we use
the consistency between the direct answer and one
of the agent’s reasoned answers to determine re-
liability. For the multi-agent setting, we combine
the consistency check results from both agents to
determine if the answer is reliable, unreliable, or re-
quires further information for measurement. We as-
sume that if the VLM understands the question well
and conducts reliable reasoning, a conflict is less
likely to occur between its direct answer, derived
from its internal reasoning process, and the decom-
posed answer, derived from an external reasoning
process. We evaluate DeCC on six vision-language
tasks using three different state-of-the-art VLMs.
Experimental results demonstrate that DeCC, which
is both model-agnostic and task-agnostic, exhibits
a higher correlation with the VLMs’ task accuracy
compared to the existing methods. Additionally,
we observe that the effectiveness of different con-
sistency comparison settings is correlated with the
candidate VLM’s capabilities.

2 Related Work

Existing methods use uncertainty-based metrics for
reliability measurement, such as setting a reliabil-
ity threshold on answer likelihoods (Pereyra et al.,
2017; Geifman and El-Yaniv, 2017; Whitehead
et al., 2022), or prompting the model to generate
a confidence value (Xiong et al., 2024; Tian et al.,
2023; Li et al., 2024; Mielke et al., 2022). However,
uncertainty-based metrics often lead to overconfi-
dence since confidence calibration is not a training
goal (Chen et al., 2023b). But retraining models
to generate calibrated confidence (Oh et al., 2024;
Lin et al., 2022; Zhang et al., 2023) is impractical
for evaluating multiple VLMs. Self-consistency
methods generate multiple responses to assess re-
liability (Wang et al., 2022; Chen et al., 2024a,
2023a) but suffer from confirmation biases (Huang

et al., 2024; Xie et al., 2024). Multi-agent collab-
oration can mitigate this. Feng et al. (2024) use
multiple LLMs to interact in cooperative and com-
petitive settings to evaluate reliability. Srinivasan
et al. (2024) use LLMs to generate related questions
about the image and use high-confidence QA pairs
as premises, with the original QA as the hypothesis,
to determine reliability. Our approach differs by de-
composing the question into simpler sub-questions.
We also conduct extensive experiments to explore
the effectiveness of different consistency compari-
son settings on reliability measurement.

3 Method

For a question Q, an image I , and an answer A
from a candidate VLM, DeCC obtains a binary Re-
liability scoreR indicating whether A is Reliable.
As shown in Fig 1, DeCC contains two components:
Task Decomposition and Consistency Comparison.

3.1 Task Decomposition

First, the decomposer, which could be any VLM,
decomposes the question Q into a sequence of sub-
questions conditioned on I . The candidate VLM
then answers these sub-questions, resulting in a
sequence of sub-QA pairs. Next, the candidate
VLM and a separate LLM, acting as two indepen-
dent agents, reason over the sub-QA pairs and Q,
yielding VLM’s reasoned answer A

′
V and LLM’s

reasoned answer A
′
L. To enhance robustness, we

also experiment with a two-iteration decomposition
process. In the second iteration, sub-QA pairs from
the first iteration, along with Q and I , are used to
guide the decomposer in generating additional sub-
questions. The candidate VLM answers these new
sub-questions, conditioned on I and previous sub-
QA pairs, resulting in new sub-QA pairs containing
more information. Finally, both agents reason over
all sub-QA pairs from both iterations to provide
their updated reasoned answers, A

′′
V and A

′′
L

1.

3.2 Consistency Comparison

We explore both single-agent and multi-agent set-
tings for consistency comparison to obtainR.
Single-Agent We compare the VLM’s direct an-
swer A with either the VLM’s reasoned answer A

′
V

(VLM Agent Consistency) or the LLM’s reasoned

1Single quotation mark (′) annotates the first iteration and
double quotation mark (′′) annotates the second iteration.
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answer A
′
L (LLM Agent Consistency) and obtain:

R =

{
1, if A

′
is consistent with A

0, otherwise

We check if A
′

= A to determine the consistency.
For two-iteration decomposition, we compare A
with A

′′
V and A

′′
L to obtainR in a similar way.

Multi-Agent As shown in Fig 2, we first con-
duct consistency checks of A with A

′
V and A

′
L

and obtain Cons
′
V (consistency between A and

A
′
V ) and Cons

′
L (consistency between A and A

′
L).

If Cons
′
V = Cons

′
L, we assign R = Cons

′
V .

If Cons
′
V ̸= Cons

′
L, we proceed to the second-

iteration consistency checks, where we compare
updated reasoned answers A

′′
V and A

′′
L with A, ob-

taining Cons
′′
V and Cons

′′
L. We assignR as:

R =





Cons
′′
V , if Cons

′′
V = Cons

′′
L

Cons
′′
L, if Cons

′
V = Cons

′′
V and

Cons
′
L = Cons

′′
L

Cons
′′
V , if Cons

′
V ̸= Cons

′′
V and

Cons
′
L ̸= Cons

′′
L

(1) The first scenario indicates that the consistency
check outcome for one of the agents has changed
from the first iteration, leading to the same con-
sistency check outcomes between the two agents.
(2) The second scenario indicates that both agents
show strong confidence in their respective consis-
tencies with respect to the direct answer. We trust
the LLM’s consistency check, as it provides a more
objective assessment, Relying solely on textual de-
composition information, whereas the VLM might
suffer from its inherent biases towards certain re-
sponses. (3) The third scenario indicates that the
second-iteration decomposition provides additional
information, influencing both agents’ reasoning
and changing their consistency with respect to the
direct answer. We trust the VLM’s consistency
check outcome, as VLM is less likely to change
its response due to its inherent biases, whereas the
LLM’s response is more likely to change since it
is operating under incomplete information (lack of
image). So a change in VLM’s response indicates
it potentially overcame its biases with additional
sub-QA pairs. See Appendix for Algorithm 1.

4 Experiments

4.1 Datasets
We conduct experiments on six VQA tasks:
SNLI-VE (Xie et al., 2019), VCR (Zellers

\

Question

Image

…

Sub-QA 
Pairs from 

First Iteration

…

Additionally 
Decomposed 

Sub-Questions

Second 
Reasoning 

Process

Reliable

Decomposer

VLM's Direct 
Answer

VLM's Reasoned 
Answer

LLM's Reasoned 
Answer

VLM's Direct 
Answer

VLM's Reasoned 
Answer

LLM's Reasoned 
Answer

Unreliable

VLM's Direct 
Answer

VLM's Reasoned 
Answer

LLM's Reasoned 
Answer

VLM's Direct 
Answer

VLM's Reasoned 
Answer

LLM's Reasoned 
Answer

Second Iteration

VLM's Direct 
Answer

Inconsistent

Consistent

VLM's Updated
Reasoned Answer

LLM's Updated
Reasoned Answer

Consistency 
Check

First Iteration

Figure 2: Illustration of Multi-Agent Consistency Com-
parison. Top: When both agents’ reasoned answers are
either consistent or inconsistent with the VLM’s direct
answer, we directly determine the Reliability. Bottom:
If there is a contradiction in consistency check results,
we proceed to the second-iteration consistency checks.

et al., 2019), A-OKVQA (Schwenk et al., 2022),
Winoground (Thrush et al., 2022), MMMU (Yue
et al., 2023), and MathVista (Lu et al., 2024). More
details can be found on Appendix A.1.

4.2 Evaluation Metric
We use the Brier Score (BS)(Brier, 1950) to mea-
sure the correlation between reliability and task
accuracy: BS = 1

N

∑N
i=1(Ri − Acci)

2, where N
is the evaluation dataset size, Ri is the reliability
score for the i-th answer, and Acci is the accuracy
for the i-th answer. BS ranges between 0 and 1,
with lower values indicating better correlation be-
tween R and Acc. We also apply DeCC for the
selective prediction task where the model abstains
from answering when it’s response is estimated to
be unreliable. To measure DeCC effectiveness at
selective prediction we use the Effective Reliability
(ER) metric proposed in (Whitehead et al., 2022).
ER captures the trade-off between risk (task accu-
racy across all answered questions) and coverage
(number of questions answered). Both low risk but
low coverage and high coverage but high risk lead
to low ER. ER for the i-th answer is computed as:

ER(Ai) =





1 ifRi = 1 and Acci = 1

−1 ifRi = 1 and Acci = 0

0 ifRi = 0 (answer abstention)

4.3 Existing Methods Used for Comparison
Perplexity of Direct Answer: Calculate the mean
perplexity over tokens of the direct answer and
use a threshold to determine reliability. If per-
plexity exceeds the threshold, R is 0 otherwise
1. Generated Numerical Confidence: Prompt the
VLM to generate a confidence value along with
the answer, formatted as ‘Answer: X. Confidence:
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Method SNLI VCR A-OKVQA Wino. MMMU MathVista Mean

BS↓ ER↑ BS↓ ER↑ BS↓ ER↑ BS↓ ER↑ BS↓ ER↑ BS↓ ER↑ BS↓ ER↑
LLaVA1.5-7B as Candidate VLM Acc: 55.0 Acc: 59.2 Acc: 67.3 Acc: 59.6 Acc: 34.3 Acc: 24.5 Acc: 49.9
Perplexity of Direct Answer 55.7 0.7 38.2 20.4 22.8 55.0 39.3 24.3 42.4 -8.2 25.9 -1.4 37.4 15.1
Generated Numerical Confidence 66.5 -32.5 40.8 18.3 22.1 55.6 28.0 44.0 67.3 -35.3 75.8 -51.6 50.1 -0.2
Generated Linguistic Confidence 67.5 -35.0 40.2 19.6 22.6 54.8 27.6 44.8 69.6 -39.1 77.2 -54.4 50.8 -1.5
Self-Consistency based on Paraphrase 38.5 17.5 32.8 25.7 19.0 59.2 40.5 23.9 39.1 -5.6 35.6 -11.5 34.3 18.2
DeCC
VLM Agent Consistency 31.9 24.5 36.4 22.2 18.2 59.6 35.3 28.3 52.3 -18.1 46.3 -21.8 36.7 15.8
VLM Agent Consistency (2 iterations) 32.5 23.9 34.5 24.1 18.3 59.5 36.1 27.4 49.1 -14.9 45.6 -21.1 36.0 16.5
LLM Agent Consistency 32.0 24.4 35.9 22.7 24.5 53.3 37.5 26.0 34.1 0.1 30.7 -6.2 32.4 20.1
LLM Agent Consistency (2 iterations) 30.6 25.8 32.6 26.0 22.3 55.5 34.6 28.9 36.8 -2.6 31.0 -6.5 31.3 21.2
Multi-Agent Consistency (2 iterations) 31.5 24.9 33.5 25.1 20.1 57.7 34.6 28.9 36.4 -2.2 32.2 -7.7 31.4 21.1
Idefics2-8B as Candidate VLM Acc: 39.3 Acc: 78.6 Acc: 83.1 Acc: 70.0 Acc: 39.9 Acc: 48.0 Acc: 59.8
Perplexity of Direct Answer 59.7 -20.0 34.1 28.2 19.9 63.2 29.8 43.5 40.6 -1.0 30.0 15.1 35.6 21.5
Generated Numerical Confidence 40.8 -0.5 37.7 25.3 36.3 46.7 25.3 49.1 67.7 -43.6 49.3 -1.6 42.8 12.6
Generated Linguistic Confidence 35.0 -3.1 40.2 22.1 25.2 56.6 26.8 45.6 60.4 -36.3 42.4 3.5 38.3 14.7
Self-Consistency based on Paraphrase 59.1 -19.3 31.6 30.4 16.3 66.5 28.9 43.8 41.6 -2.0 40.8 4.8 36.4 20.7
DeCC
VLM Agent Consistency 44.9 -5.2 30.5 31.6 13.9 69.2 22.6 50.4 43.9 -4.4 28.7 15.5 30.8 26.2
VLM Agent Consistency (2 iterations) 47.8 -8.1 29.5 33.1 13.8 69.3 22.3 50.9 43.0 -3.6 29.4 15.9 31.0 26.3
LLM Agent Consistency 34.3 5.5 37.9 24.4 26.3 56.5 35.3 38.0 34.2 5.3 40.8 4.4 34.8 22.3
LLM Agent Consistency (2 iterations) 34.9 6.3 34.0 25.0 24.0 61.4 32.0 39.3 35.9 5.1 34.0 11.4 32.5 24.8
Multi-Agent Consistency 34.7 5.8 33.0 27.9 19.6 65.5 29.5 44.1 35.1 5.0 31.1 13.5 30.5 27.0
InternVL1.5-25.5B as Candidate VLM Acc: 70.2 Acc: 70.5 Acc: 88.5 Acc: 78.6 Acc: 43.7 Acc: 56.0 Acc: 67.9
Perplexity of Direct Answer 28.0 42.2 27.5 43.6 12.1 76.4 24.0 56.1 37.3 6.3 36.5 18.7 27.6 40.6
Generated Numerical Confidence 37.8 30.2 42.2 21.2 21.2 62.0 19.0 62.1 64.6 -29.4 39.6 17.6 37.4 27.3
Generated Linguistic Confidence 58.4 -26.0 31.4 37.9 15.7 68.6 43.4 13.3 71.6 -43.3 43.1 10.4 43.9 10.2
Self-Consistency based on Paraphrase 30.1 40.1 28.1 43.0 11.0 77.5 21.1 59.0 48.8 -5.0 52.9 3.6 32.0 36.4
DeCC
VLM Agent Consistency 33.2 37.0 28.3 42.8 11.9 76.6 18.9 61.3 44.9 -1.2 23.8 31.4 26.8 41.3
VLM Agent Consistency (2 iterations) 33.9 36.3 29.1 42.0 11.3 77.2 18.6 61.5 44.8 -1.1 24.3 30.9 27.0 41.1
LLM Agent Consistency 36.3 33.9 37.6 33.5 22.2 66.3 29.4 50.8 40.3 3.3 37.1 18.1 33.8 34.3
LLM Agent Consistency (2 iterations) 34.5 35.7 34.9 36.2 18.8 69.7 27.0 53.1 36.9 6.8 33.3 21.9 30.9 37.2
Multi-Agent Consistency (2 iterations) 34.3 35.9 32.6 38.5 15.4 73.1 23.8 56.4 37.4 6.2 31.1 24.1 29.1 39.0

Table 1: Measuring Brier Score (BS) and Effective Reliability (ER) for various reliability measurement methods.
Best results are in bold. Second-best results are underlined. Acc represents the task accuracy of the candidate VLM.
All scores are in percentage. DeCC surpasses all baselines in average Brier Score and Effective Reliability.

X%’. A threshold determines reliability. Gener-
ated Linguistic Confidence: Prompt the VLM to
state ‘I am confident/not confident in this answer.’
Self-Consistency based on Paraphrase: Prompt a
VLM to paraphrase the original question into four
variations. If n or more paraphrased answers differ
from the direct answer,R is 0 otherwise 1. 2

4.4 Main Results
We conduct experiments on six vision-language
tasks3, covering commonsense reasoning, fine-
grained compositional reasoning, and science un-
derstanding (see Appendix A.1 for dataset descrip-
tions). We evaluate three state-of-the-art VLMs:
LLaVA1.5-7B (Liu et al., 2023), Idefics2-8B (Lau-
rençon et al., 2024), and InternVL1.5-25.5B (Chen
et al., 2024b) (see Appendix A.2 for implementa-

2We select the best threshold and n for each VLM based
on the Brier Score (results in Tables 4 and 5).

3All datasets are multiple-choice except for MMMU and
MathVista, whose answers are very short. We use string
matching for consistency comparison.

tion details). The overall results are shown in Ta-
ble 1. DeCC achieves the best and second-best mean
performance (mean across datasets) on Brier Score
and Effective Reliability. DeCC reduces the relative
mean Brier Score by 8.7% on LLaVA, 14.3% on
Idefics2, and 2.9% on InternVL compared to the
best existing methods. DeCC also increases relative
mean Effective Reliability by 16.5% on LLaVA,
25.6% on Idefics2, and 1.7% on InternVL. We ob-
serve that with increasing VLM size, the perfor-
mance of most methods improves, suggesting that
reliability measurement is correlated with VLMs’
capabilities. For the effectiveness of DeCC’s differ-
ent consistency comparison settings, we observe
an interesting trend: (1) For weaker VLMs, i.e.,
LLaVA, LLM Agent Consistency achieves the best
performance, likely because VLMs struggle to rea-
son over the sub-QA pairs and suffer from confir-
mation biases. (2) For stronger VLMs, i.e. Idefics2,
Multi-Agent Consistency performs the best sug-
gesting that the VLM and LLM reasoners comple-
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Method VCR AOKVQA Winoground Mean

BS↓ ER↑ BS↓ ER↑ BS↓ ER↑ BS↓ ER↑
Perplexity of Direct Answer 34.1 28.2 19.9 63.2 29.8 43.5 27.9 45.0
Generated Numerical Confidence 37.7 25.3 36.3 46.7 25.3 49.1 33.1 40.4
Generated Linguistic Confidence 40.2 22.1 25.2 56.6 26.8 45.6 30.7 41.4
Self-Consistency based on Paraphrase 31.6 30.4 16.3 66.5 28.9 43.8 25.6 46.9
DeCC - Greedy Decoding
VLM Agent Consistency 30.5 31.6 13.9 69.2 22.6 50.4 22.3 50.4
LLM Agent Consistency 37.9 24.4 26.3 56.5 35.3 38.0 33.2 39.6
MultiAgent Consistency 33.0 27.9 19.6 65.5 29.5 44.1 27.4 45.8
DeCC - Sampling Decoding (Temp = 0.8)
VLM Agent Consistency 31.2 31.1 13.2 69.9 22.9 50.3 22.4 50.5
LLM Agent Consistency 38.1 24.2 24.6 58.5 35.1 38.2 32.6 40.3
MultiAgent Consistency 32.7 29.6 18.5 64.6 27.8 47.2 26.3 47.1
DeCC - Sampling Decoding (Temp = 0.9)
VLM Agent Consistency 31.7 30.6 14.1 69.0 23.3 49.9 23.0 49.9
LLM Agent Consistency 38.6 23.7 26.8 56.3 33.8 39.5 33.0 39.9
MultiAgent Consistency 33.7 28.6 20.9 63.3 28.4 44.9 27.7 45.6

Table 2: Results of difference decoding strategy using Idefics2-8B as the candidate VLM. Best results are in bold.
Second-best results are underlined. In all decoding methods and temperatures, DeCC outperforms the baselines,
demonstrating its effectiveness.

Benchmark Questions Question Types
per Sample per Sample

SNLI 4.1 2.1
VCR 5.2 2.2
AOKVQA 4.4 2.1
Winoground 4.3 2.5
MMMU 5.9 2.4
MathVista 4.4 2.3

Table 3: Overview of the number of questions and ques-
tion types per sample across different benchmarks.

ment each other. (3) For the strongest VLMs, i.e.
InternVL, VLM Agent Consistency (self-consis-
tency) achieves the best performance, as the VLM
can effectively leverage the information contained
in sub-QA pairs. Overall, the effectiveness of dif-
ferent consistency comparison settings correlates
with the candidate VLM’s capabilities.

4.5 Further Analysis
Decoding Strategy The decoding strategy of
decomposer can influence the generated sub-
questions, which in turn impacts DeCC’s overall
performance. We conducted experiments using
sampling-based decoding with two different tem-
perature settings, 0.8 and 0.9, while keeping the
nucleus sampling (Holtzman et al., 2020) probabil-
ity fixed at 0.9 for both. The results are presented
in Table 2, using Idefics2-8B as the candidate VLM.
Across all decoding strategies and temperature set-
tings, DeCC consistently outperforms the baselines,
demonstrating its effectiveness.

Question Type Analysis Previous studies have
shown that VLMs can exhibit biases toward certain

question types. For instance, they respond “yes”
to over 80% of queries about non-existent objects,
such as in prompts like “Is there an object in this
image?” (Wang et al., 2023). If the decomposed
sub-questions retain the same type as the original
question, they may inherit the same bias, affecting
evaluation reliability. To investigate this, we con-
duct the question type analysis to assess whether
DeCC is prone to this issue 4. Table 3 shows the
number of questions and question types per sample
across benchmarks. DeCC generates at least 2.1 dis-
tinct question types per sample for all benchmarks,
reducing the impact of VLM biases.

Additional Analysis To better understand the
workflow of DeCC, we provide some qualitative
examples in Appendix A.4. We also provide the
computational costs analysis in Appendix A.5 to ad-
dress concerns about the additional computational
requirements of DeCC and demonstrate its practical
applicability.

5 Conclusion

We use consistency comparison based on task de-
composition for measuring VLMs answer reliabil-
ity. By decomposing complex questions into sim-
pler sub-questions, we achieve more accurate and
robust reliability estimation. We find the perfor-
mance of reliability measurement and the effective-
ness of different consistency comparison settings
correlate with candidate VLM’s capabilities.

4We categorize questions into types using string matching,
with categories including: yes/no, color, number, how, why,
what/which, when, where, who, and others.
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Limitations

Our experiments demonstrate that consistency com-
parison based on task decomposition can better
measure the reliability of VLM answers. However,
there are several limitations to our current study:
Decomposition Performance: The effectiveness of
our framework is influenced by the performance of
the decomposition process. Currently, we have not
fully explored the optimization and impact of dif-
ferent decomposition strategies for reliability mea-
surement. Multi-Agent Consistency Comparison:
We tested decomposition with only one LLM for
the multi-agent part. Conducting more experiments
with various LLMs will help assess the generaliza-
tion and robustness of our framework. Future work
will address these limitations to validate and en-
hance the generalization of our proposed method.
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A Experiments

A.1 Datasets

SNLI-VE requires VLMs to identify whether the
relationship between the given image premise and
text hypothesis is entailment, neutral, or contra-
diction. Visual Commonsense Reasoning (VCR)
requires higher-order cognition and commonsense
reasoning of VLMs. It provides an image and a
question about certain objects in the image, along
with four candidate answers, where the VLMs
need to choose the correct answer. We add rect-
angles of different colors to the image and indi-
cate the corresponding object’s index in the up-
per right corner of each rectangle to distinguish
the objects. A-OKVQA is an augmented suc-
cessor of OK-VQA (Marino et al., 2019) and re-
quires a broad base of commonsense and world
knowledge to answer questions. Four candidate
answers are provided along with each question.
Winoground (Wino.) is proposed for measuring
vision-linguistic compositional reasoning. It con-
tains two images and two captions. The model
needs to correctly match the captions to the images,
but crucially, both captions contain an identical
set of words, only in a different order. MMMU
is designed to evaluate VLMs on massive multi-
discipline tasks demanding college-level subject
knowledge and deliberate reasoning. Several can-
didate answers are provided along with each ques-
tion. MathVista focuses on mathematical reason-
ing in visual contexts. We treat all datasets except
for MMMU and MathVista as multiple-choice QA
tasks. For evaluation:

• For SNLI-VE, VCR, and A-OKVQA, we ran-
domly select 1,000 samples from the valida-
tion set.

• For Winoground, we feed one image and two
captions to the VLM, which must correctly
identify the corresponding caption, using a
total of 800 samples.

• For MMMU, we evaluate on the validation
set, which contains 900 samples.

• For MathVista, we evaluate on the testmini
set, which contains 1,000 samples.

A.2 Implement Details

We use InternVL-1.5 (Chen et al., 2024b) as the
decomposer for decomposition and question para-

phrasing. For decomposition, we employ few-
shot prompting by randomly selecting four sam-
ples from SNLI-VE and ScienceQA, with manu-
ally written decomposition processes as guidance.
The few-shot prompt for decomposition is pro-
vided in Table 7. Only text is used in the few-shot
prompt, without images. The decomposer deter-
mines the number of sub-questions needed. The
few-shot prompt for the second-iteration decom-
position is shown in Table 8 For paraphrasing, we
use the same samples with manually written para-
phrased questions. The few-shot prompt for para-
phrasing is provided in Table 9. The remaining
datasets are approached with a zero-shot strategy.
We use OpenHermes-2.5-Mistral-7B5 as the LLM
Agent for reasoning. We evaluate three VLMs:
LLaVA1.5-7B (Liu et al., 2023), Idefics2-8B (Lau-
rençon et al., 2024), and InternVL (Chen et al.,
2024b), all operating under a zero-shot setting
across all datasets. Since all datasets are multiple-
choice QA tasks or short answers, we use string
matching for answer consistency. For baseline
threshold settings:

• Perplexity of Direct Answer: 1.10 for
LLaVA1.5-7B, 1.25 for Idefics2-8B, and 1.40
for InternVL based on Table 4.

• Generated Numerical Confidence: We set the
threshold to 80%. If the generated confidence
score exceeds 80%, the reliability score is 1;
otherwise, it is 0.

• Self-Consistency based on Paraphrase: The
number of inconsistent paraphrased-direct an-
swer pairs is set to 0 for LLaVA1.5-7B and
Idefics2-8B, and 2 for InternVL based on Ta-
ble 5.

A.3 Evaluation Metric Selection

In our settings, we obtain binary reliability scores
for each answer. We use the Brier Score (Brier,
1950) and Effective Reliability (Whitehead et al.,
2022) to evaluate the reliability measurement. We
do not use Expected Calibration Error (ECE) (Guo
et al., 2017) because ECE is suitable for evaluat-
ing scores over a range of values. ECE relies on
having a range of predicted probabilities to com-
pare against actual accuracy. With only two reli-
ability levels (0 or 1), there are no intermediate

5https://huggingface.co/teknium/OpenHermes-2.
5-Mistral-7B
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Metric SNLI VCR A - OKVQA Wino. MMMU MathVista Mean

LLaVA
Perplexity Threshold - 1.0 56.4 58.6 77.8 63.5 34.2 24.5 52.5
Perplexity Threshold - 1.05 56.4 47.4 36.0 58.1 31.5 24.6 42.3
Perplexity Threshold - 1.10 56.4 43.3 28.7 48.4 32.1 24.7 38.9
Perplexity Threshold - 1.15 56.2 41.9 25.1 41.3 35.2 25.1 37.5
Perplexity Threshold - 1.20 56.3 39.7 23.4 41.0 39.5 25.3 37.5
Perplexity Threshold - 1.25 55.7 38.2 22.8 39.3 42.4 25.9 37.4
Idefics2
Perplexity Threshold - 1.0 39.7 62.3 83.1 73.3 40.0 45.1 57.2
Perplexity Threshold - 1.05 59.1 33.3 22.6 32.6 36.6 31.6 35.9
Perplexity Threshold - 1.10 59.7 34.1 19.9 29.8 40.6 30.0 35.6
Perplexity Threshold - 1.15 60.1 36.5 18.5 27.9 43.9 31.0 36.3
Perplexity Threshold - 1.20 60.3 37.5 17.0 27.0 49.0 32.4 37.2
Perplexity Threshold - 1.25 60.2 38.0 16.6 26.6 53.0 35.0 38.2
InternVL
Perplexity Threshold - 1.0 70.2 71.1 88.5 80.2 43.6 55.2 68.1
Perplexity Threshold - 1.05 44.9 44.6 23.1 44.6 41.4 44.5 40.5
Perplexity Threshold - 1.10 38.8 38.0 17.9 37.1 39.2 40.8 35.3
Perplexity Threshold - 1.15 34.3 34.9 15.6 34.3 38.6 38.7 32.7
Perplexity Threshold - 1.20 31.8 32.5 14.1 31.3 38.9 35.4 30.7
Perplexity Threshold - 1.25 29.6 30.2 13.5 29.4 37.7 36.3 29.4
Perplexity Threshold - 1.30 28.3 29.1 12.7 27.5 36.6 36.1 28.4
Perplexity Threshold - 1.35 27.8 28.3 12.9 26.8 36.4 36.2 28.1
Perplexity Threshold - 1.40 28.0 27.5 12.1 24.0 37.3 36.5 27.6

Table 4: Brier Score using different threshold of perplexity on different VLMs. Best results are in bold. All scores
are in percentage.

Metric SNLI VCR A- OKVQA Wino. MMMU MathVista Mean

LLaVA
Paraphrased Inconsistent - 0 38.5 32.8 19.0 40.5 39.1 35.6 34.3
Paraphrased Inconsistent - 1 39.5 34.1 19.2 37.1 46.6 44.1 36.8
Paraphrased Inconsistent - 2 41.2 36.4 19.9 37.6 50.0 49.7 39.1
Idefics2
Paraphrased Inconsistent - 0 59.1 31.6 16.3 28.9 41.6 40.8 36.4
Paraphrased Inconsistent - 1 60.4 31.5 15.8 28.0 46.4 41.4 37.3
Paraphrased Inconsistent - 2 61.1 31.6 16.1 27.8 47.4 43.9 38.0
InternVL
Paraphrased Inconsistent - 0 31.4 29.1 12.7 23.8 44.8 55.5 32.9
Paraphrased Inconsistent - 1 30.3 28.4 10.8 21.4 47.9 54.0 32.1
Paraphrased Inconsistent - 2 30.1 28.1 11.0 21.1 48.8 52.9 32.0

Table 5: Brier Score using different numbers of inconsistent paraphrased-direct answer pairs out of a total of 4 pairs.
Best results are in bold. All scores are in percentage.

probabilities to assess the correlation. We also find
Coverage at Risk (C@R) (Whitehead et al., 2022)
not applicable to our settings. C@R measures the
Coverage proportion of correctly answered ques-
tions if we tolerate an R% of wrong answers by
sorting predictions in descending order of score list
and calculating coverage until the risk threshold is
reached. C@R is not suitable for binary reliability
scores because it relies on a range of reliability lev-
els to sort and progressively evaluate predictions.
With only binary scores, there is no meaningful
way to sort the predictions by reliability. Conse-
quently, C@R cannot provide a useful measure of
performance in our setting.

A.4 Case Study

Fig 3 shows an example from A-OKVQA where
all answers are consistent, and we assign the di-
rect answer as reliable. Fig 4 shows an example
from A-OKVQA where there is a contradiction be-
tween the consistency check results of the agents’
reasoned answers and the direct answer. In this
case, for the first sub-QA pair, the candidate VLM
correctly identifies the birds as geese but fails to
conduct correct reasoning over the decomposition
process, deriving the same answer as the direct an-
swer. Meanwhile, the LLM effectively utilizes the
information from the decomposition. Both agents
do not change their consistency check results. As
illustrated in Section 3.2, we trust the LLM’s con-
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Question: The people on 
laptops seem most likely to 
be part of what group?

Options:
A: work
B: friends
C: class
D: competition

Sub-Q 1: What is the setting of 
the image?
Sub-A 1: Classroom
Sub-Q 2: Are the people in the 
image using laptops?
Sub-A 2: Yes
Sub-Q 3: Is there a whiteboard 
in the image?
Sub-A 3: Yes

VLMs Direct Answer: C

VLMs Reasoned Answer: C

LLMs Reasoned Answer: C

All answers are consistent, 
the answer is reliable.

Figure 3: Example for the consistent situation. All
answers are consistent, thus we assign the direct answer
as reliable.

sistency check results and assign the direct answer
as unreliable. Fig 5 shows an example from VCR
where all answers are inconsistent and incorrect,
indicating that the VLMs do not understand the
question well. We assign the direct answer as unre-
liable.

A.5 Computational Costs Analysis

DeCC requires multiple steps – question decomposi-
tion, answering the decomposed questions, compar-
ing consistency between the answers. This raises
concerns about DeCC being computationally more
expensive than other approaches such as perplex-
ity, generated numerical confidence scores, or self-
consistency. To address this concern, we provide
detailed computational costs for DeCC and com-
pare it with that of baselines. Since the compu-
tational cost in DeCC is influenced by the num-
ber of sub-questions generated, we conduct this
analysis on the VCR and AOKVQA, as these two
datasets represent the median number of generated
sub-questions among all benchmarks. All statis-
tics are computed using Idefics2-8B (Laurençon
et al., 2024) as the candidate VLM over a ran-
domly chosen sample of 1,000 instances with a
mean of three runs. For LLM Agent reasoning,
we use vLLM (Kwon et al., 2023) for speeding
up inference speed. Others are implemented us-
ing the Transformers toolkit6 from Hugging Face
without any speeding-up strategies. The consis-
tency comparison stage requires only string com-
parisons, which is very fast (1 to 2 seconds for
1000 samples), so we do not list the time. We re-

6https://huggingface.co/docs/transformers/en/
index

Question: What type of birds 
can be seen in the water?

Options:
A: georgian hawks
B: canadian geese
C: ducks
D: alaskan swans

Sub-Q 1: What type of birds are 
visible in the water?
Sub-A 1: Geese
Sub-Q 2: Are there any other 
birds in the image that can be 
used for comparison?
Sub-A 2: No

Second-iteration:
Sub-Q 3: What is the color of 
the birds in the water?
Sub-A 3: White
Sub-Q 4: Are the birds in the 
water swimming or floating?
Sub-A 4: Floating

VLMs Direct Answer: C

VLMs Reasoned Answer: C

LLMs Reasoned Answer: B

Second-iteration:
VLMs Reasoned Answer: C

LLMs Reasoned Answer: B

LLMs Reasoned answer is 
inconsistent, the answer is 
unreliable.

Figure 4: Example for the inconsistent situation. The
VLM’s reasoned answer is consistent with the direct
answer, while the LLM’s reasoned answer is inconsis-
tent. Both agents do not change their consistency check
results. We trust the LLM’s consistency check results
and assign the direct answer as unreliable.

Question: Why is person 0 standing 
over person 1 ?
Options:
A: person 0 was taking the 
measurements of person 1 .
B: person 0 is working on person 1 ' 
s drink order
C: person 0 is preparing person 1 
for execution
D: person 0 is preparing to give a 
speech to person 1

Sub-Q 1: What is the setting of the image?
Sub-A 1: Dining room.
Sub-Q 2: What is the relationship between 
person 0 and person 1?
Sub-A 2: Married
Sub-Q 3: What is person 0 doing in relation 
to person 1? 
Sub-A 3: Serving
Sub-Q 4: What is the context of interaction 
between person 0 and person 1?
Sub-A 4: Dinner

VLMs Direct Answer: A

VLMs Reasoned Answer: B

LLMs Reasoned Answer: C

All answers are inconsistent, the 
answer is unreliable.

Figure 5: Example for the inconsistent situation. All
answers are inconsistent, while none of these answers
are correct, indicating the VLMs do not understand the
question well. We assign the direct answer as unreliable.

port the computational costs analysis in Table 6.
For baselines such as perplexity of direct answer
and generated confidence, the time cost is equal to
direct answering, i.e., 0.22 seconds per sample for
VCR and 0.16 seconds per sample for AOKVQA.
For the baseline Self-Consistency based on Para-
phrase, the consumed time is similar to the first
iteration of DeCC, 4.8 seconds per sample for VCR
and 3.9 seconds per sample for AOKVQA. For the
first iteration of DeCC, the most time-consuming
stage is the Question Pre-Decomposition stage for
generating the sub-questions, taking 3.96 seconds
per sample for VCR and 3.36 seconds per sam-
ple for AOKVQA. However, this process needs to
be performed only once per sample before evalu-
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Method Sub-Questions/ Total Samples Time per Sample
Paraphrased-Questions per Sample Used (Seconds)

VCR
Baselines
Perplexity of Direct Answer, Generated Confidence N/a 1000 0.22
Self-Consistency based on Paraphrase 4 1000 4.80
DeCC Multi-Agent Consistency Stages
Question Pre-Decomposition 3.9 1000 3.96
Sub-Question Answering and VLM Agent Reasoning 3.9 1000 0.84
LLM Agent Reasoning 3.9 1000 0.18
Second Question Decomposition 4.1 366 4.09
Second Sub-Question Answering and VLM Agent Reasoning 4.1 366 0.93
Second LLM Agent Reasoning 4.1 366 0.20

DeCC Expected Value (Multi-Agent Consistency) [1000× 3.9 + 366× 4.1]/1000 = 5.4 1000
[1000× (3.96 + 0.84 + 0.18)+

366× (4.09 + 0.93 + 0.20)]/1000 = 6.89
DeCC Expected Value (VLM-Agent Consistency (2 Iterations)) 8.0 1000 9.82
DeCC Expected Value (LLM-Agent Consistency (2 Iterations)) 8.0 1000 10.20
AOKVQA
Baselines
Perplexity of Direct Answer, Generated Confidence N/a 1000 0.16
Self-Consistency based on Paraphrase 4 1000 3.90
DeCC Multi-Agent Consistency Stages
Question Pre-Decomposition 3.2 1000 3.36
Sub-Question Answering and VLM Agent Reasoning 3.2 1000 0.54
LLM Agent Reasoning 3.2 1000 0.10
Second Question Decomposition 3.9 253 3.79
Second Sub-Question Answering and VLM Agent Reasoning 3.9 253 0.66
Second LLM Agent Reasoning 3.9 253 0.12

DeCC Expected Value (Multi-Agent Consistency) [1000× 3.2 + 253× 3.9]/1000 = 4.19 1000
[1000× (3.36 + 0.54 + 0.10)+

253× (3.79 + 0.66 + 0.12)]/1000 = 5.16
DeCC Expected Value (VLM-Agent Consistency (2 Iterations)) 7.1 1000 8.35
DeCC Expected Value (LLM-Agent Consistency (2 Iterations)) 7.1 1000 8.57

Table 6: Computational costs analysis on VCR and AOKVQA.

ation and can then be reused to evaluate multiple
VLMs, thus mitigating the impact on evaluation
speed. The Sub-Question Answering and VLM
Agent Reasoning + LLM Agent Reasoning takes
1.02 seconds per sample for VCR and 0.64 seconds
per sample for AOKVQA. The second iteration
of DeCC takes 5.22 seconds per sample for VCR
and 4.57 seconds per sample for AOKVQA. How-
ever, the second decomposition is required only
for samples where there is a disagreement between
VLM Agent Consistency and LLM Agent Consis-
tency from the first iteration, rather than for all
samples. For example, only 25.3% of samples in
AOKVQA and 36.6% of samples in VCR require
the second iteration. Thus, the total time for the
second iteration is significantly less than the first
iteration. Overall the expected total time of DeCC
Multi-Agent Setting taking into account both first
and second round of decompositions is 6.89 sec-
onds per sample for VCR and 5.16 seconds per
sample for AOKVQA. Note that for VLM-Agent
Consistency (2 Iterations) and LLM-Agent Consis-
tency (2 Iterations), the expected total time is larger
than the multi-agent setting because we need to do
the second round of decomposition for all samples.
With engineering optimizations and parallel pro-
cessing, the computing time of DeCC can be further
reduced. Note that DeCC does not require any train-
ing or tuning of thresholds while other baselines

such as perplexity, generated numerical confidence
scores, or self-consistency require tuning certain
thresholds, necessitating annotated datasets. For
example, we used 1,000 samples for threshold tun-
ing in our experiments. Data annotation is usually
time-consuming and costly, averaging 10 seconds
per sample7 with further filtering requests, and for
specialized domains, this time can increase signifi-
cantly, thus increasing the hidden costs. Compared
with the data annotation, the time cost of DeCC is
significantly lower. In conclusion, despite the addi-
tional computation introduced by DeCC compared
to baselines, our comprehensive experimental eval-
uation validates the effectiveness and practicality
of DeCC across various benchmarks and VLMs.

7CloudResearch: A Simple Formula for Predicting the
Time to Complete a Study on Mechanical Turk
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Algorithm 1 Multi-Agent Consistency Comparison over Task Decomposition for Reliability Measurement

Require: Question Q, Image I , Answer A, Decomposer, VLM for Evaluation, LLM for Reasoning
Ensure: Binary Reliability ScoreR

1: Decomposer decomposes Q into sub-questions
2: Generate sub-QA pairs by having VLM answer the sub-questions
3: Obtain A

′
V and A

′
L by reasoning over sub-QA pairs using VLM and LLM, respectively

4: if A′
V is consistent with A then

5: ConsV ′ ← 1
6: else
7: Cons

′
V ← 0

8: end if
9: if A′

L is consistent with A then
10: Cons

′
L ← 1

11: else
12: Cons

′
L ← 0

13: end if
14: if Cons

′
V = Cons

′
L then

15: R ← Cons
′

▷ Direct determination
16: else
17: Perform second-iteration decomposition and generate new sub-QA pairs
18: Obtain A

′′
V and A

′′
L by reasoning over all sub-QA pairs using VLM and LLM, respectively

19: if A′′
V is consistent with A then

20: Cons
′′
V ← 1

21: else
22: Cons

′′
V ← 0

23: end if
24: if A′′

L is consistent with A then
25: Cons

′′
L ← 1

26: else
27: Cons

′′
L ← 0

28: end if
29: if Cons

′′
V = Cons

′′
L then

30: R ← Cons
′′

▷ Direct determination after second iteration
31: else
32: if Cons

′
V = Cons

′′
V and Cons

′
L = Cons

′′
L then

33: R ← Cons
′
L ▷ LLM’s consistency is used

34: else if Cons
′
V ̸= Cons

′′
V and Cons

′
L ̸= Cons

′′
L then

35: R ← Cons
′′
V ▷ VLM’s consistency is used

36: end if
37: end if
38: end if
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Few-Shot Prompt for Decomposition

Given an image and an associated main question, design pre-questions that focus on important contextual
information in the image useful for answering the main question. Pre-questions should provide clues
to answer the main question. Each pre-question should be short and easy to understand. Pre-questions
should focus on context visual clues of the image. Pre-questions should provide clues to answer the main
question.

Example scenario to illustrate the expected interaction pattern:
Main Question: Is this statement entailment, neutral or contradiction based on the image? Statement: ‘A
professor is late to class’ Options: A: entailment, B: neutral, C: contradiction.
Pre-question 1: Is there a person in the image wearing clothing typically associated with a professor?
Pre-question 2: Is the person in the image displaying any behavior that could be interpreted as being late
to class, such as being out of breath or looking at a clock?
Pre-question 3: Is there a classroom setting in the image, such as desks or a blackboard?

Example scenario to illustrate the expected interaction pattern:
Context: Below is a food web from a tundra ecosystem in Nunavut, a territory in Northern Canada. A
food web models how the matter eaten by organisms moves through an ecosystem. The arrows in a food
web represent how matter moves between organisms in an ecosystem. Main Question: Based on the
arrows, which of the following organisms is a decomposer? Choices: A: mushroom, B: lichen
Pre-question 1: Does the mushroom eat any other organisms in the food web?
Pre-question 2: Does the lichen eat any other organisms in the food web?
Pre-question 3: Does the lichen produce any material that other organisms can use?
Pre-question 4: Does the mushroom produce any material that other organisms can use?
Pre-question 5: Does a decomposer produce any material that other organisms can use?

Example scenario to illustrate the expected interaction pattern:
Main Question: Is this statement entailment, neutral or contradiction based on the image? Statement:
‘Two children play in the park.’ Options: A: entailment, B: neutral, C: contradiction.
Pre-question 1: Are there any children in the image?
Pre-question 2: Are the two children playing in the park?

Example scenario to illustrate the expected interaction pattern:
User: Context: Use the graph to answer the question below. Main Question: Which month has the
highest average precipitation in Santiago? Choices: A: March, B: October, C: June
Pre-question 1: What kind of graph is shown?
Pre-question 2: Does the graph show the average precipitation for each month in Santiago?
Pre-question 3: For which month is the bar highest in the graph?

Table 7: Few-Shot Prompt for Decomposition.
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Few-Shot Prompt for Second-Iteration Decomposition

You will be given an image and an associated main question, and some sub-question-answer pairs.
However, these sub-questions might not be sufficient to answer the main question due to lack of detail
or conflicting answers. You need to design additional sub-questions that focus on important contextual
information in the image useful for answering the main question. Each pre-question should be short,
easy to understand, and provide clues to answer the main question.

Example scenario to illustrate the expected interaction pattern:
Main Question: Is this statement entailment, neutral, or contradiction based on the image? Statement: ‘A
professor is late to class’ Options: A: entailment, B: neutral, C: contradiction.
Sub-questions and answers:
Sub-question 1: Is there a person in the image wearing clothing typically associated with a professor?
Sub-answer 1: Yes.
Sub-question 2: Is the person in the image displaying any behavior that could be interpreted as being late
to class, such as being out of breath or looking at a clock?
Sub-answer 2: No.
Sub-question 3: Is there a classroom setting in the image, such as desks or a blackboard?
Sub-answer 3: Yes.
Your return:
Additional Sub-question 1: What is the person’s age in the image?
Additional Sub-question 2: Is the person more likely to be a student or a professor?
Additional Sub-question 3: Is the person holding any books or papers?

Example scenario to illustrate the expected interaction pattern:
Context: Below is a food web from a tundra ecosystem in Nunavut, a territory in Northern Canada. A
food web models how the matter eaten by organisms moves through an ecosystem. The arrows in a food
web represent how matter moves between organisms in an ecosystem. Main Question: Based on the
arrows, which of the following organisms is a decomposer? Choices: A: mushroom, B: lichen.
Sub-questions and answers:
Sub-question 1: Does the mushroom eat any other organisms in the food web?
Sub-answer 1: Yes.
Sub-question 2: Does the lichen eat any other organisms in the food web?
Sub-answer 2: No.
Sub-question 3: Does the lichen produce any material that other organisms can use?
Sub-answer 3: Yes.
Sub-question 4: Does the mushroom produce any material that other organisms can use?
Sub-answer 4: No.
Sub-question 5: Does a decomposer produce any material that other organisms can use?
Sub-answer 5: Yes.
Your return:
Additional Sub-question 1: Is there any arrow pointing towards the mushroom?
Additional Sub-question 2: Is there any arrow pointing towards the lichen?
Additional Sub-question 3: What is the mushroom’s role in the food web?
Additional Sub-question 4: What is the lichen’s role in the food web?

Table 8: Few-Shot Prompt for Second-Iteration Decomposition.
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Few-Shot Prompt for Paraphrase

Your goal is to paraphrase the given question into 4 questions. Each question should only change the
wording of the original question slightly or just replace a few words. The questions should be easy to
understand and should not change the meaning of the original question. If the questions come with some
choices, you should not change these choices.

Example scenario to illustrate the expected interaction pattern:
Main Question: Is this statement entailment, neutral, or contradiction based on the image? Statement: ‘A
professor is late to class’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 1: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘A teacher is late to class’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 2: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘A professor is tardy to class’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 3: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘A professor is not on time for class’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 4: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘A teacher is not punctual for class’ Options: A: entailment, B: neutral, C: contradiction.

Example scenario to illustrate the expected interaction pattern:
Context: Below is a food web from a tundra ecosystem in Nunavut, a territory in Northern Canada. A
food web models how the matter eaten by organisms moves through an ecosystem. The arrows in a food
web represent how matter moves between organisms in an ecosystem. Main Question: Based on the
arrows, which of the following organisms is a decomposer? Choices: A: mushroom, B: lichen
Paraphrased question 1: Based on the arrows, which of these choices is a decomposer? Choices: A:
mushroom, B: lichen
Paraphrased question 2: Based on the arrows, which of the following is a decomposer? Choices: A:
mushroom, B: lichen
Paraphrased question 3: Which of the following is a decomposer based on the arrows? Choices: A:
mushroom, B: lichen
Paraphrased question 4: Which is a decomposer based on the figure? Choices: A: mushroom, B: lichen

Example scenario to illustrate the expected interaction pattern:
Main Question: Is this statement entailment, neutral, or contradiction based on the image? Statement:
‘Two children play in the park.’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 1: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘Two kids play in the park.’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 2: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘Two children are playing in the park.’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 3: Is this statement entailment, neutral, or contradiction based on the image?
Statement: ‘Two kids are playing in the park.’ Options: A: entailment, B: neutral, C: contradiction.
Paraphrased question 4: Is this statement entailment, neutral, or contradiction based on the image? State-
ment: ‘There are two children playing in the park.’ Options: A: entailment, B: neutral, C: contradiction.

Example scenario to illustrate the expected interaction pattern:
User: Context: Use the graph to answer the question below. Main Question: Which month has the
highest average precipitation in Santiago? Choices: A: March, B: October, C: June
Paraphrased question 1: Which month has the highest average rainfall in Santiago? Choices: A: March,
B: October, C: June
Paraphrased question 2: Which month’s precipitation is the highest in Santiago? Choices: A: March, B:
October, C: June
Paraphrased question 3: Which month has the most precipitation in Santiago? Choices: A: March, B:
October, C: June
Paraphrased question 4: Which month has the most rainfall in Santiago? Choices: A: March, B: October,
C: June

Note: Return the paraphrased questions. For each paraphrased question, you should return the entire set
of choices as well.

Table 9: Few-Shot Prompt for Paraphrase.
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