
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3688–3709
November 12-16, 2024 ©2024 Association for Computational Linguistics

External Knowledge-Driven Argument Mining: Leveraging
Attention-Enhanced Multi-Network Models

Debela Gemechu and Chris Reed
Centre for Argument Technology (ARG-tech)

University of Dundee
Dundee DD1 4HN, United Kingdom

{d.t.z.gemechu,c.a.reed}@arg.tech

Abstract
Argument mining (AM) involves the identi-
fication of argument relations (AR) between
Argumentative Discourse Units (ADUs). The
essence of ARs among ADUs is context-
dependent and lies in maintaining a coher-
ent flow of ideas, often centered around the
relations between discussed entities, topics,
themes or concepts. However, these rela-
tions are not always explicitly stated; rather,
inferred from implicit chains of reasoning
connecting the concepts addressed in the
ADUs. While humans can infer such back-
ground knowledge, machines face challenges
when the contextual cues are not explicitly
provided. This paper leverages external re-
sources, including WordNet, ConceptNet, and
Wikipedia to identify semantic paths (knowl-
edge paths) connecting the concepts discussed
in the ADUs to obtain the implicit chains of
reasoning. To effectively leverage these paths
for AR prediction, we propose attention-based
Multi-Network architectures. Various archi-
tecture are evaluated on the external resources,
and the Wikipedia based configuration attains
F-scores of 0.85, 0.84, 0.70, and 0.87, re-
spectively, on four diverse datasets, showing
strong performance over the baselines.

1 Introduction

Argument mining involves identifying the argu-
mentative structure within a text. It includes
segmenting arguments into Argumentative Dis-
course Units (ADUs) (Peldszus and Stede, 2015a),
distinguishing argumentative units from non-
argumentative ones, classifying ADUs, labeling
argument relation (AR) between ADUs, and iden-
tifying argument schemes (Persing and Ng, 2016;
Stab and Gurevych, 2017; Lawrence and Reed,
2020). This study focuses on classifying the AR
between ADUs into three categories: Inference
(RA) (when one ADU supports the other), Conflict
(CA) (when one ADU attacks the other), and None
(when there is no AR).

The nature of AR is inherently context-
dependent (Potash et al., 2017; Habernal et al.,
2017; Choi and Lee, 2018; Rinott et al., 2015),
relying on maintaining a coherent flow of inter-
connected ideas. This cohesion is often centered
around the connections between the discussed en-
tities, topics, themes or concepts, commonly re-
ferred to as Local coherence (Foltz et al., 1998;
Marcu, 2000). Local coherence facilitates smooth
idea transitions between ADUs by recognising in-
herent regularities in entity distribution. Similarly,
other entity-based theories of discourse (Givón,
1987; Prince, 1981) and Centering Theory (Grosz
et al., 1995) propose that these regularities con-
tribute to the coherence of discourse by guiding
the organisation of ideas around salient entities.
Following a similar framework, aspect-based argu-
ment mining techniques use the relationships be-
tween the concepts discussed in ADUs, to identify
argument structures (Misra et al., 2017; Dragoni
et al., 2018; Gemechu and Reed, 2019; Trautmann,
2020). Yet, the contexts required to link these con-
cepts are not always explicit and are often inferred
from background knowledge.

Pre-trained large language models (LLMs) have
transformed NLP, moving from traditional feature
engineering to data-driven approaches. Studies in-
dicate that these models implicitly capture various
types of knowledge, including relational, common-
sense, and structural linguistic knowledge, within
their parameters (Petroni et al., 2019; Goldberg,
2019; Safavi and Koutra, 2021; AlKhamissi et al.,
2022). While excelling in various NLP tasks, their
ability to encode the necessary background knowl-
edge for identifying ARs remains uncertain (Kass-
ner and Schütze, 2019). For example, Polu et al.
(2022) revealed their limitations in chaining multi-
ple steps of complex logical reasoning, while Mer-
rill et al. (2021) demonstrated they fail to compre-
hend the semantics behind commonsense reason-
ing tasks. This limitation is critical in AR iden-
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tification, as linking ADUs relies on the implicit
chain of reasoning, often inferred from the chain
of relations between the concepts discussed in the
ADUs. This highlights the need for supplementary
contextual information from external sources to
establish these connections.

Consider the ADUs from the 2016 presidential
election debate corpus (Visser et al., 2019) in Table
1. Identifying the AR between (1) and (2) relies
on recognising the relationship between “NAFTA
agreement” and “USA”, whereas for (4) and (5), it
requires understanding “building electric grid” is
an “economic activity”. While these connections
are straightforward for human experts, computers
face challenges as such interconnections are often
implicitly inferred. For example, the AR between
(3) and (4) is direct as the relation between the
concepts mentioned in the respective ADUs can
be obtained from an ontology (Miller, 1995; Speer
et al., 2017) (“Electric grid; grid” is directly related
to “power; electrical power” in WordNet (Miller,
1995)) or by comparing their embeddings (Pilehvar
et al., 2013; Le and Mikolov, 2014; Reimers and
Gurevych, 2019). However, identifying the AR
between (4) and (5) is challenging since the path
linking “electric grid” to “economic activity” is
missing in existing knowledge resources includ-
ing WordNet (Miller, 1995) or ConceptNet (Speer
et al., 2017) or DBpedia.1 However, the concepts
are indirectly linked in Wikipedia through a chain
of concepts interlinked using a set of semantic re-
lation types: “economic activity” involves “innova-
tion” which constitutes developing “clean energy”
transmitted by “electric grid”. This study aims to
identify and leverage the chain of such semantic
relations between the concepts, to capture implicit
referential information between ADUs (Asher and
Lascarides, 2003) and use it for AR prediction.

No ADUs
1 [USA]C [is in deep trouble]OC

2 [NAFTA agreement]C [is defective]OC

3 [We]C [can have]OC [clean energy]A
4 [We]C [can build]OC a new modern [electric grid]A
5 [This]C [is a lot of]OC new [economic activity]A

Table 1: Examples from 2016 presidential election de-
bate corpus (Visser et al., 2019) to illustrate the rela-
tion between the functional components of ADUs. C
represents the theme of the sentence, A represents the
aspects specialising the theme, while the opinion on C
is represented by OC.

1https://wiki.dbpedia.org/

Leveraging knowledge from external resources
has been shown to improve performance in AM
(Kobbe et al., 2019; Botschen et al., 2018; Fromm
et al., 2019; Plenz et al., 2023) and related tasks,
such as semantic plausibility (Wang et al., 2018),
identifying inferences (Chen et al., 2017), and de-
termining entailment (Glockner et al., 2018). How-
ever, existing studies on AR prediction exclusively
utilise structured knowledge bases and overlook
semi-structured resources like Wikipedia, which
contains over 6,805,837 articles (as of April 1,
2024), offering richer connections through hyper-
links embedded within articles. Moreover, these
methods rely on entities, events, and factual infor-
mation sourced from structured databases, limiting
their applicability to specific domains. In contrast,
using generic semantic relation types that encode
AR ensures adaptability across domains (refer to
Table 7 for examples of such relation types). Fur-
thermore, they lack effective method for integrat-
ing the external information into model architec-
tures, relying instead on conventional feature en-
gineering techniques. For instance, Kobbe et al.
(2019) leverage features derived from graph rep-
resentations of the resources, including the inter-
concept distances within the graph. Similarly,
Plenz et al. (2023) employ semantic similarity to
determine the relevance of external knowledge, in
conjunction with traditional features derived from
the graph representation of the resources.

In this paper, we propose traversing Wikipedia,
WordNet, and ConceptNet to find semantic paths
linking concepts mentioned in ADU pairs. ARs
between ADUs are identified by leveraging these
paths using attention-based Multi-Network archi-
tectures. To establish a benchmark, we evaluate
LLMs across various configurations, comparing
the knowledge obtained from external resources
with that inherent in LLMs. The evaluation demon-
strated that integrating external resources consis-
tently enhances performance, showing strong per-
formance over the baselines and comparison ap-
proaches. Additionally, we assess the effectiveness
of the attention-based Multi-Network architecture
in leveraging external knowledge, demonstrating
its superiority over the standard linear classifica-
tion baseline. The contribution of this paper is four-
fold: (a) the utilisation of both structured and semi-
structured external resources for AR prediction,
(b) architecture for effectively leveraging external
knowledge, (c) features adaptable across domains,
and (d) the state-of-the-art performance.
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2 Related Works

In the literature, AM has been approached using
various configurations, including dependency pars-
ing (Peldszus and Stede, 2015b), discourse parsing
(Muller et al., 2012), sequence tagging (Eger et al.,
2017; Mayer et al., 2020), and sequence classifi-
cation configurations (Reimers et al., 2019; Ruiz-
Dolz et al., 2021; Mayer et al., 2020). Various
works tackle specific AM tasks. Some focus ex-
clusively on argument segmentation (Chernodub
et al., 2019; Ajjour et al., 2017), while others start
with segmented data and focus solely on AR iden-
tification (Potash et al., 2016; Gemechu and Reed,
2019; Ruiz-Dolz et al., 2021). Potash et al. (2016)
train an encoder-decoder (Sutskever et al., 2014)
with attention mechanism (Bahdanau et al., 2014)
to identify AR. Gemechu and Reed (2019) decom-
pose ADUs into fine-grained components and use
classifiers to predict AR based on the relations be-
tween these components. Chakrabarty et al. (2020)
identify argument components and ARs within
both inter-turn and intra-turn interactions in dia-
logues. They classify ARs as a binary prediction,
determining only the presence of a relation without
specifying its type. Their findings indicate that us-
ing distant-labeled data and integrating discourse
relations from Rhetorical Structure Theory (Mann
and Thompson, 1988) improve performance.

End-to-end AM approaches address multiple
AM tasks, simultaneously. Persing and Ng (2016)
and Stab and Gurevych (2017) adopt a pipeline
architecture and train separate models for each
subtask to then utilise an Integer Linear Program-
ming (ILP) model to encode global constraints.
Eger et al. (2017) propose a neural end-to-end ap-
proach, framing the task in various configurations
including dependency parsing and token-based se-
quence tagging. They also employ a multi-task
setup to leverage the dependencies between AM
tasks, including component identification and AR
prediction. Their best-performing configuration
achieves an F1-score of 0.51 for AR identification
on the AAEC dataset. Peldszus and Stede (2016)
aim to map RST trees to argumentation structures
(Taboada and Mann, 2006) using sub-graph match-
ing and an evidence graph model. They evaluate
various features of their system on the AMT dataset
and achieve an overall F-measure of 0.76 in iden-
tifying ARs. Similarly, Morio et al. (2022) intro-
duce an end-to-end cross-corpus training strategy
that facilitate information transfer between datasets.

Mayer et al. (2020) address argument component
and relation identification on a dataset comprising
various disease treatments. The approach involves
combining static and dynamic embeddings using
various configurations of RNN and CRFs. They
demonstrate the efficacy of specialised LLMs like
SciBERT (Beltagy et al., 2019), highlighting their
relevance in medical domain adaptations. How-
ever, most of these works rely on the information
explicitly provided in the argument alone.

Recent AM works fine-tuned LLMs in sequence
classification fashion (Reimers et al., 2019; Ruiz-
Dolz et al., 2021). Studies show that such LLMs
implicitly capture relational, commonsense, and
structural linguistic knowledge (Petroni et al.,
2019; Goldberg, 2019; Safavi and Koutra, 2021;
AlKhamissi et al., 2022). Despite their significant
performance, the ability of LLMs to encode the
requisite background knowledge for identifying
ARs remains uncertain, raising concerns about re-
lying solely on LLMs for this task (Kassner and
Schütze, 2019). For instance, Polu et al. (2022)
exposed their limitations in complex logical rea-
soning, while Merrill et al. (2021) showed they
struggle in comprehending the semantics of com-
monsense reasoning tasks.

The works most related to ours are those of
Kobbe et al. (2019) and Plenz et al. (2023), as
they also leverage external knowledge bases to
identify AR. However, their methodologies dif-
fer significantly from ours. Firstly, they rely on
structured knowledge bases with predefined rela-
tion types, while we also use semi-structured re-
sources like Wikipedia that cover diverse relations.
Furthermore, they struggle to effectively integrate
external information into model architectures, re-
lying instead on conventional feature engineering
techniques that exploit structural features obtained
from sub-graph extracted from external knowledge
bases. For instance, Kobbe et al. (2019) use fea-
tures like the frequency of relations existing be-
tween ADUs. Similarly, Plenz et al. (2023) lever-
age the similarity between external knowledge and
ADUs to identify relevant sub-knowledge graphs
and exploit the sub-graph to extract categorical
features, such as the number of shared concepts
between ADU pairs and the path lengths between
the concepts. Additionally, the formalisation of
the “concepts” used for alignment with external
resources is vague, relying on arbitrary entity men-
tioned in the ADUs. Moreover, their approach for
AR identification has not been evaluated.
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3 Methodology

Our approach comprises two main stages: first, we
align a pair of ADUs (premise-conclusion) with
external knowledge resources and extract the rele-
vant knowledge paths connecting them; second, we
incorporate these knowledge paths into our model
architecture using attention-based Multi-Networks
to predict the AR between the ADUs. The follow-
ing subsections provide details on the data used
and the processes involved in each step.

3.1 Data

We use four corpora. The first is AAEC (Stab and
Gurevych, 2017) which has a total of 402 argu-
ments. ADUs under each argument are labelled
as premise, claim or major claim. It has 147,271
tokens, 6,089 ADUs and 5335 ARs (4841 support
and 497 attack).

The second corpus is the Argumentative Micro
Text (AMT) (Peldszus and Stede, 2013) which is a
collection of 112 short texts collected from human
subjects in German translated into English. It is
annotated following the argumentation structure
outlined by MicroTextAnnotation. The structure
consists of a central claim, and supporting ADUs.
It has a total of 8007 tokens, 576 ADUs and 443
ARs (272 support and 171 attack).

The third corpus is part of the US 2016 presi-
dential election debate corpus (US2016) (Visser
et al., 2019) which is annotated based on Inference
Anchoring Theory (IAT) (Budzynska and Reed,
2011). Argument components are referred to as
propositions, with the relations between them an-
notated as default inference for support and default
conflict for attack. The corpus has a total of 15805
tokens, 1473 ADUs and 584 ARs (505 support and
79 attack).

The fourth corpus is the AbstRCT corpus
(Mayer et al., 2020) which consists of abstracts
extracted from the MEDLINE database. Argu-
ment components are categorised into major claim,
claim, and evidence components, and the relations
between them are categorised into support, attack,
and partial-attack. The corpus consists of 100,253
tokens, 4,679 ADUs, and 2,634 ARs, including
344 attack relations (combining attack and partial-
attack relations) and 2,290 support relations.

As described above, argument components are
annotated non-uniformly across datasets, based on
the underlying theoretical framework. For exam-
ple, in AAEC, argument components are annotated

as premises, claims, and major claims. However,
in US2016, the components are not explicitly cate-
gorised, but the premise-conclusion notion can be
inferred from the direction of the AR. As our cur-
rent objective does not involve classifying the com-
ponents or the direction of the relation, we focus on
the AR existing between the components without
classifying the categories of the components (into
claim/conclusion/major-claim, premise/evidence).

3.2 External Knowledge Alignment and
Paths Extraction

Each ADU is annotated into its four functional
components, following the framework proposed by
Gemechu and Reed (2019) (see Appendix A.3 for
more details). These components are used to align
the respective ADUs with the external resources.
The functional components consist of target con-
cepts (C), aspects (A), opinions on C (OC), and
opinions on A (OA). C refers to the set of con-
cepts related to the ADUs’s topic, while A refers
to the set of concepts further specifying that topic
(examples provided in Table 1). In this study, we
focus on C and A, which represent the topics and
aspects addressed by the ADUs. The statistics of
these components can be found in Table 4 in the
Appendix.

To extract relevant external knowledge, we
align these components with two ontological re-
sources—WordNet (Miller, 1995) and ConceptNet
(Speer et al., 2017)—as well as a semi-structured
resource, Wikipedia. The detailed alignment pro-
cess is described in Sections 3.2.1 to 3.2.2.

3.2.1 Ontology as External Source
We traverse WordNet (Miller, 1995) and Concept-
Net (Speer et al., 2017) Synset hierarchies and
align the components of ADUs with the Synsets,
to identify the chain (path) of Synsets that connects
the components. The alignment relies on cosine
similarity between the embeddings of the compo-
nents and Synsets, determined by the cosine simi-
larity threshold β. Sentence-transformer (Reimers
and Gurevych, 2019) is utilised to identify the em-
beddings. For more details on the embeddings and
similarity threshold, check Appendix A.3.2.

By treating the ontology as a graph, with Synsets
as nodes and relation types as edges, we begin the
search with one of the components and traverse the
knowledge graphs until either the other component
is found or the search depth reaches the threshold
α = 5. For more details on setting the value of
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α, refer to Appendix A.3.3. If the search is suc-
cessful, we concatenate the Synsets and the type
of semantic relation between, otherwise return the
concatenation of both components with the con-
stant string “None” in between. We use relation
types with frequency higher than m=3 to form the
paths (see Appendix A.3.4 for more information
about the relation filtering process).

3.2.2 Wikipedia as External Source

We also traverse Wikipedia to identify the chain
(path) of Wikipedia pages linking the functional
components of ADUs. For any pair of compo-
nents (e.g., C1, A2 or C1, C2 or A1, A2) asso-
ciated with a pair of ADUs (p1, p2), the initial
step involves aligning these components with cor-
responding Wikipedia pages. This alignment is
achieved by computing the similarity between the
embeddings (Reimers and Gurevych, 2019) of the
Wikipedia page titles and the components.

Viewing Wikipedia as a graph (with pages as
nodes and hyperlinks as edges), we begin a breadth-
first search from the Wikipedia page of one concept
(c1), continuing until we locate the second concept
(c2) or reach a depth threshold, α = 5. During
this search, we record sentences (S) containing
Wikipedia page titles of the current page (hl1) and
the hyperlinks leading to the next Wikipedia page
(hl2) along the path. These sentences contribute
to the formation of a tuple: 〈hl1, hl2, keywords〉,
where the keywords represent the semantic relation
type linking hl1 and hl2 within the sentences.

We utilise semantic role labeling (SRL) to iden-
tify the keywords that connect hl1 and hl2 within
the sentences (S) containing the hyperlinks. The
SRL tool from AllenNLP 2 is used for this purpose.
The process involves extracting subject-predicate
structures that link hl1 and hl2 in the sentences
involving the hyperlinks, followed by identifying
phrases that connect them across the semantic roles
assigned (see Appendix A.3.5). Top m most fre-
quent relations are selected to construct the paths.

3.3 Model

We propose attention-based Multi-Network to
leverage the information obtained from external re-
sources for AR prediction (Section 3.3.1). Section
3.3.2 presents baseline models that utilise LLMs
alone as sources of background knowledge.

2 https://docs.allennlp.org/v0.9.0/api/
allennlp.models.semantic_role_labeler.html

premise + 
conclusion

external
knowledge

Embedding Embedding

E1

ED-att-1

E2

Linear

Softmax

AR

Figure 1: Siamese-networked with attention layers.

3.3.1 Attention-Based Multi-Network
We investigate two attention-based Multi-Network
configurations, namely Siamese and Triplet
(Schroff et al., 2015) networks, built using pre-
trained LLM blocks. Initially, we utilise the
Siamese network involving two sub-networks,
where one sub-network encodes the concatenation
of both ADUs together while the other encodes
the external information. Furthermore, we exam-
ine Triplet network, which uses three sub-network
to encodes each of the ADUs and the external re-
sources separately.

Siamese Network Architecture with Atten-
tion. In this setup, given the two sub-networks
(E1 and E2) in Siamese network, E1 processes the
concatenation of the pair of ADUs (premise and
conclusion), while E2 handles the concatenation
of the information from external resources. Cross
attention layer (Vaswani et al., 2017) (ED-att-1)
is applied to the outputs of these sub-networks
for attending to the external resources relevant to
the premise and conclusion (see Figure 1). Ac-
cordingly, the output of E1, which represents the
premise and conclusion, functions as the query,
while the output of E2, representing external
knowledge, serves as the keys and values. This
setup allows the premise and conclusion to query
relevant external information. It employs multi-
head attention (Vaswani et al., 2017) h, where each
head j computes scaled dot-product attention using
query Qj , key Kj , and value Vj matrices, which
are linear transformations of the input hidden state
hi. The final attention weight ei is obtained by
concatenating over all attention heads. The result-
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ing attention weights are then multiplied with the
output of E1, and passed through a fully connected
classification layer, for AR classification. This fu-
sion allows the model to integrate the original rep-
resentations of the premise and conclusion with the
extracted external information (see detailed model
parameters in the Appendix A.5).

Triplet Network Architecture with Atten-
tion. In contrast to the Siamese Architecture, the
Triplet Network Architecture consists of three sub-
networks: E1, E2, and E3 (see Figure 3 in Ap-
pendix 3.3.1). Sub-networks E1 and E2 encode
the premise and conclusion, respectively, while E3
encodes the external knowledge connecting them.
Two cross-attention layers are introduced (ED-att-
1 and ED-att-2). ED-att-1 focuses on the relation
between the premise and conclusion, where the
output of E1 serves as queries and the output of E2
is used as keys and values. On the other hand, ED-
att-2 attends to the external knowledge relevant to
the premise and conclusion. Specifically, the out-
put of ED-att-1 acts as the query, while the output
of E3 is used as keys and values. Similar to the
Siamese architecture, we combine the output of the
two attention layers for classification. The ratio-
nale behind this approach is that ED-att-1 encodes
the relation between the premise and conclusion,
while ED-att-2 encodes the relevant external re-
source, enabling the model to effectively leverage
both the relationship between the premise and con-
clusion and the relevant external knowledge for
AR classification.

3.3.2 LLMs as Baseline Models
We establish LLMs without external resources as
baseline models under two configurations: few-
shot and fully fine-tuning configurations. We evalu-
ate these baselines against configurations that lever-
age external knowledge sources to enhance the per-
formance of LLMs.

Few-shot setup: We prompt GPT-43, a gen-
erative LLM, to perform two tasks: (a) predict-
ing ARs for comparative analysis against mod-
els utilising external resources, and (b) generat-
ing paths between ADU components for compar-
ison with models using paths derived from ontol-
ogy and Wikipedia. Accordingly, GPT-4-generated
paths are used as external knowledge to train the
Multi-Network configuration for AR classification.
This enables a direct comparison between GPT-4-
generated paths and those obtained from other ex-

3https://openai.com/chatgpt

ternal knowledge sources. The experimental setup
for prompting GPT-4 is provided in A.4.

Fine-tuning setup: We also fine-tuned BERT
(Devlin et al., 2018) using various configurations
for comparison. Initially, we use the vanilla se-
quence classification setup (SC�V⊕bert), where
the concatenation of ADUs is presented as an input.
Furthermore, we fine-tune BERT within Siamese
architectures, both with (SM�A⊕bert) and with-
out attention layers (SM�V⊕bert). See A.1 for the
details of model configuration and experimental
setups.

4 Experiments

4.1 Experimental Setup

The dataset is randomly partitioned, with 70%,
10%, and 20% allocation for training, valida-
tion, and testing respectively, ensuring uniformity
throughout the dataset. Refer to Table 3 in the
Appendix for the breakdown of ARs accross the
datasets. Results represent the average of three
runs using different random seeds. Precision (P),
recall (R), and F-measure (F) are computed, and
macro-averaged P, R, and F are reported for the
test dataset (more experimental setup provided in
Appendix A.1). The datasets and code used in our
experiments are publicly available.4

4.2 Model Configurations

The encoder blocks in both the Siamese and Triplet
networks are built using BERT. The cross-attention
layers use 8 heads, matching standard transformer
architecture, with outputs concatenated and then
passed to the feedforward and classification layers.
Both the Siamese and Triplet networks use a sin-
gle BERT model for all encoders, sharing identical
parameters across the networks. We apply cross-
entropy loss based on the final classification layer
output, as the Triplet loss in the multi-network ar-
chitecture is not suitable for AR prediction. We
evaluate various configurations leveraging the two
ontological resources (WordNet, and ConceptNet)
and Wikipedia across the four datasets. These con-
figurations encompass three Triplet network archi-
tectures: TL�A⊕wp for Wikipedia, TL�A⊕wn
for WordNet, and TL�A⊕cn for ConceptNet.
Similarly, three Siamese network architectures
are evaluated across these ontological resources:
SM�A⊕wp, SM�A⊕wn, and SM�A⊕cn.

4https://github.com/arg-tech/
ExternalKnowledge-ArgMining
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Configs AAEC AMT US2016 AbstRCT
P R F P R F P R F P R F

Comparison
P2016 n/a n/a 77 n/a n/a 74 n/a n/a n/a n/a n/a n/a
K2019 n/a n/a 59 n/a n/a 67 n/a n/a n/a n/a n/a n/a
PS2016 n/a n/a n/a n/a n/a 76 n/a n/a n/a n/a n/a n/a
E2017 n/a n/a 51 n/a n/a n/a n/a n/a n/a n/a n/a n/a
GPT-4 63±2.0 48±2.0 55±2.0 60±2.0 47±2.0 52±2.0 58±1.0 43±2.0 50±1.0 69±3.0 58±2.0 63±2.0
GR2019 81 74 77 88 66 75 63 61 62 n/a n/a n/a
M2020 n/a n/a n/a n/a n/a n/a n/a n/a 62 n/a n/a 69
LLMs as KB
SC�V⊕bert 78±0.3 73±0.2 75±0.1 79±0.4 67±0.1 72±0.1 56±0.4 64±0.2 60±0.2 84±0.0 82±0.0 83±0.0
SM�V⊕bert 77±0.1 72±0.1 74±0.1 80±0.9 65±0.2 72±0.5 55±0.2 63±0.1 59±0.1 82±0.0 82±0.0 82±0.0
SM�A⊕bert 80±0.2 73±0.3 76±0.2 80±0.1 68±0.3 74±0.2 57±0.1 64±0.2 60±0.1 85±0.0 83±0.0 84±0.0
No Att + Ext P R F P R F P R F P R F
TL�V⊕gpt 77±2.0 84±2.0 80±2.0 74±3.0 81±2.0 77±3.0 54±4.0 76±3.0 64±3.0 72±4.0 87±3.0 80±4.0
SM�V⊕wn 84±0.0 79±0.2 81±0.1 82±0.4 73±0.3 77±0.3 62±0.1 69±0.1 65±0.1 82±0.0 82±0.0 82±0.0
SM�V⊕cn 83±0.3 76±0.1 80±0.2 82±0.1 72±0.2 77±0.1 61±0.2 71±0.2 66±0.2 84±0.0 85±0.1 85±0.1
SM�V⊕wp 82±0.2 82±0.1 82±0.1 84±0.2 76±0.3 80±0.2 63±0.3 71±0.6 67±0.3 85±0.0 85±0.0 85±0.0
TL�V⊕wn 83±0.1 79±0.2 81±0.1 84±0.1 75±0.1 80±0.1 61±0.0 70±0.0 65±0.0 83±0.1 82±0.1 82±0.1
TL�V⊕cn 83±0.1 80±0.2 82±0.1 84±0.1 76±0.1 80±0.1 61±0.1 71±0.1 66±0.0 85±0.0 85±0.0 85±0.0
TL�V⊕wp 84±0.0 80±0.0 82±0.0 82±0.1 76±0.1 79±0.1 64±0.1 70±0.1 67±0.1 86±0.1 85±0.0 86±0.1
Att + Ext P R F P R F P R F P R F
TL�A⊕gpt 77±3.0 84±2.0 80±3.0 71±4.0 85±4.0 77±3.0 56±3.0 72±3.0 63±3.0 73±2.0 85±4.0 79±3.0
SM�A⊕wn 84±0.1 81±0.1 82±0.1 83±0.1 79±0.1 81±0.1 62±0.1 72±0.1 67±0.1 83±0.0 82±0.0 83±0.0
SM�A⊕cn 83±0.3 81±0.2 82±0.2 81±0.2 82±0.2 81±0.2 65±0.1 72±0.1 68±0.1 85±0.1 85±0.0 85±0.1
SM�A⊕wp 85±0.2 81±0.1 83±0.1 82±0.2 83±0.2 82±0.1 65±0.2 73±0.2 69±0.2 85±0.1 86±0.0 86±0.0
TL�A⊕wn 85±0.1 82±0.1 84±0.1 83±0.2 84±0.2 84±0.1 64±0.2 72±0.3 68±0.2 83±0.1 83±0.0 83±0.0
TL�A⊕cn 84±0.1 82±0.2 83±0.1 82±0.1 84±0.1 83±0.1 65±0.2 73±0.3 69±0.2 86±0.0 85±0.0 86±0.0
TL�A⊕wp 86±0.1 83±0.2 85±0.2 83±0.1 85±0 84±0.0 66±0.1 75±0.1 70±0.1 87±0.1 86±0.0 87±0.0

Table 2: Performance of our models and the comparison systems including, (Potash et al., 2016) (P2016), (Eger
et al., 2017) (E2017), (Peldszus and Stede, 2016) (PS16), (Kobbe et al., 2019) (K2019), (OpenAI, 2023) (GPT-4),
(Gemechu and Reed, 2019) (GR2019), (Mayer et al., 2020) (M2020) across the four datasets. The reported results
have been averaged from 3 randomly initialised sequential runs. The table is divided into subsections: Comparison
approaches; LLM-alone; non-attention with external sources; attention-based with external resources.

Furthermore, to evaluate the attention layers’
impact on external resources, we compare Triplet
and Siamese architectures without attention layers
across the three external resources, totaling six con-
figurations: TL�V⊕wp, TL�V⊕wn, TL�V⊕cn,
SM�V⊕wp, SM� V⊕wn, and SM�V⊕cn. Fi-
nally, we evaluate the Triplet architecture on GPT-4
generated paths (TL�V⊕gpt, TL�A⊕gpt).

4.3 Results and Discussions

The evaluation results depicted in Table 2 revealed
clear trends in performance. Particularly, the influ-
ence of model architecture and the incorporation
of external knowledge on AR prediction. This is
evident by the performance improvement observed
in configurations with such integration compared
to those without.

Models incorporating external resources outper-
formed those lacking such integration, indicating
the importance of leveraging additional knowledge

sources for AR identification. This led to a notable
enhancement, surpassing the baseline by over 5.4%
in F-measure. For example, the Siamese architec-
ture leveraging Wikipedia achieved an average F-
measure of 80% across datasets, whereas its coun-
terpart, lacking the external resource, achieved
74%. This finding aligns with previous research
demonstrating that while LLMs tend to encode
world knowledge, LLMs alone may not fully
present the depth and specificity of knowledge re-
quired for certain tasks, such as AR identification
involving structured and chained reasoning (Kass-
ner and Schütze, 2019; Polu et al., 2022; Merrill
et al., 2021). Likewise, models equipped with at-
tention mechanisms consistently surpassed those
without, demonstrating an average increase in F-
measure of over 2% across diverse configurations.
Notably, Triplet Network architecture with atten-
tion mechanism leveraging Wikipedia as an ex-
ternal knowledge source, attained an average F-
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measure of 81% across the datasets. This demon-
strates a significant performance improvement in
AR identification, highlighting the effectiveness of
the architecture in integrating external knowledge.

We also compare our approach to other related
works including Potash et al.’s (2016), Eger et al.’s
(2017), Peldszus and Stede’s (2016), Kobbe et al.’s
(Kobbe et al., 2019), OpenAI’s GPT-4 (OpenAI,
2023), Gemechu and Reed’s (2019; 2023) and
Mayer et al.’s (2020) work. Please note that di-
rect comparisons with some of these works need
additional contextual nuance in interpretation due
to variations in task setup and complexities. For
instance, the works of Eger et al. (2017) and Mayer
et al. (2020) involve argument segmentation in ad-
dition to AR identification as an end-to-end task.
In our case, the goal is to identify AR based on cor-
rect segments in the gold datasets. Similarly, Plenz
et al. (2023) evaluate their approach on several AM
tasks, including ValNov Shared Task (Heinisch
et al., 2022), which involves assessing the validity
and novelty of a conclusion given a premise—a
task closely related to AR prediction. They report
an F1 score of 70.69% for this task. As can be
seen from Table 2, our approach outperforms the
comparison systems, including OpenAI’s GPT-4
(OpenAI, 2023) across the datasets.

Model Architecture Influence. As shown
in Table 2, incorporating attention layers into
Multi-Network architectures brought clear benefits.
Multi-network configurations with attention mech-
anisms outperformed the vanilla sequence classifi-
cation setup, both with and without external knowl-
edge, achieving an average F1 gains of 6.4% and
1%, respectively. Attention-based configurations
leveraging external resources consistently outper-
form their counterparts without attention, yield-
ing an average F1-score improvement of 2%. The
attention-based Triplet architecture outperformed
their counterpart Siamese architecture, with an av-
erage performance increase of 1.2% in leverag-
ing external knowledge. It is noteworthy that in
the absence of attention and external resources,
multi-network configurations (SM�V⊕bert) un-
derperform as compared to the vanilla sequence
classification approach (SC�V⊕bert).

This highlights the efficacy of attention-based
Multi-Network architectures in leveraging exter-
nal resources for AR prediction, contrasting with
standard sequence classification setups. Addition-
ally, the performance advantage of Triplet archi-
tecture over Siamese architecture can be attributed

to its design, enabling each sub-network to focus
on learning two levels of alignment: between the
premise and conclusion, and between the external
resource and the premise-conclusion pair. To ex-
plore whether the performance gap solely stems
from the additional parameters in the attention
layer, we introduced extra linear layers to the Multi-
Network architecture (without attention layers) and
observed no change in performance despite the
additional layers. However, attention analysis is
required to substantiate this claim.

External knowledge influence. Wikipedia-
based models outperform the baselines and
ontology-based models across all four datasets.
The attention-based Triplet-network on Wikipedia
(TL�A⊕wp) achieved F-measures of 0.85, 0.84,
0.70, and 0.87 in identifying AR on AAEC,
AMT, US2016, and AbstRCT, respectively. Upon
analysing the paths connecting the components
of ADUs, we found that 37% of concepts not
present in ontological resources are connected
in Wikipedia, while only 7% of concepts ab-
sent in Wikipedia are covered by ontological re-
sources. For further details, please refer to Ap-
pendix A.3.6. This disparity highlights the rich-
ness of Wikipedia’s network of hyperlinks, which
connect pages using a variety of relationships, un-
like ontological resources that rely on predefined,
narrow sets of semantic relations.

Although exploring combinations of external
databases such as WordNet and ConceptNet could
offer additional insights, their contributions were
marginal, with only a 7% improvement over
Wikipedia’s paths. This motivated our focus on
Wikipedia as it provides the most comprehensive
set of connections. For simplicity and clarity, we
chose to highlight the most impactful results rather
than explore more complex combinations. How-
ever, a combined approach across all three sources
could be considered in future iterations.

Models trained on GPT-4 generated paths outper-
formed those without external knowledge, align-
ing with other works leveraging LLM-generated
commonsense knowledge (Bansal et al., 2022).
However, despite exhibiting higher accuracy, they
still demonstrated lower precision compared to
approaches utilising external knowledge sources.
The observed high recall and low precision can
be attributed to the models’ tendency to identify
unintended paths between concepts. Twenty er-
rors were randomly selected for analysis, with two
human annotators collaboratively examining the
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paths. Of these, 14 errors were deemed contextu-
ally irrelevant, despite the logical coherence evi-
dent in the generated paths. These paths introduce
chains of thought that diverge from the original
argument, as noted in previous studies that rely
on LLMs for generating commonsense knowledge
(Levy et al., 2022).

It is important to note that in our study,
GPT serves primarily as a comparison system
rather than a core external resource. The Stan-
dardized Mean Difference (SMD) shows that
while GPT generally outperforms baseline mod-
els, the improvement varies across datasets.
The TL�A⊕GPT model surpasses the baseline
SM�A⊕BERT, achieving an overall SMD of 0.59.
For datasets like AAEC, AMT, and US2016, the av-
erage SMD is 1.57, indicating significant enhance-
ments in those contexts. However, in the AbstRCT
dataset, GPT generated paths based configurations
underperform and negatively affected overall per-
formance. This discrepancy underscores the need
for careful selection and integration of external
knowledge sources to enhance model efficacy. An
error analysis can be found in Appendix A.3.6.

5 Conclusion

Our exploration of various model configurations
underscored the importance of external resources
and multi-network architecture with attention
mechanisms in AR prediction. Models augmented
with external resources consistently outperform
those relying solely on LLMs. This emphasises
the necessity of leveraging supplementary knowl-
edge sources to enrich LLMs for AR prediction.
Furthermore, multi-network architectures with at-
tention mechanisms, notably the attention-based
Triplet Network architecture, demonstrates supe-
riority across all configurations. Further work is
required to delve deeper into attention analysis, to
shed-light on its role in encouraging the model to
focus in aligning the premise with the conclusion,
as well as in linking the premise-conclusion pair
with external knowledge. While configurations
leveraging Wikipedia outperformed those using
other resources, more work is required to evaluate
the quality of keywords representing semantic rela-
tions between concepts identified from Wikipedia
against the standard semantic relation types in on-
tologies. Furthermore, alternative methods for ex-
tracting these keywords should be explored.

Limitations

Although our work presents promising advance-
ments, it also entails the following limitations.

Cross-Domain Evaluation. Robust evaluation
involving cross-domain evaluation, where models
are trained on one domain and evaluated on a new
domain, is essential for uncovering the robustness
of the proposed approaches. While our evalua-
tion has primarily focused on specific domains or
datasets, cross-domain evaluation can provide in-
sights into the generalisability and adaptability of
the models across diverse domains and real-world
applications.

External Knowledge Alignment and Rela-
tion Identification. More work is required in
aligning the concepts with external resources,
particularly in disambiguating the senses of the
Synsets and Wikipedia page titles. Our current
approach relies on simple similarity measures be-
tween the embeddings of glosses of the resources
and the components, which may lead to missing
alignments and incorrect alignment. Improving
the alignment procedure to account for semantic
ambiguity and variability in external resources is
crucial for enhancing the effectiveness of the pro-
posed approach. Additionally, sophisticated tech-
niques are needed to identify the semantic relation
types existing between Wikipedia hyperlinks. Un-
like ontologies, Wikipedia does not encode explicit
semantic relation types between hyperlinks. There-
fore, developing robust method to identify seman-
tic relations from Wikipedia articles can improve
the quality and relevance of external knowledge
integration in AR prediction.

Interpretability and Explainability. The ex-
planations provided regarding the performance of
the architectures and external resources are based
on the analysis of empirical results. While empir-
ical analysis is valuable for understanding model
behavior, additional techniques beyond the results
themselves can provide deeper insights into model
performance. Exploring techniques such as model
visualisation, attention mechanisms analysis, and
interpretability methods like LIME (Local Inter-
pretable Model-Agnostic Explanations) (Ribeiro
et al., 2016) or SHAP (SHapley Additive explana-
tions) (Lundberg and Lee, 2017) can help uncover
the underlying reasons behind model decisions and
configurations. Complementing empirical analysis
with interpretability techniques can allow a more
comprehensive understanding of model behavior.

3696



Acknowledgements

This research is supported in part by: the
Swiss National Science Foundation under grant
10001FM_200857; the Volkswagen Foundation
under grant 98 543; and the Office of the Director
of National Intelligence (ODNI), Intelligence Ad-
vanced Research Projects Activity (IARPA), via
Contract 2022-22072200004. The views and con-
clusions contained herein are those of the authors
and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or
implied, of ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorised to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References
Yamen Ajjour, Wei-Fan Chen, Johannes Kiesel, Hen-

ning Wachsmuth, and Benno Stein. 2017. Unit seg-
mentation of argumentative texts. In Proceedings of
the 4th Workshop on Argument Mining, pages 118–
128.

Badr AlKhamissi, Millicent Li, Asli Celikyilmaz,
Mona Diab, and Marjan Ghazvininejad. 2022. A
review on language models as knowledge bases.
arXiv preprint arXiv:2204.06031.

Nicholas Asher and Alex Lascarides. 2003. Logics of
conversation. Cambridge University Press.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Rachit Bansal, Milan Aggarwal, Sumit Bhatia, Ji-
vat Neet Kaur, and Balaji Krishnamurthy. 2022.
Cose-co: Text conditioned generative commonsense
contextualizer. arXiv preprint arXiv:2206.05706.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676.

Teresa Botschen, Daniil Sorokin, and Iryna Gurevych.
2018. Frame-and entity-based knowledge for
common-sense argumentative reasoning. In Pro-
ceedings of the 5th Workshop on Argument Mining,
pages 90–96.

Katarzyna Budzynska and Chris Reed. 2011. Whence
inference. University of Dundee Technical Report.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Tuhin Chakrabarty, Christopher Hidey, Smaranda
Muresan, Kathy McKeown, and Alyssa Hwang.
2020. Ampersand: Argument mining for
persuasive online discussions. arXiv preprint
arXiv:2004.14677.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana
Inkpen, and Si Wei. 2017. Neural natural language
inference models enhanced with external knowl-
edge. arXiv preprint arXiv:1711.04289.

Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenre-
ich, Alexander Bondarenko, Matthias Hagen, Chris
Biemann, and Alexander Panchenko. 2019. Targer:
Neural argument mining at your fingertips. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 195–200.

Carlos Chesnevar, Jarred McGinnis, Sanjay Mod-
gil, Iyad Rahwan, Chris Reed, Guillermo Simari,
Matthew South, Gerard Vreeswijk, and Steven Will-
mott. 2006. Towards an argument interchange for-
mat. The knowledge engineering review, 21(4):293–
316.

HongSeok Choi and Hyunju Lee. 2018. Gist at
semeval-2018 task 12: A network transferring infer-
ence knowledge to argument reasoning comprehen-
sion task. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 773–777.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Mauro Dragoni, Celia da Costa Pereira, Andrea GB
Tettamanzi, and Serena Villata. 2018. Combin-
ing argumentation and aspect-based opinion mining:
the smack system. AI Communications, 31(1):75–
95.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning
for computational argumentation mining. arXiv
preprint arXiv:1704.06104.

Peter W Foltz, Walter Kintsch, and Thomas K Lan-
dauer. 1998. The measurement of textual coherence
with latent semantic analysis. Discourse processes,
25(2-3):285–307.

Michael Fromm, Evgeniy Faerman, and Thomas Seidl.
2019. Tacam: Topic and context aware argument
mining. arXiv preprint arXiv:1906.00923.

Debela Gemechu and Chris Reed. 2019. Decompo-
sitional argument mining: A general purpose ap-
proach for argument graph construction. In Pro-
ceedings of the 57st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1341–
1351.

Talmy Givón. 1987. Beyond foreground and back-
ground. Coherence and grounding in discourse,
11:175–188.

3697



Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that
require simple lexical inferences. arXiv preprint
arXiv:1805.02266.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Barbara J Grosz, Aravind K Joshi, and Scott Weinstein.
1995. Centering: A framework for modelling the
local coherence of discourse.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2017. The argument reason-
ing comprehension task: Identification and recon-
struction of implicit warrants. arXiv preprint
arXiv:1708.01425.

Philipp Heinisch, Anette Frank, Juri Opitz, Moritz
Plenz, and Philipp Cimiano. 2022. Overview of the
2022 validity and novelty prediction shared task. In
Proceedings of the 9th Workshop on Argument Min-
ing, pages 84–94.

Nora Kassner and Hinrich Schütze. 2019. Negated
and misprimed probes for pretrained language mod-
els: Birds can talk, but cannot fly. arXiv preprint
arXiv:1911.03343.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jonathan Kobbe, Juri Opitz, Maria Becker, Ioana
Hulpus, Heiner Stuckenschmidt, and Anette Frank.
2019. Exploiting background knowledge for argu-
mentative relation classification. In 2nd Conference
on Language, Data and Knowledge (LDK 2019).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

John Lawrence and Chris Reed. 2020. Argument
mining: A survey. Computational Linguistics,
45(4):765–818.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Sharon Levy, Emily Allaway, Melanie Subbiah, Lydia
Chilton, Desmond Patton, Kathleen McKeown, and
William Yang Wang. 2022. Safetext: A benchmark
for exploring physical safety in language models.
arXiv preprint arXiv:2210.10045.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Daniel Marcu. 2000. The theory and practice of dis-
course parsing and summarization. MIT press.

Tobias Mayer, Elena Cabrio, and Serena Villata. 2020.
Transformer-based argument mining for healthcare
applications. In ECAI 2020, pages 2108–2115. IOS
Press.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A Smith. 2021. Provable limitations of ac-
quiring meaning from ungrounded form: What will
future language models understand? Transactions
of the Association for Computational Linguistics,
9:1047–1060.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Amita Misra, Pranav Anand, Jean E Fox Tree, and Mar-
ilyn Walker. 2017. Using summarization to discover
argument facets in online ideological dialog. arXiv
preprint arXiv:1709.00662.

Gaku Morio, Hiroaki Ozaki, Terufumi Morishita, and
Kohsuke Yanai. 2022. End-to-end argument min-
ing with cross-corpora multi-task learning. Transac-
tions of the Association for Computational Linguis-
tics, 10:639–658.

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012. Constrained decoding for
text-level discourse parsing. In Proceedings of COL-
ING 2012, pages 1883–1900.

R OpenAI. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2:13.

Andreas Peldszus and Manfred Stede. 2013. Ranking
the annotators: An agreement study on argumenta-
tion structure. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 196–204.

Andreas Peldszus and Manfred Stede. 2015a. Joint
prediction in mst-style discourse parsing for argu-
mentation mining. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 938–948.

Andreas Peldszus and Manfred Stede. 2015b. Joint
prediction in mst-style discourse parsing for argu-
mentation mining. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 938–948.

Andreas Peldszus and Manfred Stede. 2016. Rhetori-
cal structure and argumentation structure in mono-
logue text. In Proceedings of the Third Workshop
on Argument Mining, pages 103–112.

Isaac Persing and Vincent Ng. 2016. End-to-end argu-
mentation mining in student essays. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1384–1394.

3698



Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, disambiguate and-
walk: A unified approach for measuring semantic
similarity. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1341–1351.

Moritz Plenz, Juri Opitz, Philipp Heinisch, Philipp
Cimiano, and Anette Frank. 2023. Similarity-
weighted construction of contextualized com-
monsense knowledge graphs for knowledge-
intense argumentation tasks. arXiv preprint
arXiv:2305.08495.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng,
Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. 2022. Formal mathematics statement cur-
riculum learning. arXiv preprint arXiv:2202.01344.

Peter Potash, Robin Bhattacharya, and Anna
Rumshisky. 2017. Length, interchangeability,
and external knowledge: Observations from predict-
ing argument convincingness. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 342–351.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2016. Here’s my point: Joint pointer archi-
tecture for argument mining. arXiv preprint
arXiv:1612.08994.

Ellen F Prince. 1981. Toward a taxonomy of given-
new information. Radical pragmatics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Nils Reimers, Benjamin Schiller, Tilman Beck, Jo-
hannes Daxenberger, Christian Stab, and Iryna
Gurevych. 2019. Classification and clustering of
arguments with contextualized word embeddings.
arXiv preprint arXiv:1906.09821.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence-an auto-
matic method for context dependent evidence de-
tection. In Proceedings of the 2015 conference on
empirical methods in natural language processing,
pages 440–450.

Ramon Ruiz-Dolz, Jose Alemany, Stella M Heras Bar-
berá, and Ana García-Fornes. 2021. Transformer-
based models for automatic identification of argu-
ment relations: A cross-domain evaluation. IEEE
Intelligent Systems, 36(6):62–70.

Tara Safavi and Danai Koutra. 2021. Relational
world knowledge representation in contextual lan-
guage models: A review. arXiv preprint
arXiv:2104.05837.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 815–823.

Robyn Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the AAAI
conference on artificial intelligence, volume 31.

Christian Stab and Iryna Gurevych. 2017. Parsing ar-
gumentation structures in persuasive essays. Com-
putational Linguistics, 43(3):619–659.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Maite Taboada and William Mann. 2006. Rhetorical
structure theory: Looking back and moving ahead.
Discourse studies, 8(3):423–459.

Dietrich Trautmann. 2020. Aspect-based argument
mining. arXiv preprint arXiv:2011.00633.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Jacky Visser, Barbara Konat, Rory Duthie, Marcin Kos-
zowy, Katarzyna Budzynska, and Chris Reed. 2019.
Argumentation in the 2016 us presidential elections:
annotated corpora of television debates and social
media reaction. Language Resources and Evalua-
tion, pages 1–32.

Su Wang, Greg Durrett, and Katrin Erk. 2018. Model-
ing semantic plausibility by injecting world knowl-
edge. arXiv preprint arXiv:1804.00619.

A Appendix

We provide additional details regarding the method-
ology and experimental setups used in our study.

A.1 Experiment Setup
A.1.1 Training Procedure
Hyper-parameters: We employ Adam optimisa-
tion (Kingma and Ba, 2014) to minimise the cost

3699



function. The learning rate is set to 2e−5 with a
batch size of 16. Categorical cross-entropy loss
was used as the loss function.

Gradient Clipping: To prevent exploding
gradients during training, we apply gradient
clipping. We use a maximum gradient norm
(max_grad_norm) parameter set to 1.0 to deter-
mine the threshold for gradient clipping.

Warm-up and Learning Rate Schedule: We
employed a linear warm-up strategy for the learn-
ing rate. The number of warm-up steps is set
to 10% of the total training steps. Following the
warm-up phase, the learning rate schedule is de-
termined by a lambda function. This function lin-
early increases the learning rate during the warm-
up phase and decreases it linearly thereafter.

Early Stopping: We implement early stopping
to prevent overfitting and to determine the opti-
mal number of epochs. This technique involves
continuously monitoring the loss and F-score on
the validation set throughout training. If there is a
sustained degradation in performance over consec-
utive epochs, training is terminated to prevent the
model from being influenced by noise present in
the training data.

A.1.2 Input Setup

For the baseline sequence classification configura-
tions, we concatenate the premise to the conclusion
using a special token [SEP]. In the Siamese archi-
tecture, one of the sub-networks takes the concate-
nation of the premise and conclusion based on the
special token [SEP], while the other takes the con-
catenation of the paths. The paths are concatenated
using the special token [SEP].

The number and length of the paths between the
components of the ADUs vary, with some ADUs
not involving any path at all. For ADU pairs in-
volving a large number of paths exceeding the max-
imum sequence length, we concatenate the paths
until the maximum sequence length is reached. In
such cases, we sort the paths based on their fre-
quency. The concatenation process starts from the
most frequent paths until the maximum sequence
length is reached.

A.1.3 Fully Fine-tuned Baseline LLM
Configuration

For the fully fine-tunned baseline LLM con-
figuration, we utilise the HuggingFace imple-
mentation of BERT for sequence classification

Dataset Training Validation Test
RA CA RA CA RA CA

AAEC 4235 411 605 59 1210 117
US2016 353 55 51 8 101 16
MTC 190 120 27 17 55 34
AbstRCT 1603 241 229 34 458 69

Table 3: Distribution of support and attack relations
across the training, validation, and test splits for the
datasets. RA and CA refer to terms from the AIF
(Chesnevar et al., 2006), where RA stands for Rule (of
inference) Application, representing a relation of sup-
port or inference, and CA stands for Conflict (scheme)
Application, indicating a relation of conflict or attack.

Dataset Total C Total A Unique C Unique A
AAEC 9875 6789 5634 4356
US2016 3225 1737 1854 1566
MTC 870 589 756 470
AbstRCT 7343 6432 5554 4546

Table 4: Distribution of target concepts (C) and aspects
(A) across the datasets.

(bert-base-uncased5). We experimented with
two variants of BERT: bert-base-uncased
and bert-large-uncased. Our experiments
revealed that bert-base-uncased consistently
provided better performance compared to
bert-large-uncased. In the baseline Siamese
architecture, each sub-network independently
encodes the ADUs.

A.2 External Knowledge Extraction

A.3 ADU Decomposition

To identify the functional components (C and A)
from ADUs, we adopt a sequence labeling ap-
proach following the methodology outlined by
Gemechu and Reed (2019). Unlike Gemechu and
Reed (2019) method, which employs a convolu-
tional neural network (CNN), we fine-tune BERT
for token classification using their dataset anno-
tated with the BIO sequence labeling scheme, out-
performing their top-performing method by 3%
and achieving a macro F-score of 0.784. We
utilise the HuggingFace implementation of BERT
( bert-base-uncased 6). The inputs are padded
to 256 maximum size. We use the train-test split
in the original dataset. Training is conducted over
6 epochs, and evaluation is reported as the average
performance over 3 runs of the experiment on the

5https://huggingface.co/google-bert/
bert-base-uncased

6https://huggingface.co/google-bert/
bert-base-uncased
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test dataset. Using the fine-tuned model, we iden-
tify the functional components of ADUs, and the
distribution of these components is presented in
Table 4.

A.3.1 Alignment of Ontologies and
Wikipedia

For aligning ontologies and Wikipedia with the
components of ADUs, the cosine similarity be-
tween the embeddings of the components and the
Synsets of the ontologies or the corresponding
Wikipedia page title is used. Additionally, we
utilise the similarity between the concepts and
the gloss texts of the respective sources for disam-
biguating senses, for concepts involving multiple
senses.

A.3.2 Similarity Threshold
We leverage embeddings derived from Sentence-
transformers, particularly the all-roberta-large-v17

variant, for determining similarity. We set a simi-
larity threshold of β = 0.80 based on experimental
comparisons of similarity scores between related
and unrelated text pairs in the STSB dataset.8

The dataset is originally annotated on a scale of
0-5 based on the degree of similarity. We trans-
form the original 5-class labels into binary labels,
where labels below 4 are considered unrelated, and
labels 4 and above are deemed related. In the orig-
inal annotation rubric provided by SemEval-2017
(Cer et al., 2017), label 3 indicates sentences that
are roughly equivalent, but some important infor-
mation differs. However, we found that this defi-
nition allows for a certain degree of looseness in
similarity assessment. Consequently, to impose a
stricter criterion for similarity, we decided to raise
the threshold from label 3 to label 4. To this end,
we calculate the similarity between the sentence
pairs in the training dataset and select the threshold
yielding the highest F1-score. We compute F1-
scores at 20 similarity threshold points (ranging
from 0 to 1 with increments of 0.05), as outlined
in Algorithm 1.

A.3.3 Search Depth Threshold
To estimate the optimal depth threshold for navigat-
ing through the knowledge graphs, we employ the
following procedure: we randomly select 20 pairs
of concepts and initiate a complete search from one

7https://huggingface.co/
sentence-transformers/all-roberta-large-v1

8https://huggingface.co/datasets/nyu-mll/
glue/viewer/stsb/train

Algorithm 1 Find Optimal Similarity Threshold

Require: List of sentence pairs (s1, s2)
Ensure: Threshold

best_threshold← min_thr
max_f_score← 0
for thr← min_thr to max_thr by thr_step do

tp← 0
fp← 0
fn← 0
for each sentence pair (s1, s2) in data do

sim_score← sim score(s1, s2)
if similarity_score ≥ thr then

if pair is similar then
tp← tp + 1

else
fp← fp + 1

end if
else

if pair is dissimilar then
tn← tn + 1

else
fn← fn + 1

end if
end if

end for
precision← tp

tp+fp

recall← tp
tp+fn

f1_score← 2× precision×recall
precision+recall

if f1_score > max_f_score then
max_f_score← f1_score
best_threshold← thr

end if
end for
return best_threshold

3701

https://huggingface.co/sentence-transformers/all-roberta-large-v1
https://huggingface.co/sentence-transformers/all-roberta-large-v1
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train


concept to identify paths leading to the other. This
provides a total of 728 paths with various depths
from the three resources. Human annotators then
evaluate the relevance of the retrieved paths based
on a binary value indicating if the path is relevant
to the given AR or not. The cumulative F1-score
at each depth is computed based on the total num-
ber of relevant paths retrieved up to that depth.
The depth with the highest cumulative F-score is
chosen as the optimal threshold. Accordingly, the
threshold of α = 5 yielded the highest score.

A.3.4 Filtering semantic relations.
A total of 7959 unique relation types are extracted.
Please note that similar relation types like “leads
to”, “leads” and “can lead to” are counted as differ-
ent relation types, as we only consider surface-level
counts. To exclude arbitrary paths between con-
cepts only relation types with a frequency greater
than m=3 are considered. This yields a total of
1488 unique relation types. However, as can be
seen in Table 7, manual analysis revealed similari-
ties among certain tuples; for example, the relation
type “influences” is similar to other relations like
“contributes to”, “leads to”, and “results in”.

Some concepts are directly related through sin-
gle relation type (one-hop path), while others are
indirectly connected via paths involving multiple
relation types (multi-hop). See examples in Table 6.
The length of these paths ranges from 1 (indicating
direct links between concepts) to 5 (the maximum
search depth), with an average path length of 1.9.

A.3.5 Extracting keywords encoding
semantic relation types from
Wikipedia.

The AllenNLP semantic role labeling (SRL)9 is
used to parse sentences and assign semantic roles
to each word. This enables to extract phrases
linking the concepts of interest along the subject-
predicate structure of the sentences. To mention,
if one concept is identified as the agent and an-
other as the patient, the phrase denoting the action
performed by the agent on the patient is used as
the relation type between them. Consider the con-
cepts exercise and cardiovascular diseases in the
sentence:

According to the American Heart Associ-
ation, exercise reduces the risk of cardio-

9 https://docs.allennlp.org/v0.9.0/api/
allennlp.models.semantic_role_labeler.html

vascular diseases, including heart attack
and stroke.

Below is the output of SRL for this sen-
tence (the concepts are highlighted in light
blue while the keywords representing the re-
lation type are highlighted in red): {‘verbs’:
[{‘verb’: ‘According’, ‘description’:
‘[V:According] to the American Heart
Association , exercise reduces the risk
of cardiovascular diseases , including
heart attack and stroke’, ‘tags’: [‘B-V’,
‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
‘O’, ‘O’, ‘O’]}, {‘verb’: ‘reduces’,
‘description’: ‘[ARGM-ADV: According
to the American Heart Association] ,
[ARG0: exercise] [V: reduces] [ARG1:
the risk of cardiovascular diseases ,
including heart attack and stroke]’,
‘tags’: [‘B-ARGM-ADV’, ‘I-ARGM-ADV’,
‘I-ARGM-ADV’, ‘I-ARGM-ADV’, ‘I-ARGM-ADV’,
‘I-ARGM-ADV’, ‘O’, ‘B-ARG0’, ‘B-V’,
‘B-ARG1’, ‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’,
‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’,
‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’]}, {‘verb’:
‘including’, ‘description’: ‘According
to the American Heart Association
, exercise reduces the risk of [ARG2:
cardiovascular diseases] , [V: including]
[ARG1: heart attack and stroke]’,
‘tags’: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,
‘B-ARG2’, ‘I-ARG2’, ‘O’, ‘B-V’, ‘B-ARG1’,
‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’]}],
‘words’: [‘According’, ‘to’, ‘the’,
‘American’, ‘Heart’, ‘Association’, ‘,’,
‘exercise’, ‘reduces’, ‘the’, ‘risk’,
‘of’, ‘cardiovascular’, ‘diseases’, ‘,’,
‘including’, ‘heart’, ‘attack’, ‘and’,
‘stroke’]}

We navigate through the SRL output to identify
the predicate-argument structures connecting both
concepts (exercise and cardiovascular diseases in
this case). We then use predefined rules to extract
keywords encoding the semantic relations existing
between the concepts. To mention, if one concept
is part of ARG0 and the other being part of ARG1,
the predicate term is used as the relation type. In
the example output above, the predicate term repre-
senting the semantic relation type is reduces. More
examples are provided below. The pair of concepts

3702

https://docs.allennlp.org/v0.9.0/api/allennlp.models.semantic_role_labeler.html
https://docs.allennlp.org/v0.9.0/api/allennlp.models.semantic_role_labeler.html


ADUs Components, Chain of Hyperlinks
ADU1 - Trump tax cut is the biggest
since Ronald Reagan; ADU2 - It will
create tremendous numbers of new
jobs

Chain of Hyperlinks for the components, Tax (C), Jobs (A):
- Job→Working hour system→ Income tax→ Tax
- Job→ Labor economics→ Economic policy→ Tax
- Job→ Unemployed→ Tariff→ Tax

ADU1 - Clinton is going to approve
one of the biggest tax cut in history;
ADU2 - Clinton is going to drive busi-
ness out

Chain of Hyperlinks for the components, Business (C), Tax cut (A):
- Business→ Adam Smith→ Economic theory→ Tax cut
- Business→ Adam Smith→ Neoliberalism→ Tax cut
- Business→ Corporate tax→ Effect of taxes and subsidies on price→ Tax cut

Table 5: Examples showing the connection between ADUs via the chain of hyperlinks linking their components.

are highlighted in light blue and the relation type
highlighted in red:

1. Concept Pair: Exercise, Cardiovascular
Diseases

• Semantic Relation: increase
• Sentence: "Low levels of physical exer-

cise increase the risk of cardiovascular
diseases mortality."

• Predicate structure: [ARG0: Low lev-
els of physical exercise] [V: increase]
[ARG1: the risk of cardiovascular dis-
eases mortality].

2. Concept Pair: Exercise, Cardiovascular
Profiles

• Semantic Relation: leads
• Sentence: "Studies have shown that

since heart disease is the leading cause
of death in women, regular exercise in
aging women leads to healthier cardio-
vascular profiles."

• Predicate structure: Studies have
shown that [ARGM-CAU: since heart
disease is the leading cause of death in
women], [ARG0: regular exercise in ag-
ing women] [V: leads] [ARG2: to health-
ier cardiovascular profiles].

3. Concept Pair: Innovation, Economy

• Semantic Relation: is
• Sentence: "Given the noticeable effects

on efficiency, quality of life, and produc-
tive growth, innovation is a key factor in
society and economy."

• Predicate structure:
[ARGM-ADV: Given the noticeable ef-
fects on efficiency , quality of life , and
productive growth], [ARG1: innovation]
[V: is] [ARG2: a key factor in society
and economy]

4. Concept Pair: Sustainable Energy, Renew-
able Energy

• Semantic Relation: involves
• Sentence: "Sustainable energy involves

increasing production of renewable en-
ergy, making safe energy universally
available, and energy conservation."

• Predicate structure: [ARG2: Sustain-
able energy] [V: involves] [ARG1: in-
creasing production of renewable energy
, making safe energy universally avail-
able, and energy conservation]

A.3.6 External Resource Evaluations
Ontology and Wikipedia: We analyse the three
resources to showcase their contributions in terms
of coverage and the quality of connections.

Coverage. The aim is to show the proportion
of pairs connected exclusively by one resource but
not by others. To this end, we randomly select 500
unconnected pairs from each resource and generate
a heatmap illustrating the ratio of pairs exclusively
connected by each resource compared to the oth-
ers to identify which resource is most effective in
covering concepts absent in others. On average,
Wikipedia covers 37% of pairs unconnected in both
WordNet and ConceptNet, while only 7% of the
concepts missing in Wikipedia are covered by both
WordNet and ConceptNet. Please note that pairs
of concepts connected by relation types occurring
less than three times are considered unconnected.

Connection Quality. We further analyse the
quality of the paths by ranking component pairs
based on the number of paths linking them from
each respective resource. From this ranking, we
select the top 25 most connected and 25 least con-
nected pairs from each resource for detailed eval-
uation. Two annotators independently assess the
relevance of these paths by assigning binary la-
bels, reflecting their subjective evaluations of the
paths’ pertinence to the AR between the ADUs.
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The evaluation shows that Wikipedia emerges as
the top-rated source for both well-connected and
least connected paths, achieving an F1 score of
0.73. ConceptNet follows closely with an F1 score
of 0.71, while WordNet has an F1 score of 0.68, in-
dicating its comparative effectiveness in providing
relevant connections.

GPT-generated paths: As shown in Table 2,
configuration utilising GPT-generated paths show
higher accuracy but lower precision. Of the total
errors observed, 79% are identified as false pos-
itives for approaches using GPT-generated paths
in predicting AR, while the average false positive
rate for the other three external resources is 53%.
To further investigate, we randomly select 20 er-
rors and engage two human annotators to jointly
analyse the paths connecting the pair of ADUs.

Out of the 20 errors, the paths for the 14 of the
errors are categorised as contextually irrelevant
for the ADU pairs. The primary reason cited by
the annotators for the irrelevant paths indicates
that while the generated paths make logical sense
and provide valid lines of reasoning between the
ADUs, there were no AR between these ADUs as
originally annotated in the dataset.

For example, consider the pair of ADUs "Re-
searches into humanities and art still need large
amount of money" and "a government should spare
effort on young children education as well as uni-
versities", taken from the argument graph depicted
in Figure 2 (taken from AAEC dataset). GPT iden-
tified the following semantic relation paths linking
the concepts "money" and "young children educa-
tion":

• money → facilitates → technology adop-
tion→ enables→ digital literacy programs
→ encourages→ young children education

• money → stimulates → philanthropic en-
deavors → cultivates → community part-
nerships → fosters → early childhood
learning opportunities

• money→ fuels→ economic growth→ stim-
ulates→ job creation→ expands access to
→ early childhood education

• money→ drives→ philanthropic activities
→ funds→ charitable organisations→ sup-
ports → early childhood education initia-
tives

• money → empowers → local communities
→ cultivates→ community engagement→
enhances→ early childhood learning envi-
ronments

• money → encourages → resource alloca-
tion→ drives→ research and development
→ inspires→ pedagogical advancements

Despite these two ADUs not being linked by AR
in the gold dataset, the paths between the concepts
they address mimic the paths typically associated
with ADUs involving AR. However, the reasoning
conveyed by these paths is categorised as unin-
tended, as they involve reasoning diverging from
the original argument, and the AR between these
ADUs is absent in the gold dataset.

The same applies to the paths identified for the
concepts money and future addressed by the pair
of ADUs: "Researches into humanities and art
still need large amounts of money" and "both are
crucial on the way to a brighter future".

• money → allows for → travel experi-
ences→ impacts→ cultural enrichment→
shapes→ future memories

• money → allows for → excessive spend-
ing → impacts → short-term pleasure →
shapes→ future goals

• money → initiates → investment opportu-
nities→ promotes→ financial stability→
contributes to→ future security

• money→ used for → educational funding
→ influences→ career advancement→ im-
pacts→ future

• money→ is used for→ investment in prop-
erty→ helps in→ wealth accumulation→
contributes to→ future

• money → is used for → infrastructure de-
velopment → helps in → urban planning
→ contributes to→ future city growth

• money → allows for → business expan-
sion→ impacts→ economic prosperity→
shapes→ future

• money→ leads to→ business expansion→
is linked to→ economic growth→ impacts
→ future prosperity
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Figure 2: Example argument graph.

• money → is essential for → scientific re-
search→ contributes to→ technological ad-
vancement→ shapes→ future innovation

A.4 GPT for Path Generation and AR
Prediction

A.4.1 Experimental Settings
We utilise the chat completion configuration of
ChatGPT-4 for two tasks: (a) generating the chain
of semantic relation between ADU components,
and (b) predicting AR.

1. Configurations: We use GPT-4 based on
gpt-3.5-turbo-instruct. We set a maxi-
mum token limit of 2048, a temperature of
0.7, a top-p probability of 0.9.

2. Prompts Strategy: We explored two strate-
gies: zero-shot and few-shot prompts. In
the zero-shot setting, only instruction based
prompts without examples are used. We
also try few-shot setup, where specific exam-
ples are provided as part of the instruction.
Interestingly, our analysis revealed that the
example-based experiment achieved a 1.3%,
2.1% higher score compared to the zero-shot
prompt in the AR prediction and path genera-
tion, respectively. As a result, our experiment
is based on example-based prompting. We
create prompt templates that include instruc-
tions and two examples randomly selected
from a list of examples. These examples

consist of ADU pairs, concept pairs identi-
fied from the ADUs, and paths obtained from
three external resources. The placeholder vari-
ables in the template are replaced with the
ADUs, concepts, and paths.

Prompt Design for Path Generation. GPT-4 is
tasked with generating paths between components
of ADUs using the following template:

You are a model trained to
identify chains of semantic relations
between a pair of concepts derived
from two sentences (ADU1 and ADU2).
Given concepts c1 and c2 extracted from
ADU1 and ADU2 respectively,
your goal is to identify chains of
semantic relation types connecting
these concepts. These relations may
include meronymy, hypernymy,
hyponymy, cause-effect, or any other
valid semantic relation. Concepts are
often indirectly linked via
intermediate concepts and their
relations. Include both direct and
indirect paths between the concepts
whenever possible, using only
the context provided by the ADU pairs.
Provide up to 10 paths if possible;
otherwise, return an empty list.
Each relation type should be
represented as a tuple in the format
(concept1, relation type, concept2).
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For indirect paths involving
multiple tuples, return them
as a list of tuples.
Example 1:between the concepts
"USA" and "NAFTA" identified from
the pairof ADUs
"USA is in deep trouble"
and "NAFTA agreement is defective",
a valid list of paths could be,
[[("USA,part-of,NAFTA)"],
["(USA, has, trade deal),
(trade deal, instance of, NAFTA")].
Example 2: between the concepts
{c1} and {c2} identified from the
pair of ADUs {ADU1} and {ADU2},
the list of paths should include,
{list_path}.
Provide your answer as a python list.

Note: In Example 1, we show an actual exam-
ple, but it should be a placeholder variable in the
prompt template, as shown in Example 2.
Prompt Design for Zero-Shot AR Prediction:
We prompt GPT-4 to classify the relationship be-
tween the ADUs as supporting, contradicting, or
having no clear AR using the following prompt
template.

You are a 3-class classifier model
tasked with assigning a label
to the argument relation between
two argument units
(argument 1 and argument 2).
Classify the following
pair of arguments,
argument 1: {ADU_1}
argument 2: {ADU_2},
into:
"support" (if argument 1 supports
argument 2),
"contradict" (if argument 1 attacks
argument 2),
and "None" (if no argument relation
exists between
argument 1 and argument 2).
Please enter:
1 - for support,
2 - for contradict,
0 - for None relation.
Examples from each argument
relation types are provided below:
Example 1: the argument relation between
the argument "people feel, when they have

been voicing opinions on
different matters, that they
have been not listened to",
and the argument "people
feel that they have been treated
disrespectfully on all sides of the
different arguments and disputes
going on" is support, and hence
prediction label is 1.
Example 2: The argument relation
between "there would be no non-tariff
barriers with the deal done with
the EU" and the argument
"there are lots of
non-tariff barriers
with the deal done with the EU"
is contradiction, and
hence prediction label is 2.

Note: We use the actual examples to show sup-
port and contradiction relations, which should be a
placeholder variable in the final prompt template.

A.5 Multi-Network Architectures
The encoder blocks within the multi-networks are
constructed using the HuggingFace implementa-
tion of BERT (bert-base-uncased) 10. In all con-
figurations, we utilise 8 attention heads, which is
a common feature in standard transformer imple-
mentations. This design choice allows the model to
attend to different parts of the input sequence simul-
taneously, enhancing its ability to understand and
represent complex relationships within the data.

A.5.1 Attention Mechanisms in
Multi-Network Architectures

The Triplet Network architecture is aimed to en-
code the individual components of ADUs as well
as the external knowledge paths connecting them.
The architecture consists of three sub-networks,
each focusing on a different aspect of the input:

• Sub-Network 1: Encodes the premise.

• Sub-Network 2: Encodes the conclusion.

• Sub-Network 3: Encodes the paths between
components of ADUs.

Two attention layers are used to attend to the
alignment between the inputs (premise, conclusion
and external knowledge).

10https://huggingface.co/google-bert/
bert-base-uncased
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Figure 3: Triplet-networked with attention layers.

1. First Attention Layer: This layer attends to
the alignment between the premise and con-
clusion based on the outputs of Sub-Networks
1 and 2, respectively.

2. Second Attention Layer: Building upon the
output of the first attention layer, this layer
aligns the information from the first attention
layer with the external knowledge provided
by Sub-Network 3.

Finally, the outputs of the attention layers are
passed through feedforward and a final linear clas-
sification layer to predict AR. We experiment with
two configurations for representing the ADUs and
the external knowledge as input to the attention
layer: (a) using the final output of the [CLS] token
and (b) using the mean of the last hidden layer of
all tokens from BERT’s output. Consistently, the
mean of the last hidden layer of all tokens yields
superior performance compared to the [CLS] to-
ken. Since our goal is a classification task that
predicts the AR across three classes, we utilise
cross-entropy loss based on the output of the linear
classification layer. Triplet loss is not suitable for
our specific task in either the Siamese or Triplet
configurations.

A.5.2 Training Complexity and Additional
Parameters

The inclusion of cross-attention layers and feed-
forward layers in both the Siamese and Triplet
Network architectures introduces additional param-
eters and computational complexity over the base-
line BERT model, which consists of 110 million

parameters.
In the Siamese Network, cross-attention is ap-

plied between the premise-conclusion pair and ex-
ternal knowledge. The cross-attention mechanism
contributes approximately 1.77 million parame-
ters (specifically, 1,769,424 parameters), while the
subsequent feedforward layer adds around 2.37
million parameters (specifically, 2,367,486 pa-
rameters). Additionally, the classification layer,
which accounts for 3 output classes, adds about
2,304 parameters. This brings the total parame-
ter count for the Siamese model to approximately
116.5 million, introducing about 4.14 million pa-
rameters beyond the baseline.

The Triplet Network further increases complex-
ity, employing two cross-attention layers between
the premise, conclusion, and external knowledge,
which contribute around 3.54 million parameters
(specifically, 3,538,944 parameters). The feedfor-
ward layers contribute approximately 4.74 million
parameters (specifically, 4,734,972 parameters),
and the classification layer again adds 2,304 pa-
rameters. This results in a total of approximately
123 million parameters, which is around 8.28
million more than the baseline.

The added cross-attention layers introduce addi-
tional computational steps by computing attention
scores between inputs (premise, conclusion, and
external knowledge), thereby increasing training
complexity relative to the baseline model, which
solely fine-tunes the BERT layers without external
knowledge integration.
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Path Path Path Path
related to→ leads to→
affects

related to→ related to synonym involves

related to affects→ associated with
→ impacts

synonym→ related to causes

has is related to leads to is a→ related to→ related
to

impacts related to→ involves contains is a→ involves
is a→ is a→ is a part of related to→ part of causes→ related to
influences→ affects antonym→ hyponym→

hyponym
associated with involves→ related to

leads to→ results in entails→ entails is a→ has can lead to
implies related to→ related to→

related to
affects→ influences causes→ leads to

has→ includes part of→ includes related to→ includes related to→ related to→
causes

supports synonym→ hypernym→
hyponym

entails→ involves related to→ entails

causes→ affects is a→ belongs is associated with→
involves

regulate

related to→ impacts can result in is an umbrella term→ is
related to

leads to→ involves

found in administers→ impacts→
involves

affiliated with→ associated
with

aids→ helps→ helps

developed through→
facilitated by→ leads to

discussed in→ is a→ lead
to

are→ show→ can lead to
→ can result in

assessment of→ measure of
→ related to

associated with→ is a type
of→ can be

be used for→ have quality can be obtained→ is
extended for→ is a type of

occur in→ experiencing→
necessitate

can provide→ may lead to
→ changes

common in→ generally
involves

includes→ example of determines→ affects

empowerment through→
instance of

entails→ sustain entails→ includes→
involves

entails→ is a→ is a→ is a

entails→ is required for→
can lead to→ can result in

experienced→ includes often favours→ which
stems from

fosters→ crucial for

give→ way to impacts→ evaluates influences→ lead to→
affect

influences→ are reflected
by

influences→ is achieved by influences→ importance of
→ includes

involves→ involvement of
→ can come under

involves→ is represented
by

involves→ brings→ used
for

is a factor in→ generates
→ can include

symptom of→ includes→
has code

is a type of→ may require
→ is associated with

is a→ is delivered through
→ facilitates

is essential to→ has an
impact→ results in

is important for→ used in
→ opportunity for

is involved in→ has phase
→ is type for

is often accompanied by→
is similar to

is often associated with→
has effects on→ are linked
to

related→ shapes→
contribute to→ are crucial
for

required→ necessary for

supported by→ promotes
→ reduces→ are important

is the goal of→ can include is type of→ can involve→
is related to

is a→ involves→ relieves

live in→ has may bring→ followed by
→ result in

may lead to→ requires→
found

necessitates→ involves→
category of

offer→ facilitate→
contributes to→ aids in

opposite of→ causes→
leads to

organised by→ hold participates in→ can
involve

provide→ attend provides challenge in provides→ enable provides→ includes→
develops→ can lead to

refers to→ impacts→
affects

related to→ can lead to→
results in→ results in

related to→ improves→
essential→ crucial for

related to→ indicates→
compared to

leads to→ is likely to→
often achieved by

represents→ causes require→ achieved by→
help

shares→ comprises of

duration→ has value used for→ associated with
→ part of

convey→ interpreted by→
part of→ makes up

requires→ causes→ leads
→ necessary

Table 6: Examples of semantic relation paths.
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Relation Relation Relation Relation Relation Relation
related to involves hyponym antonym synonym is a
has results in affects related term leads to can lead to
causes entails associated with part of includes hypernym
influences impacts is related to contributes to include is a type of
instance of can result in requires related connected to contains
have require can be involve used for implies
consists of versus are lead to greater than affect
influence entailment type of causes desire linked to cause effect
opposite of relates to is essential for is similar to impact may lead to
supports provides can involve is crucial for result in is part of
cause essential for may result in symptom of is a form of comparison
facilitates enhances motivated by contribute to can cause similar
used in experience is important for enables influenced by drives
at location provide are part of percentage may involve comprises
synonym of opposite indicates describes attribute attend
refers to is can include determines promotes has instance
use participate in entails action treated with utilises measured by
shapes pertains to is connected to necessitates encourages improves
antonym of is used in similar to measures is used for represents
chain map offers is influenced by treat may cause of
negation has context shape consist of has property example of
motivates are associated with equals can affect location has quality
enhance relate to affected by undergo may include contributes to
belongs to can influence found in addresses impact on create
seek possess increases can impact receive compares
opposes member of feature subset of concerns is required for
derived from is a part of has attribute resulted in comprise is equivalent to
treatment for used by activity treatment regulates correlates with
enable produces is necessary for triggers target ensures
inspires correlated with impacted by inspire helps in has duration
need is a factor in component of is known for modifies related term of
measure treated by is less than characteristic of has numeric value covers
is about is a symptom of employs entail located in has part
located near shows are crucial for focuses on engage in depends on
pursue is needed for brings about motivated by goal cause of can have
can associated with are related to range involved in utilise
targets means attribute of benefits characterised by measured by
spouse of is a measure of side effect of comparative of can be influenced by is vital for
has member occurs in evaluate implement allows for has symptom
is equal to less than belong to linked to involves encourage
fosters component of known for capable of is key to helps
interact with drive constitute relies on comprises of meronym
defines generates correlate with determine has subevent represent
is an umbrella term compare has prerequisite facilitate desires percentage of
a type of acquired through address addressed advocates for agent
agent of are important for aligns with aid in are used in assesses
attract belongs to group belong to boosts achieved through be found in
can be represented can contribute to can create can enhance can develop into can lead to
can occur in can require can stimulate capability of category of caused by
combined with complication of concept in connects conceptually related to deals with
essential for establish evaluated by examines example of exhibit
has percent has range has impact on have activity level helps to get more helps gain
holonym impacts result in implemented by imposes indicate induces
inhibits is a medication is a metric for is a side effect of is a source of is a subclass of
is a symptom of is a unit of time is a way to is beneficial for is critical for is defined by
is fundamental for is funded by is greater than is key to is opposite of is perceived as
is quantified by is significant for has value is the target of is treated with is used to assess
is treated by lack of lacks live in location of made by some
made of manifests as negatively impacts numerical value often involve outcome of
percentage value play a role in plays a role in politician possesses prevents
process of produce promoted by provide access to provided by qualifies
quantity reduces reflect reflects regulated by rely on
restrict results in state show stimulates studies suggests
superlative to be gained by tool for treats treatment includes treated by
treatment involves treatment with trigger utilised for increased expression of yield

Table 7: Examples of semantic relation types. We normalised (lower cased and expanded relation types like IsA,
RelatedTo, HasProperty) the relation types for consistency across the external resources.
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