@inproceedings{peng-etal-2024-text,
title = "Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification",
author = "Peng, Letian and
Gu, Yi and
Dong, Chengyu and
Wang, Zihan and
Shang, Jingbo",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.219",
pages = "3741--3752",
abstract = "For extremely weak-supervised text classification, pioneer research generates pseudo labels by mining texts similar to the class names from the raw corpus, which may end up with very limited or even no samples for the minority classes. Recent works have started to generate the relevant texts by prompting LLMs using the class names or definitions; however, there is a high risk that LLMs cannot generate in-distribution (i.e., similar to the corpus where the text classifier will be applied) data, leading to ungeneralizable classifiers. In this paper, we combine the advantages of these two approaches and propose to bridge the gap via a novel framework, \textit{text grafting}, which aims to obtain clean and near-distribution weak supervision for minority classes. Specifically, we first use LLM-based logits to mine masked templates from the raw corpus, which have a high potential for data synthesis into the target minority class. Then, the templates are filled by state-of-the-art LLMs to synthesize near-distribution texts falling into minority classes. Text grafting shows significant improvement over direct mining or synthesis on minority classes. We also use analysis and case studies to comprehend the property of text grafting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peng-etal-2024-text">
<titleInfo>
<title>Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Letian</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengyu</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingbo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For extremely weak-supervised text classification, pioneer research generates pseudo labels by mining texts similar to the class names from the raw corpus, which may end up with very limited or even no samples for the minority classes. Recent works have started to generate the relevant texts by prompting LLMs using the class names or definitions; however, there is a high risk that LLMs cannot generate in-distribution (i.e., similar to the corpus where the text classifier will be applied) data, leading to ungeneralizable classifiers. In this paper, we combine the advantages of these two approaches and propose to bridge the gap via a novel framework, text grafting, which aims to obtain clean and near-distribution weak supervision for minority classes. Specifically, we first use LLM-based logits to mine masked templates from the raw corpus, which have a high potential for data synthesis into the target minority class. Then, the templates are filled by state-of-the-art LLMs to synthesize near-distribution texts falling into minority classes. Text grafting shows significant improvement over direct mining or synthesis on minority classes. We also use analysis and case studies to comprehend the property of text grafting.</abstract>
<identifier type="citekey">peng-etal-2024-text</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.219</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>3741</start>
<end>3752</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification
%A Peng, Letian
%A Gu, Yi
%A Dong, Chengyu
%A Wang, Zihan
%A Shang, Jingbo
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F peng-etal-2024-text
%X For extremely weak-supervised text classification, pioneer research generates pseudo labels by mining texts similar to the class names from the raw corpus, which may end up with very limited or even no samples for the minority classes. Recent works have started to generate the relevant texts by prompting LLMs using the class names or definitions; however, there is a high risk that LLMs cannot generate in-distribution (i.e., similar to the corpus where the text classifier will be applied) data, leading to ungeneralizable classifiers. In this paper, we combine the advantages of these two approaches and propose to bridge the gap via a novel framework, text grafting, which aims to obtain clean and near-distribution weak supervision for minority classes. Specifically, we first use LLM-based logits to mine masked templates from the raw corpus, which have a high potential for data synthesis into the target minority class. Then, the templates are filled by state-of-the-art LLMs to synthesize near-distribution texts falling into minority classes. Text grafting shows significant improvement over direct mining or synthesis on minority classes. We also use analysis and case studies to comprehend the property of text grafting.
%U https://aclanthology.org/2024.emnlp-main.219
%P 3741-3752
Markdown (Informal)
[Text Grafting: Near-Distribution Weak Supervision for Minority Classes in Text Classification](https://aclanthology.org/2024.emnlp-main.219) (Peng et al., EMNLP 2024)
ACL