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Abstract

In the realm of vision models, the primary
mode of representation is using pixels to ras-
terize the visual world. Yet this is not al-
ways the best or unique way to represent vi-
sual content, especially for designers and artists
who depict the world using geometry primi-
tives such as polygons. Vector graphics (VG),
on the other hand, offer a textual representa-
tion of visual content, which can be more con-
cise and powerful for content like cartoons,
sketches and scientific figures. Recent stud-
ies have shown promising results on processing
vector graphics with capable Large Language
Models (LLMs). However, such works focus
solely on qualitative results, understanding, or
a specific type of vector graphics. We pro-
pose VGBench, a comprehensive benchmark
for LLMs on handling vector graphics through
diverse aspects, including (a) both visual un-
derstanding and generation, (b) evaluation of
various vector graphics formats, (c) diverse
question types, (d) wide range of prompting
techniques, (e) under multiple LLMs and (f)
comparison with VLMs on rasterized represen-
tations. Evaluating on our collected 4279 un-
derstanding and 5845 generation samples, we
find that LLMs show strong capability on both
aspects while exhibiting less desirable perfor-
mance on low-level formats (SVG). Both data
and evaluation pipeline will be open-sourced at
https://vgbench.github.io.

1 Introduction

Current vision models are mostly built on pixels,
rasterizing the visual world into a matrix represen-
tation. Such rasterized represents diverse visual
content with equally sized elements. But pixels are
not the only way to represent the visual world. For
contents such as cartoons, sketches or scientific fig-
ures, a different representation using explicit geom-
etry primitives can be more concise and beneficial.

*Equal Contribution.

Vector graphics offer such a textual representation
for visual content via geometry primitives, e.g., cir-
cles and polygons, as shown in Figure 1 (a). Vector
graphics have been critical for designers and artists
since the geometry primitives can be easily ma-
nipulated. Vector representations include Scalable
Vector Graphics (SVG), TikZ, Graphviz, etc.

Vector Graphics vector representations make it
possible to conduct visual understanding and gener-
ation with LLMs such as GPT-4 (OpenAI, 2023b).
Recent studies (Bubeck et al., 2023; Cai et al.,
2023; Rodriguez et al., 2023) showcase LLMs’
superior capability across different perspectives.
However, those works either (1) only show quali-
tative results (Bubeck et al., 2023), (2) only study
vector graphics understanding (Wang et al., 2024)
and not generation, or (3) only study one specific
type of vector graphics such as SVG (Cai et al.,
2023; Wang et al., 2024; Rodriguez et al., 2023) or
TikZ (Belouadi et al., 2024). Therefore, the com-
munity lacks a comprehensive LLM benchmark for
vector graphics.

In this paper, we propose VGBench to compre-
hensively evaluate LLMs’ vector graphics process-
ing capabilities via different aspects: VGBench
(1) includes both visual understanding (VGQA)
and generation (VGen); (2) evaluates diverse vec-
tor graphics formats such as SVG, TikZ, and
Graphviz; (3) covers a set of taxonomies from
low-level vision to high-level semantics, from
color, shape, to category and advanced reason-
ing questions such as usage and the relation be-
tween objects; (4) adopts a variety of prompting
techniques, such as zero-shot prediction, chain-of-
thought reasoning, in-context learning, etc.; (5)
evaluates diverse LLMs including GPT-4 (Ope-
nAI, 2023b), GPT-3.5 (OpenAI, 2023a), Llama-
3-8B-Instruct, Llama-3-70B-Instruct (Meta, 2024),
Qwen2-7B-Instruct, Qwen2-72B-Instruct (qwe,
2024), Phi-3-mini-128k-instruct, Phi-3-medium-
128k-instruct (Abdin et al., 2024), gemini-1.5-
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Q: What does this SVG 
image depict?

A: Airplane
B: Rocket
C: Bullet
D: Tank

Q: What is the color of 
the zigzag shape?

A: Yellow
B: Red
C: Blue
D: Green

Q: What is its function in a 
software application?

A: Email sending
B: Document printing
C: Music playing
D: Picture editing

(i) Color (ii) Category (iii) Usage

Question TypesVector Graphics Types

(i) SVG (ii) TiKz (iii) Graphviz

Tasks

Q: What does this SVG 
image depict?

A: Airplane
B: Rocket
C: Bullet
D: Tank

(i) Understanding (ii) Generation

Q: Generate a SVG based 
on the caption below. 
black and white icon, 
representing a battery, 
horizontal, positive 
terminal on the right side, 
thick black outline ……

Figure 1: VGBench is the first comprehensive vector graphics (VG) understanding and generation benchmark
across diverse vector graphics types, question types, and prompting techniques on a rich set of SoTA LLMs. Our
large scale benchmark consists of 4279 multi-choice question-answer pairs and 5845 VG-caption pairs.

pro (Reid et al., 2024); and (6) evaluates the VLM
LLaVA-1.5-13b (Liu et al., 2024) over rasterized
representations of images in our benchmark.

We collect 4279 high-quality visual question-
answer (QA) pairs for vector graphics (VG) un-
derstanding and 5845 VG-caption pairs for vec-
tor graphics generation. The vector graphics code
is collected from existing datasets and the Inter-
net. For visual question answering, we use a
semi-automated pipeline to curate the questions.
Specifically, we prompt GPT-4V(ision) to gener-
ate question-answer pairs given the provided in-
context examples. Human annotators then filter
the generated QA pairs to get the final high-quality
vector graphics QA dataset. We use the gathered
questions to evaluate if an LLM can understand vec-
tor graphics correctly. For text-to-vector-graphic
generation (T2VG), we utilize GPT-4V to gener-
ate the captions and then use CLIP Score (Hes-
sel et al., 2021) and Fréchet Inception Distance
(FID) (Heusel et al., 2017) to evaluate the quality
of the LLM generated vector graphics code.

Our key findings are as follows:

• LLMs show much better vector graphic under-
standing capability in TikZ and Graphviz than
SVGs. TikZ and Graphviz include more high-
level semantics compared to SVG, which is
composed of low-level geometry primitives.
This demonstrates that LLMs are more ca-
pable in understanding vector graphics code
with high-level semantics.

• Advanced prompting techniques such as in-
context learning or chain-of-thought prompt-
ing can bring significant performance boost
for SVG, a low-level VG format.

• LLMs show strong vector graphics genera-

tion ability on TikZ and Graphviz format com-
pared to SVG format, hinting that TikZ or
Graphviz might be a better medium for LLMs
to manipulate vector graphics.

• In both understanding and generation, GPT-4
shows the strongest performance, yet open-
source models such as Llama-3-70b shows
competitive performance in understanding
tasks.

We hope that our work can serve as a foundation
for LLM vector graphics understanding and gener-
ation benchmarking, and motivate further work to
improve such capabilities. Our benchmark dataset
and evaluation pipeline will be released.

2 Related Work

2.1 Vector Graphics

Vector graphics represent images using basic ge-
ometric elements like points, lines, and curves,
rather than pixels. This method offers an alterna-
tive to raster graphics, providing advantages such
as infinite scalability without losing detail and easy
human manipulation.

There are a variety of vector graphics formats,
such as SVG (Quint, 2003), TikZ (Mertz and
Slough, 2007) and Graphviz (Gansner, 2009). SVG
format defines 14 functional areas or feature sets
and represents graphics by recording basic infor-
mation associated to these primitives, such as their
coordination and scales, in an XML file. TikZ
format defines some commands to build basic geo-
metric elements and is mainly used with LATEX.
In practice, third-party packages are also com-
monly used with TikZ to build more diverse images.
Graphviz (Gansner, 2009) is a vector graphics for-
mat that focuses on representing different kinds of
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graphs. In this paper, we explore the said three
kinds of vector graphics to provide a thorough and
comprehensive analysis regarding the reasoning
capabilities of LLMs on vector graphics.

2.2 Evaluation for Image Understanding and
Generation

Works on Image Understanding are mainly based
on raster images. VQA (Antol et al., 2015) first
introduced the task of free-form and open-ended
Visual Question Answering and evalauted exist-
ing LSTM-CNN based methods. CLIP (Radford
et al., 2021) introduces two encoders for both texts
and images to achieve an aligned representation
to serve as a baseline for many image understand-
ing tasks. LLaVA (Liu et al., 2023) and LLaMA-
Adapter (Zhang et al., 2023) propose approaches to
solve general-purpose visual and language under-
standing problems based on large language models.

While vector graphics can usually be converted
to a raster image easily (Gharachorloo et al., 1989),
there are few works that try to directly understand
the vector graphics format. (Jiang et al., 2021)
explores such a way using graph neural networks.
(Wang et al., 2024) utilizes large language mod-
els to understand vector graphics. In our work,
we utilize multiple prompting methods, to be men-
tioned in the following section, to evaluate different
LLMs’ vector graphics understanding capabilities
by prompting them with the vector graphics code
directly.

Most machine learning based image generation
models aim to generate raster images (Kingma and
Welling, 2013; Goodfellow et al., 2020; Ho et al.,
2020; Ramesh et al., 2021). Some research focus
on generating vector graphics in text format. Many
works generate vector graphics from a raster im-
age (Diebel, 2008; Xia et al., 2009; Ha and Eck,
2017; Ma et al., 2022). Leveraging language mod-
els, some try to generate text representing vector
graphics directly (Carlier et al., 2020; Wu et al.,
2023; Rodriguez et al., 2023). In our work, we
provide a different approach to evaluate vector
graphics generation via leveraging competent mul-
timodal models such as GPT4-V (OpenAI, 2023b)
to generate a detailed caption from a rasterized
image of a vector graphics object, based on which
other LLMs will be generating vector graphics code
for the same object during evaluation. We argue
that models like GPT4-V can provide high-quality
captions for us to automate part of the evaluation
process.

2.3 Prompting Techniques for Large
Language Models

A variety of prompting strategies have been proven
capable of boosting the performance of LLMs,
such as GPT4 (Achiam et al., 2023). Few-shot
learning (Brown et al., 2020b) requires the user to
give a few examples of the task to the LLM, while
Chain of Thought (Wei et al., 2022) instructs the
LLM to think step by step to achieve higher perfor-
mance. In-context learning (Brown et al., 2020a)
provides few-shot examples at inference time, and
shows strong performance boost without updating
the model’s parameters. In this paper, we broadly
evaluate LLMs’ vector graphic understanding capa-
bility by employing the aforementioned prompting
techniques.

3 Tasks and Experiments

We first introduce the source of our vector graphics
images in Sec. 3.1, and then describe the experi-
ment settings in Sec. 3.2. After that, we detail our
tasks, benchmark creation, evaluation pipeline and
results for vector graphics understanding and gener-
ation in Sec. 3.3 and Sec. 3.4, respectively. Finally,
we provide in-depth analyses on the performance
under different LLMs, different sequence lengths,
and reasoning processes in Sec. 3.5.

3.1 Vector Graphics Data Collection

We collect vector graphics samples for both under-
standing tasks and generation tasks from a variety
of sources. For samples in SVG format, we col-
lect them from a large-scale SVG repository.1 We
sample the TikZ format vector graphics code from
the DaTikZ dataset (Belouadi et al., 2024). We
sample the Graphviz code used to build our dataset
by crawling GitHub.2

3.2 Experiment Settings

Vector Graphics Types Here we consider three
major types of vector graphics: Scalable Vector
Graphics (SVG), TikZ, and Graphviz. SVG is ex-
ceptionally versatile and suitable for web applica-
tions, allowing for detailed graphical representa-
tions that scale infinitely without loss of quality.
This enables SVGs to theoretically represent any
visual content including complex animations and

1https://www.kaggle.com/datasets/
victorcondino/svgicons

2https://github.com/
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(i) Concept (ii) Counting (iii) Relation

TikZ

(i) Layout (ii) Domain (iii) Relation

Graphviz

Q: What does this SVG 
image depict?

A: Airplane
B: Rocket
C: Bullet
D: Tank

Q: In the SVG image, 
what is the color of the 
zigzag shape?

A: Yellow
B: Red
C: Blue
D: Green

Q: Which function might 
this icon represent in a 
software application?

A: Email sending
B: Document printing
C: Music playing
D: Picture editing

(i) Color (ii) Category (iii) Usage

SVG

Q: What is the general 
theme of this image?

A: Musical score
B: Organizational chart
C: Math concept
D: Architectural blueprint

Q: How many circles are 
there in this image?

A: 1
B: 2
C: 3
D: 4

Q: What is the position of  
B relative to A?

A: B is to the right of A
B: B is to the left of A
C: B is above A
D: B is below A

Q: What is the main concept?

A: Organizational Chart
B: Software Architecture
C: Flowchart
D: Family Tree

Q: What is the orientation of 
the text inside the box?

A: horizontal
B: vertical
C: diagonal
D: circular

Q: What is connected to 
both 'Client' blocks?

A: MySQL Server
B: MySQL Proxy
C: app
D: network core

Figure 2: Examples of the vector graphics QAs for diverse formats including SVG, TikZ, and Graphviz in VGQA.

SVG TikZ Graphviz

Category Color Usage Overall Concept Counting Relation Overall Layout Domain Relation Overall

869 671 688 2228 580 239 320 1139 319 418 175 912

Table 1: Statistics of VGQA. We collect a large set of QAs for each vector graphics format under diverse tasks,
resulting in 4279 QAs in total.

Vector Graphics PNG Format GPT-4V QA Generation

Q: Which function might this icon 
represent in a software 
application?

A: Email sending
B: Document printing
C: Music playing
D: Picture editing

Human Filter

Figure 3: The semi-automatic curation pipeline in
VGQA. Vector graphics are converted into PNG format,
then GPT-4V is utilized to generate the questions and
answers (QA) candidates. Finally, human annotators
filter the QA pairs to obtain the high-quality QA dataset.

interactive elements. TikZ, in contrast, is specifi-
cally tailored for creating high-precision scientific
illustrations within LaTeX documents, offering a
comprehensive suite of tools for detailed diagram-
matic representations; it encompasses a broad spec-
trum of high-level semantics such as "circuit di-
agrams, complex mathematical illustrations, and
structured diagrams". Graphviz, on the other hand,
belongs to the family of automated graph drawing
tools, which are optimized for generating diagrams
from abstract descriptions and data structures, mak-
ing it ideal for visualizing hierarchical information,
such as state machines, organizational charts, and
network infrastructures.

Language Models We primarily use GPT-4
(1106 version) (OpenAI, 2023b) as the medium
for vector graphics understanding and genera-
tion. This is because GPT-4 shows superior lan-
guage reasoning and generation capabilities, as
previously mentioned in Section 2.3. We also
evaluated other proprietary models such as GPT-
4o, GPT-3.5 (OpenAI, 2023a) and gemini-1.5-
pro (Reid et al., 2024), along with many other
open-source LLMs that are highly capable, includ-

ing Llama-3-70B-Instruct (Meta, 2024), Llama-
3-8B-Instruct, Qwen2-7B-Instruct, Qwen2-72B-
Instruct (qwe, 2024), Phi-3-mini-128k-instruct and
Phi-3-medium-128k-instruct (Abdin et al., 2024).

Tasks We consider two major tasks in computer
vision: (1) visual understanding, and (2) visual
generation. We design multiple choice questions to
evaluate vector graphics understanding while using
image generation metrics including Fréchet Incep-
tion Distance (FID) (Heusel et al., 2017) and CLIP
score (Hessel et al., 2021) to measure the quality
and correctness of generated vector graphics.

Prompting Techniques We adopt three widely
used prompting techniques: zero-shot, chain-of-
thought (CoT) prompting, and in-context learning
(few-shot prompting). For CoT, we instruct the
LLM to think step by step by appending “Please
think step by step" to the initial question, using
multi-round dialog to let the LLM consider each
option separately before figuring out the answer.
For in-context learning, we provide 3 examples of
the same question type.

3.3 VGQA: Vector Graphics Understanding
Benchmark

Tasks VGQA is designed to evaluate models’ vec-
tor graphics understanding capability. We system-
atically design a range of tasks based on the nature
of each vector graphics category, aiming at a com-
prehensive evaluation across different semantic lev-
els. For SVG, we design three types of questions:
color, category, and usage; for TikZ, we use con-
cept, counting, and relations as types of questions;
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Figure 4: Word distribution based on question categories for each vector graphic type. The top 20 words are sampled
from the answers to each type of question. Words with a frequency of less than 4% are represented as "OTHERS".

SVG TikZ Graphviz

Category Color Usage Average Concept Counting Relation Average Layout Domain Relation Average

86.9 67.1 68.8 74.3 58.0 47.8 32.0 45.6 58.0 83.6 31.8 57.0

Table 2: Human filtering passing rate of VGQA. TikZ and Graphviz show lower and less than half passing rate than
SVG, indicating that even SoTA models exhibit poor vector graphic understanding capabilities in certain areas.

Ground Truth
Vector Graphics

Ground Truth
Rasterized VG

begin{tikzpicture}[scale=
0.5] % Set scale to 0.5

% Draw face
\draw[fill=yellow!80!whit

e] (0,0) circle (5);
……

\end{tikzpicture}

GPT-4V Captioning

You are looking at a digital image 
of a stylized yellow face with a 
simple, cartoon-like appearance. 
The face is circular with a solid 
yellow background. It has …….

Generated 
Rasterized VG

\begin{tikzpicture}
\fill[yellow] (0,0) circle 

(2);
\draw[thick, black] (-
0.5,0.5) circle (0.3);

……
\end{tikzpicture}

T2VG via LLM
Evaluate & Compare

CLIP Score

FID

Figure 5: The automatic generation pipeline in VGen.
The vector graphics collected from the Internet is first
rendered into the ground truth image then captioned by
GPT-4V. The caption is fed into the target LLM to gen-
erate new vector graphics, which will be compared with
the caption using CLIP Score and FID for a similarity
score. The score is then compared with the similarity
score between the ground truth and the same caption as
the upper bound.

while for Graphviz, we design layout, domain, and
relations. Examples are shown in Figure 2.

Benchmark Creation and Evaluation We em-
ploy a semi-automatic benchmark curation pipeline
for VGQA, as shown in Figure 3. Specifically, we
render code representing vector graphics into a
PNG image before leveraging GPT-4V (OpenAI,
2023b) to generate the 4-choice question-answer
candidates. Then, human annotators with rich

vision-linguistic knowledge make binary annota-
tions to mark whether both the question and the an-
swer of a candidate are rational, correct and belong
to that specific type. Our approach brings several
benefits: (i) annotation cost is greatly reduced due
to GPT-4V’s low API cost; (ii) GPT-4V is one of
the most competitive LMMs that can provide high
quality candidates; (iii) the human filtering process
ensures the correctness of the final vector graphics
understanding benchmark.

Finally, we collect 4279 samples in total, as
shown in Table 1 and 2. The word distribution
of answers in the VGQA dataset is illustrated in
Figure 4. Specifically, we have 2228, 1139, and
912 samples for SVG, TikZ, and Graphviz, respec-
tively. After an LLM makes responses to the vector
graphics questions, we compare the final responses
with the ground-truth answers to compute accuracy.
For LLMs with weaker instruction-following ca-
pabilities in producing easily parsable outputs, we
use GPT-4 to determine their chosen option and
then assess their accuracy.

Results Evaluation results of VGQA under GPT-
4 (OpenAI, 2023b) are shown in Table 3. Several
interesting findings arise from the results:

GPT-4 generally shows strong vector graphics
understanding capability. In the zero-shot setting,
GPT-4 shows non-trivial accuracy far beyond ran-

3651



SVG TikZ Graphviz

Prompting Category Color Usage Avg Concept Counting Relation Avg Domain Layout Relation Avg

Zero-Shot 41.2 72.8 50.6 54.9 89.4 77.5 76.0 81.0 84.6 82.3 86.6 84.5
In-Context Learning 49.4 74.1 61.4 61.6 89.4 75.0 77.0 80.5 86.0 82.3 87.8 85.4

Chain of Thought 49.2 77.5 53.4 60.0 89.3 77.3 78.4 81.7 86.3 82.9 86.0 85.1

Table 3: Evaluation of VGQA across diverse vector graphics formats for GPT-4. It can be seen that GPT-4 performs
better on higher-level semantics with TikZ and Graphviz than on lower-level SVGs. It can also be seen that using
specific prompting techniques improves performance, especially with Chain of Thought prompting.

SVG

Ground Truth GPT 3.5 GPT 4

TikZ

Graphviz

CaptionFormat

The image shows a simple black outline of a heart 

shape on a white background. The heart outline is 

symmetrical with a smooth, curved top that tapers 

down to a sharp point at the bottom. ……

You are looking at a digital image of a stylized yellow 

face with a simple, cartoon-like appearance. The face is 

circular with a solid yellow background. It has two 

large, round eyes with black outlines; ……

The image shows a schematic representation of a two-

dimensional surface with a dumbbell-like shape. The 

surface is symmetrical, with two bulbous ends 

connected by a narrower middle section. ……

This is a simple, flat design illustration featuring two 

cartoon characters sitting behind a brown desk or 

table. The character on the left is wearing a dark suit 

with a blue tie and has brown hair, ……

The image shows a simple flowchart or diagram with 

five oval shapes connected by arrows, representing a 

process or a set of relationships. At the center, there is 

an oval labeled "ssgtest," which appears ……

The image depicts a flowchart or diagram with four 

rectangular blocks, each representing a step or 

component in a process. The blocks are connected by 

arrows indicating the flow of data or control. ……

Figure 6: Examples of generated vector graphics. The ground truth images are rendered by vector graphics code
directly from Internet. The captions are generated by GPT-4V, The images on the right side are rendered by vector
graphics code generated by GPT-3.5 or GPT-4.

dom accuracy (25%) across all categories. Specif-
ically, GPT-4 shows strong performance in TikZ,
with an average accuracy of 78%.

GPT-4 shows stronger performance in high-
level vector graphics language (e.g., TikZ,
Graphviz) compared to low-level vector graph-
ics language SVG. In either zero-shot, few-shot,
or Chain-of-Thought settings, TikZ and Graphviz
show at least 17% better performance than SVG.
As a reminder, TikZ and Graphviz are fundamen-
tally different from SVG in terms of the semantic
levels, as SVG is composed of geometry primi-
tives while TikZ and Graphviz contain high-level
semantics such as “above", “below", explicit repre-
sentation of nodes and edges, etc.

Chain of Thought (CoT) and In-Context Learn-
ing (ICL) show some performance improvements
for some tasks, but not significant. CoT and
ICL show ∼7% performance boost for SVG which

owns lowest performance among three formats. Yet
CoT and ICL show no benefits for TikZ and limited
improvements for Graphviz, where GPT-4 already
obtains ∼83% accuracy under TikZ and Graphviz.

Different vector-graphic formats show diverse
behaviors upon question types. For SVG, GPT-
4 struggles at high-level questions and receives
∼50% accuracy on category and reasoning types,
while in TikZ and Graphviz, GPT-4 shows decent
performance across all types of questions. This
again demonstrates that GPT-4 shows inferior per-
formance in low-level vector graphics tasks, espe-
cially on tasks related to reasoning.

3.4 VGen: Vector Graphics Generation
Benchmark

Tasks We introduce VGen, a benchmark evaluat-
ing LLMs’ vector-graphics generation capability.
We use text to vector-graphics (T2VG) generation
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to test an LLM’s ability to generate vector graphics
code conditioned on a text prompt.

Benchmark Creation and Evaluation Again
we evaluate on three vector graphics formats: SVG,
TikZ and Graphviz. First, we obtain captions for
each vector graphics image by leveraging GPT-
4V (OpenAI, 2023b) over its rasterized image.
Then we prompt the LLM to generate the vector
graphics code corresponding to the caption.

SVG TikZ Graphviz

# of VG-captions pairs 2000 2000 1845

Table 4: Statistics of VGen on three VG formats.

Finally, we map the generated vector graphics
into rasterzied images, then use CLIP Score and
Fréchet Inception Distance (FID) Score to evaluate
the quality of the generated vector graphics.

We use CLIP Score to measure the similarity
between each generated vector graphics and its as-
sociated caption. We utilize Long-CLIP (Zhang
et al., 2024) instead of the vanilla CLIP (Radford
et al., 2021) since our detailed captions are often
longer than CLIP’s maximum context length of 77.
FID is utilized to evaluate the distribution gap be-
tween the original vector graphics and generated
ones. For both metrics, we use the score of our
ground truths as the upper bound to reflect the qual-
ity of the generated images. The overall pipeline is
shown in Figure 5.

LLM SVG TikZ Graphviz

Ground-Truth 25.61 24.63 23.67
GPT-4 23.97 24.42 24.50
GPT-3.5-Turbo 22.88 24.21 23.88

Table 5: CLIP score between captions and rasterized
images from the generated vector graphics.

LLM SVG TikZ Graphviz

GPT-4 44.81 39.38 77.03
GPT-3.5-Turbo 60.67 17.49 88.20

Table 6: The FID score between the ground truth images
and the generated images. Lower is better.

Results CLIP and FID score under each VG type
is shown in Table 5 and Table 6, respectively. Qual-
itative examples are shown in Figure 6.

Both GPT-3.5 and GPT-4 show strong vector
graphics generation capability. Both LLMs show

similar CLIP score as the ground truth. Results on
FID score also support this claim. GPT-4 shows
better performance than GPT-3.5 on CLIP score.
Qualitative examples including the heart shape and
flowchart generation also demonstrate the promis-
ing capability of VG generation using LLMs.

3.5 In Depth Analysis

Impact of Different LLMs We next perform ex-
periments over a variety of large language mod-
els, including GPT-4, GPT-3.5, Llama-3-70B-
Instruct (Meta, 2024) and Llama-3-8B-Instruct. Re-
sults are shown in Table 7. The results show that
GPT-4 has the best VG understanding ability over
vector graphics among those models while Llama-
3-70B shows better performance than GPT-3.5.

Comparison between LLMs and MLLMs on
Image Understanding We find that VLMs such
as LLaVA (Liu et al., 2023) show interesting be-
havior compared with LLMs on vector graphics.
To evaluate the performance of VLMs on VGQA,
we render each visual content in our benchmark
into the PNG format, and then feed the same ques-
tion to VLMs. Specifically, we evaluate LLaVA-
1.5-13b (Liu et al., 2024), as shown in Table 9.
LLaVA-1.5 shows stronger performance in SVG
format compared to TikZ and Graphviz. The strong
performance gain that LLMs obtained on high-
level vector graphics languages such as TikZ and
Graphviz shows that those kinds of vector graphics
are more aligned with LLMs’ training data, natural
languages, which is a highly compressed repre-
sentation of the world. Low-level vector graphics
languages such as SVG cover more low-level vi-
sual signals that can be better handled by VLMs
using their rasterized representation.

LLM SVG Avg TikZ Avg Graphviz Avg

GPT-4 54.9 81.0 84.5
GPT-4o(Text) 64.4 79.8 80.8
LLaVA-1.5-13b 84.1 47.8 50.1

Table 9: The comparison on image understanding abil-
ity between LLMs and VLMs, reflected by the average
accuracy (%) on VGQA. We feed the rasterialized vector
graphics in PNG format along with the same question
in text format to LLaVA-1.5-13b to evaluate its perfor-
mance on VGQA

Impact of Vector Graphics Sequence Length
We next study the influence of the length of the
vector graphics on vector graphics understanding.
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SVG TikZ Graphviz

Model Category Color Usage Avg Concept Counting Relation Avg Domain Layout Relation Avg

Proprietary Large Language Models (LLMs): Vector Graphics as Input

GPT-4o 52.5 80.4 60.3 64.4 87.0 75.0 77.3 79.8 83.6 75.0 83.7 80.8
GPT-4 41.2 72.8 50.6 54.9 89.4 77.5 76.0 81.0 84.6 82.3 86.6 84.5

GPT-3.5-Turbo 33.4 50.5 47.1 43.7 76.7 56.8 54.4 62.6 83.6 62.5 63.5 69.9
Gemini-1.5-Pro 39.2 73.2 47.9 53.4 86.7 74.9 71.8 77.8 79.5 66.8 86.0 77.4

Open-sourced Large Language Models (LLMs): Vector Graphics as Input

Llama-3-8B 32.3 39.8 48.0 40.0 64.6 53.0 45.9 54.5 68.0 52.5 55.8 58.8
Llama-3-70B 46.3 58.7 55.3 53.4 78.5 68.2 66.7 71.1 72.8 61.4 74.4 69.5

Qwen2-7B 33.3 48.7 46.3 42.8 79.4 64.7 58.3 67.5 81.8 57.3 68.6 69.2
Qwen2-72B 43.4 62.4 55.9 53.9 88.6 74.6 72.5 78.6 86.5 71.5 80.8 79.6

Phi-3-Mini-128K 34.1 29.8 49.7 37.9 70.6 52.5 50.7 57.9 74.7 58.9 68.6 67.4
Phi-3-Medium-128k 43.6 44.7 60.6 49.6 80.4 59.7 62.8 67.6 81.4 66.5 72.7 73.5

Large Multimodal Models (LMMs): Rasterized Image as Input

LLaVA-1.5-13b 83.0 85.2 84.0 84.1 64.3 34.3 44.8 47.8 46.7 53.9 49.7 50.1

Table 7: The evaluation of VGQA across diverse vector graphics formats for different LLMs and the evaluation of
rasterized representation of VGQA in VLMs in the zero-shot setting.

SVG TikZ Graphviz

Length Category Color Usage Avg Concept Counting Relation Avg Domain Layout Relation Avg

1-1000 59.3 72.2 65.5 65.7 83.2 79.8 69.9 77.6 78.4 84.1 90.4 84.3
1000-2000 47.0 75.3 60.8 61.0 88.0 83.8 79.7 83.8 90.4 77.6 87.9 85.3
2000-3000 46.8 76.4 50.6 57.9 85.5 66.7 80.0 77.4 96.2 80.0 77.8 84.7
3000-4000 51.5 64.1 54.1 56.6 89.7 69.2 70.0 76.3 90.5 82.4 75.0 82.6

> 4000 48.9 70.1 52.5 57.2 95.8 55.0 81.2 77.3 87.0 82.5 72.2 80.6

Table 8: VGQA performance under different lengths of vector graphics for GPT-4 with zero-shot prompting. GPT-4
performs better on some lengths than others. For instance, in the Graphviz Domain question type, GPT-4 performs
at an outstanding 96% accuracy on the 2k-3k range while showing most subpar performance on the <1k range.

\\begin{document}\n\n\\begin{t
ikzpicture}[auto,scale=1.5]\n\\b
egin{scope}\n\\draw[line 
width=2.5 pt] (0,0) to (2,0); (0,0) 
to (0,1); (0,1) to (2,1);…

What is the mathematical 
concept illustrated?
A: Probability Distributions
B: Algebraic Equations
C: Combinatorial Configs
D: Graph Theory
Please think step by step.

(ii) TikZ

<svg version=\“1.1\” /svg\“ 
<path d=\”m485.729,236.892c-
0.21-0.313-0.437-0.618-0.699-
0.904l-.718-.783c-1.699-1.99-
3.467-3.92-5.3-5.786l-…

What object is represented by 
this SVG image?
A: Glasses
B: Telescope
C: Binoculars
D: Camera
Please think step by step.

(i) SVG

\"digraph G{\n ordering=out;\n 
{rank=same;\"1\";\"2\"};\n \"1\"-
>\"2\";\n{rank=same;\"4\";\"5\"}
;\n \"4\"->\"5\";\n \"7\"->\"5\";\n 
\"7\"->\"4\";\n \"6\"->\"1\...

What is the direction of the flow 
in the graph?
A: Left to right
B: Right to left
C: Top to bottom
D: Bottom to top
Please think step by step.

(iii) Graphviz

The SVG code provided describes 
an image with two large, similar 
shapes that could represent the 
eyepieces of binoculars… 
Therefore, C: Binoculars is the 
correct answer.

The TikZ code illustrates points 
connected by lines, potentially 
forming a graph. The thicker lines 
may indicate relationships 
between points... Hence, D: 
Graph Theory is the best answer.

In the absence of a `rankdir` 
attribute or any other layout-
related code, the default layout in 
Graphviz is indeed from top to 
bottom… That’s why the direction 
of the flow is top to bottom.

Figure 7: Examples of prompting GPT-4 using Chain-of-Thought with different types of vector graphics in VGQA.
We only show GPT-4 the vector graphics code, but we include the rasterized images here for the sake of the readers.

Results for GPT-4 are shown in Table 8, where
GPT-4 shows consistent performance across differ-
ent length groups. Specifically, low-level vector
graphics format such as SVG is most sensitive to

the length. When the length increases, the under-
standing performance on SVG decreases steadily,
while the understanding performance on other high
level format remains stable. Another noticeable
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finding is that questions requiring complex reason-
ing, such as Usage in SVG or Relation in Graphviz,
suffer more from the increasing sequence length.

Can LLMs Reason over Vector Graphics? The
reasoning process of GPT-4 under the CoT setting
is shown in Figure 7. Results show that GPT-4 can
detect the key information over those samples, such
as "two large, similar shapes that could represent
the eyepieces ...", for correct reasoning. We include
the full conversation in Appendix 6.3.

4 Conclusion

Our study unveils new insights into the capabili-
ties of LLMs in understanding and generating vec-
tor graphics. We discovered that LLMs demon-
strate decent vector graphics understanding in TikZ,
Graphviz, and SVGs, with a particular strength in
understanding vector graphics code with higher-
level semantics. We also found that LLMs often ex-
hibit strong vector graphics generation capabilities.
Interestingly, advanced prompting techniques can
significantly improve performance for low-level
formats such as SVG, and while GPT-4 had the
strongest performance, open-source models like
Llama-3-70B and Qwen2-72B show competitive
performance. Our work lays a groundwork for fu-
ture studies into LLMs’ vector graphics understand-
ing and generation benchmarking, and we hope it
will inspire further efforts to enhance these capa-
bilities. We will release our benchmark dataset and
evaluation pipeline.

5 Limitations

We acknowledge that one cannot systematically
evaluate the behavior of the closed-source mod-
els we employed, namely GPT-4, GPT-35-Turbo,
and GPT-4V. Besides, more evaluations on recent
LLMs can be conducted, which can provide more
supporting experiments on LLMs’ behavior on vec-
tor graphics understanding and generation.

Furthermore, recent works propose more
prompting techniques such as Tree of Thoughts
(ToT) (Yao et al., 2024) and Everything of
Thoughts (XoT) (Ding et al., 2024). Incorporating
these prompting techniques could further enhance
our study.
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6 Appendix

6.1 The specific prompt we used

6.1.1 Prompts used to build the dataset
Question Generation System prompt: The sys-
tem prompts used to generate questions are dif-
ferent for different types of vector graphics and
different types of questions. See the code in sup-
plemental material for details.

User prompt: The caption of this image is {cap-
tion}, generate the json according to the instruction.
<IMAGE>

Caption Generation System prompt: Generate
a detailed caption for the given image. The reader
of your caption should be able to replicate this
picture.

User prompt: <IMAGE>

6.1.2 Prompts used to evaluate the models’s
understanding ability

Zero-shot System prompt: I will present a {for-
mat} code. Please answer my questions only based
on code. Answer and only answer the letter cor-
responding to the correct option. Do not add any
additional comment in your response

User prompt: "{code}". Given this image, an-
swer {question}. Options are {options}

Few-shot System prompt: I will present a {for-
mat} code. Please answer my questions only based
on code. Answer and only answer the letter cor-
responding to the correct option. Do not add any
additional comment in your response. For your
reference, I will give you some examples.

User prompt: This is an example, the code is:
{code}

User prompt: Given this image, answer
{few_shot_sample_question}. Options are
{few_shot_sample_options}

Simulated assistant prompt:
{few_shot_sample_answer}

Repeat the last three prompts for three times,
each time pass a different samples.

User prompt: "{code}". Given this image, an-
swer {question}. Options are {options}

Zero-shot-cot System prompt: I will present a
{format} code. Please answer my questions only
based on code. Please consider the question step
by step.

User prompt: {code}
User prompt: Given this image, the question is

{question}. Options are {options}. Do not answer
directly, consider each option individually.

User prompt: Carefully consider if the option A
is correct

Wait for the large language model’s reponse and
add its response to the context.

User prompt: Carefully consider if the option B
is correct

Wait for the large language model’s reponse and
add its response to the context.

User prompt: Carefully consider if the option C
is correct

Wait for the large language model’s reponse and
add its response to the context.

User prompt: Carefully consider if the option D
is correct

Wait for the large language model’s reponse and
add its response to the context.

User prompt: Which option is the best? Answer
and only answer the letter corresponding to the
correct option. Do not add any additional comment
in your response

3657



(a) SVG (b) TikZ (b) Graphviz

Figure 8: The distribution of vector graphics length in VGBench. X-axis denotes the string length of vector graphics
files in each vector grapics format.

\\begin{document}\n\n\\begin{tikz
picture}[auto,scale=1.5]\n\\begin{
scope}\n\\draw[line width=2.5 pt] 
(0,0) to (2,0); (0,0) to (0,1); (0,1) to 
(2,1);…

What is the major mathematical 
concept illustrated?
A: Probability Distributions
B: Algebraic Equations
C: Combinatorial Configurations
D: Graph Theory
Consider each option individually.

(ii) TikZ

<svg version=\“1.1\” /svg\“ <path 
d=\”m485.729,236.892c-0.21-
0.313-0.437-0.618-0.699-0.904l-
.718-.783c-1.699-1.99-3.467-3.92-
5.3-5.786l-…

What object is represented by this 
SVG image?
A: Glasses
B: Telescope
C: Binoculars
D: Camera
Consider each option individually.

(i) SVG

\"digraph G{\n ordering=out;\n 
{rank=same;\"1\";\"2\"};\n \"1\"-
>\"2\";\n{rank=same;\"4\";\"5\"};\n 
\"4\"->\"5\";\n \"7\"->\"5\";\n \"7\"-
>\"4\";\n \"6\"->\"1\...

What is the direction of the flow in 
the graph?
A: Left to right
B: Right to left
C: Top to bottom
D: Bottom to top
Consider each option individually.

(iii) Graphviz

The SVG code provided describes 
an image with two large, similar 
shapes that could represent the 
eyepieces of binoculars… 
Therefore, C is potentially correct.

The TikZ code illustrates points 
connected by lines, potentially 
forming a graph. The thicker lines 
may indicate relationships 
between points... D is correct.

By default, Graphviz's 'dot' engine 
arranges directed graphs from top 
to bottom. To specify a bottom-to-
top flow, the code needs to 
include rankdir=BT. D is incorrect.

Carefully consider if C is correct.

The two symmetrical shapes do 
not align with the structure of a 
camera, with a single, 
asymmetrical shape… Therefore, 
D is incorrect.

Carefully consider if D is correct.

In the code there is no explicit 
indication of counting, 
permutations, combinations, or 
other typical combinatorial 
concepts… Hence, C is incorrect.

Carefully consider if C is correct.

Carefully consider if D is correct.

In the absence of a `rankdir` 
attribute or any other layout-
related code, the default layout in 
Graphviz is indeed from top to 
bottom… That’s why C is correct.

Carefully consider if C is correct.

Carefully consider if D is correct.

By default, Graphviz's 'dot' engine 
arranges directed graphs from top 
to bottom. To specify a bottom-to-
top flow, the code needs to 
include rankdir=RL. B is incorrect.

By default, Graphviz's 'dot' engine 
arranges directed graphs from top 
to bottom. To specify a bottom-to-
top flow, the code needs to 
include rankdir=LR. A is incorrect.

Carefully consider if A is correct.

Carefully consider if B is correct.

The code suggests a pair of 
objects that are similar and 
connected, which is consistent 
with the structure of glasses.
Therefore, A is potentially correct.

The code includes some text that 
could be interpreted as algebraic 
expressions, yet we can’t claim 
that this is the major concept 
without additional context.

Carefully consider if A is correct.

The code includes similar shapes 
and symmetrical elements, which 
does not align with the singular, 
elongated structure of a 
telescope. B is incorrect.

Carefully consider if B is correct.

The given TikZ code does not 
depict probability distributions. 
There are no explicit references to 
probabilities, random variables, or 
statistics. A is incorrect.

Carefully consider if A is correct.

Carefully consider if B is correct.

C.

Which one do you think is the best?

D.

Which one do you think is the best?

C.

Which one do you think is the best?

I will present a Graphviz code. 
Answer only based on code. 
Please consider step by step.

I will present a TikZ code. 
Answer only based on code. 
Please consider step by step.

I will present an SVG code. 
Answer only based on code. 
Please consider step by step.

Figure 9: We include the full conversation with GPT-4 as indicated in Figure 7. We ask the model to consider if each
option is correct individually, then ask another GPT-4 model to judge if the reasoning matches the correct answer.
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6.1.3 Prompts used to evaluate models’
generation ability

System prompt: Generate a {format} based on the
caption below. You should output the compilable
code without any additional information.

User prompt: {caption}

6.2 Data distribution
We include the distribution of VGQA grouped by
each vector graphic category in Figure 8, each in
itself grouped by the specific question categories
we assigned.

6.3 Detailed examples for reasoning
We include the full version of the three example
conversations previously put in Figure 7 now in
Figure 9. The three conversations show how we
only input the vector graphics code, exhibit the
question, ask the model to consider each question
carefully, and finally make its best choice.

6.4 Llama variants used in this paper
We evaluated Llama’s variants, Llama-3-8B-
Instruct-262k3 and Llama-3-70B-Instruct-Gradient-
262k4 in this paper because they have extended
context length.

6.5 Human filtering
The authors of this study, proficient in English with
extensive research experience in vision-language
learning, perform the vector graphics QA filtering.

6.6 Programs and Data Release
Our code and data is included in the supplementary
materials.

3https://huggingface.co/gradientai/Llama-3-8B-Instruct-
262k

4https://huggingface.co/gradientai/Llama-3-70B-Instruct-
Gradient-262k
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