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Abstract

For extremely weak-supervised text classifica-
tion, pioneer research generates pseudo labels
by mining texts similar to the class names from
the raw corpus, which may end up with very
limited or even no samples for the minority
classes. Recent works have started to generate
the relevant texts by prompting LLMs using
the class names or definitions; however, there
is a high risk that LLMs cannot generate in-
distribution (i.e., similar to the corpus where
the text classifier will be applied) data, lead-
ing to ungeneralizable classifiers. In this paper,
we combine the advantages of these two ap-
proaches and propose to bridge the gap via a
novel framework, text grafting, which aims to
obtain clean and near-distribution weak super-
vision for minority classes. Specifically, we
first use LLM-based logits to mine masked
templates from the raw corpus, which have a
high potential for data synthesis into the target
minority class. Then, the templates are filled
by state-of-the-art LLMs to synthesize near-
distribution texts falling into minority classes.
Text grafting shows significant improvement
over direct mining or synthesis on minority
classes. We also use analysis and case stud-
ies to comprehend the property of text grafting.

1 Introduction

Recent research has made rapid progress on ex-
tremely weak-supervised text classification (XWS-
TC) (Wang et al., 2023), limiting the supervision to
a brief natural-language description without any an-
notated samples. For example, text mining-based
XWS-TC (Meng et al., 2020; Wang et al., 2021;
Shen et al., 2021; Mekala et al., 2022; Zhao et al.,
2023; Dong et al., 2023a) takes only class names
or seed words from humans and discovers potential
in-class texts following designated heuristics.

Minority classes are arguably the most chal-
lenging part of XWS-TC. The class distribution
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I believe in luck, and when 

luck is not on my side, I feel 

beaten and sometimes upset.

_ believe __________ when 

luck _______________ feel 

_____________________

Minority class “Surprised”

Potentially grafted

into “Surprised”

I can't believe it when luck 

suddenly changes, and I feel 

completely astonished.

Stage 1: Potential Text Mining

 Gather texts with beneficial components to appear in the grafted results.

Stage 2: Template Creation

 Mask the components that do not contribute to grafting.

Stage 3: Template Filling

Fill in the template to synthesize new data.

Figure 1: The framework of text grafting.

Framework Mining? Train Data Data Quality In-Distribution

Text Mining Text Raw Noisy Yes
Data Synthesis None Generated Clean Hardly

Text Grafting (ours) Template Grafted Clean Mostly

Table 1: High-level comparison among three discussed
XWS-TC frameworks.

in real-world datasets is often a long-tailed distribu-
tion (Zhang et al., 2023), with a non-trivial number
of minority classes. These minority classes have a
very small number of documents in the raw corpus,
therefore, it is difficult to locate the right docu-
ments by mining-based methods, leading to noisy
pseudo-labels. Under extreme circumstances, the
mining-based methods may end up with no sample
for minority classes.

A potential way to address this issue is data
synthesis-based XWS-TC (Ye et al., 2022a,b; Peng
and Shang, 2024), which hopes to generate in-
class texts by prompting large language models
(LLM) (Brown et al., 2020; OpenAI, 2023; Tou-
vron et al., 2023a,b; Meta, 2024; Mesnard et al.,
2024; OpenAI, 2024) with class names or defini-
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tions. However, such synthesized texts may follow
a distribution different from the corpus where the
text classifier will be later applied (Mitchell et al.,
2023), which makes the learned text classifier out-
of-distribution, leading to poor performance.

This paper combines the advantages of mining-
based and synthesis-based frameworks to propose
a new framework, text grafting, which aims to ob-
tain clean and near-distribution weak supervision
for minority classes. As specified in Figure 1, text
grafting incorporates three stages: (1) Potential
Text Mining gathers raw texts with beneficial com-
ponents to synthesize in-class texts for the target
minority class. (2) Template Creation forms tem-
plates by masking the components that do not con-
tribute to the in-class text synthesis. (3) Template
Filling synthesizes in-class texts by filling in the
blanks. Table 1 systematically compares the weak
supervision obtained by different frameworks.

To identify the words not contributing to the clas-
sification, we borrow the marginalization idea from
LLM reasoning (Holtzman et al., 2021). We get
the probability logit of each word in the raw text
by instructing LLMs (relatively small, specifically
Gemma (Mesnard et al., 2024)) to generate with or
without the in-class as a requirement. The differ-
ence between the two logits represents the potential
of each word to appear in the grafted text. As only
words with high potential will be left, we use the
average potential of top-K% words to represent
the text potential score. The bottom-(100−K)%
words will be masked to form the template for
data synthesis. We rank the templates by their po-
tential scores and select top-T% templates for the
last template-filling stage. Finally, these selected
templates are filled by prompting a state-of-the-art
LLM, GPT-4o (OpenAI, 2024).

We compare the three mentioned frameworks on
various raw corpora to classify different minority
classes. The experiment results show text graft-
ing can outperform state-of-the-art text mining and
dataset synthesis methods. The ablation study ver-
ifies that all stages and the intermediate template
contribute to the success of our proposed text graft-
ing. The mask-and-filling scenario also shows its
advantage over simple in-context generation, since
it forces the LLM to incorporate components from
the raw texts. We also involve an extreme situa-
tion where the target class does not appear in the
raw corpus completely. Remarkably, text grafting
shows its robustness to this extreme situation, indi-
cating its applicability does not require the target

class to appear in the raw corpus. This enables
text grafting to work on a very small corpus which
boosts efficiency.

Furthermore, we analyze and discuss the prop-
erty of text grafting. We apply principal component
analysis to visualize that the drafted texts are in-
deed near in-distribution. We also find the grafted
texts are near-distribution enough that we do not
need to synthesize negative samples as in tradi-
tional data synthesis, which reduces the cost. We
also conduct a comprehensive hyperparameter anal-
ysis of our method. Interestingly, we found that
The mask ratio is searched to be better set to a high
value like 0.75 and the mined template number can
be as small as 200. These case studies explore the
advantages of text grafting in distribution approxi-
mation and its failure when the raw texts are near
the distribution of LLM generation.

We summarize our contributions as follows,
• We propose a novel XWS-TC framework for mi-

nority classes, text grafting, combining the in-
distribution advantage of text mining and the in-
class advantage of data synthesis.

• We implement text grafting following the
marginalization idea from LLM reasoning, uti-
lizing the probability logits for template mining
and masking.

• We provide comprehensive analysis and case
studies to show the strength, property, and possi-
ble failure of text grafting.1

2 Related Works

Extremely Weak-Supervised Text Classification
(XWS-TC) needs only minimal human guidance to
label the text, such as a few rules by human experts
that match the text to the labels (Wang et al., 2023).
Mainstream XWS-TC methods can be divided into
two categories: Text Mining and Data Synthesis.

Text Mining is a fundamentak task (Han and
Kamber, 2000) for natural language processing.
In XWS-TC, the text miner follows high-level
rules from humans to annotate raw texts, which
are used to train the text classifier. A mainstream
rule is whether a seed word appears in the raw
text (Mekala and Shang, 2020; Meng et al., 2020;
Wang et al., 2021), categorized as seed methods.
Another mining way is to prompt language models
for logits that reflect the probability of texts falling

1The datasets and models used in the experiments are re-
leased in github.com/KomeijiForce/TextGrafting
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in classes (Brown et al., 2020), which can be cali-
brated by several techniques (Holtzman et al., 2021;
Zhao et al., 2021; Han et al., 2023). The strong per-
formance of existing text mining methods is highly
dependent on the precision of the class-indicative
rules (Dong et al., 2023a), which is hard to main-
tain for minority classes.

Data Synthesis (He et al., 2022) addresses the
precision degradation in text mining by directly
prompting LLMs with the label names to generate
in-class texts (Ye et al., 2022a; Peng and Shang,
2024). With the powerful generative ability of
LLMs, the synthesized texts are generally clean
(in-class) for training strong classifiers. However,
synthesized texts hold LLM-specific patterns, dis-
covered by LLM-generated text detectors (Mitchell
et al., 2023; Wu et al., 2023). This pattern is hard to
be eliminated even with in-context learning (Koike
et al., 2024). Thus, synthesized texts are generally
out-of-domain and consequently fine-tune a weaker
classifier on the test set.

Minority Classes widely appear in classifica-
tion datasets as a result of long-tailed distribu-
tion (Zhang et al., 2023; Henning et al., 2023). For
minority classes with supervised annotations, tech-
niques like re-sampling (Shen et al., 2016; Pouyan-
far et al., 2018; Tepper et al., 2020) and data aug-
mentation (Wei and Zou, 2019; Juuti et al., 2020;
Tian et al., 2021; Chen et al., 2021). However,
these methods are applied to unbalanced annota-
tions, which are unavailable under XWS.

Counterfactual Augmentation refers to generat-
ing annotated data out of the dataset or raw corpus.
Different from regular augmentation, counterfac-
tual augmentation changes the reference, e.g., la-
bel flipping (Zhou et al., 2022; Peng et al., 2023).
Counterfactual augmentation is also applied for
text-to-text tasks like translation (Liu et al., 2021)
or summarization (Rajagopal et al., 2022). Coun-
terfactual augmentation shares the same require-
ment for known reference as regular augmentation.
This paper explores a counterfactual augmentation
method for unannotated raw text under XWS.

3 Text Grafting

3.1 Preliminary

XWS Minority Class Classification takes a raw
corpus D = {X(i)}i=1:|D| and the target minority
class name c as the input to train a binary classifier
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Figure 2: The precision of state-of-the-art text mining
on same classes with different class proportions. “Preci-
sion” refers to the precision of the pseudo-labels. “Class
Proportion” means the ratio of the texts of this class in
the entire corpus after down-sampling.

f(X) that discerns a text falling in c or not. We
denote the j-th word in the i-th text of the raw
corpus as x(i,j).

Text Mining gathers in-class texts with high-
level rules g(X) that can precisely assign X to
target class c. Example rules include whether X
contains words indicating c (seed words) (Dong
et al., 2023a) or X has top confidence to be in c
by prompting LLMs (Brown et al., 2020) among
D. The mined D(TM) = {X(i)|g(X(i))}i=1:|D| is
combined with some randomly sampled negative
texts (due to the scarcity of c) to train f(·).

However, text miners fail in minority classes due
to their low proportion in the raw corpus. By run-
ning a state-of-the-art text mining method (Dong
et al., 2023a) on AG-News (Zhang et al., 2015)
with class name proportion modified by sampling,
we observe the mining precision drops sharply with
the decrease of proportion, presented in Figure 2.
Another concern is the class might be too minor
that even no ground truth can be mined from the
raw corpus, limiting the precision to 0% no matter
how intuitive the mining rule is.

Data Synthesis does not annotate raw texts for
classifier fine-tuning but directly prompts LLMs to
generate in-class texts (X ′ ∼ LLM(Ic)), where Ic
is an instruction to write a text in class c. With the
strong capability of state-of-the-art LLMs (OpenAI,
2024; Meta, 2024), the generated X ′ are highly
confident to fall in class. Another advantage of
data synthesis is the ability of LLMs to generate
negative samples (Ye et al., 2022a; Peng and Shang,
2024). However, synthesized texts consist of pat-
terns different from other sources (Mitchell et al.,
2023), which indicates classifiers f(·) fine-tuned by
synthesized texts are out-of-domain, consequently
weaker in the classification task.
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3.2 Overview of Text Grafting
As depicted in Figure 3, our text grafting is a hybrid
method that combines the strengths of text mining
and data synthesis. The core observation is that
out-of-class texts can contain useful components
for writing in-class texts. The text mining stage
of text grafting aims to discover these potential
components and formalize them as templates. In
the data synthesis stage, the templates are filled by
LLMs to produce in-class texts. With components
from both raw texts and synthesis, the grafted texts
are both in-class and near-distribution, which are
supposed to fine-tune a better classifier than only
text mining or data synthesis.

3.3 Implementation
In detail, the text mining stage includes Potential
Text Mining and Template Creation, while in
the data synthesis stage we conduct Template Fill-
ing. The text mining stage requires relatively small
open-source LLMs with higher efficiency and ac-
cessible logits. Template Filling can utilize state-
of-the-art LLMs even with API accessibility.

Potential Text Mining discovers texts with po-
tential components to appear in the grafted texts.
We evaluate the potential of each word x(i,j) in
the raw text X(i) with regularized logits prompted
from LLMs following the regularization idea in
DC-PMI (Holtzman et al., 2021). The potential
∆p(i,j) for x(i,j) is defined as the difference be-
tween the probability logit of x(i,j) prompted by
an instruction with the class name (Ic) and an in-
struction for regularization (Ir). The difference can
also be viewed as the probability of x(i,j) raised by
incorporating the class name c into the instruction.

∆p(i,j) = logPLLM(x(i,j)|Ic)− logPLLM(x(i,j)|Ir) (1)

The words with top-K% ∆p among the words
in text Xi will remain in the template. Thus, the
average of their ∆p represents the potential (∆Pi)
of the template created based on Xi. As we are
mining potential templates rather than directly in-
class texts, the mining rate K% can be much larger
than text mining.

∆Pi =

⌈
1

K% · |Xi|

⌉ ∑

∆pi∈Top−K%(∆p1:|Xi|)

∆pi (2)

Then the texts are ranked by their grafting poten-
tial ∆P and texts with top-N% potential are mined
to create the templates.

Function Prompt

TM (Ic) “Please write a <label> <style>.”
TM (Ir) “Please write a <style>.”

DS “Fill in the blanks in the template to pro-
duce a <label> <style>.”

Table 2: The prompts used in text grafting. In prompts,
<label> refers to the label names like “Surprised” while
<style> represents the distribution like “Tweet”.

Template Creation simply masks the words with
bottom-(100−K)% potential ∆p by blank tokens
“_” and uses the top-K% as template part. Text
Xi is thus converted to template Ti, which is pre-
pared for LLMs to fill in during the data synthesis
stage. As the example in Figure 3, the components
with the top potential to be in a grafted “Surprised”
remain in the template such as “believe”, “when
luck”, “feel”. These components support the data
synthesis to better write an in-class text while keep-
ing the style in distribution with the writing struc-
ture from the raw corpus.

Template Filling prompts an LLM to fill in the
blanks in T , which produces a grafted text that
generally falls in the target class c. Referring to
the example in Figure 3, the LLM well utilizes the
writing structure in the template and fills in the
blanks to produce the in-class text. As the template
keeps the writing structure of the raw corpus, the
grafted text is quite similar to the original one but
flipped into the target minority class.

Specific prompts in these stages are shown in Ta-
ble 2, where the label and distribution information
is filled to support the text grafting.

4 Experiments

4.1 Evaluation
Datasets We take several minority classes from
popular text classification datasets to evaluate the
performance of different XWS-TC methods on mi-
nority classes. We include 1) TweetEval (Bar-
bieri et al., 2020) and Emotion (Saravia et al.,
2018), which contain minority emotion classes
“Optimism” (8.9%) and “Surprised” (3.6%); 2) 20
News (Lang, 1995), which contains minority news
topic “Religion” (3.3%) and “Politics” (4.1%);
3) BigPatent (Sharma et al., 2019), which con-
tains minority patent class “Mechanical Engineer-
ing” (7.0%). The raw corpus is down-sampled to
10, 000 samples to improve experiment efficiency
and save budget costs. We use the F1 score as the
metric for evaluation.
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I believe in luck , and when luck is not on my side , I feel beaten and sometimes upset .

Instruction for Regularization (Ir): Write a sentence. 

Instruction with Class Name (Ic): Write a **surprised ** sentence. 

P|Ic

P|Ir

4.0 6.5 9.0 7.5 7.0 4.5 8.0 9.5 9.0 4.5 5.5 6.5 9.0 9.5 8.0 8.0 2.0 6.5 5.0 3.5 9.0

ΔP

T

3.5 2.5 9.0 6.0 7.5 5.5 5.0 6.5 9.0 5.0 6.5 7.0 9.0 9.5 9.0 5.0 5.0 6.0 5.5 7.5 9.5

-0.5 4.0 0.0 1.5 -0.5 -1.0 3.0 3.0 0.0 -0.5 -1.0 -0.5 0.0 0.0 -1.0 3.0 -3.0 0.5 -0.5 -4.0 -0.5

_ believe _______________________________ when luck _______________________________________________________________ feel ________________________________________________

4.0 3.0 3.0 3.0S Average
3.75

Raw Text: I believe in luck, and when luck is not on my side, I feel beaten and sometimes upset.

Template: _ believe _________ when luck _______________ feel _____________ Score: 3.75

Raw Text: I never had that sense of belonging anywhere and where if anywhere is anyone supposed to belong and feel accepted.

Template: _ never had that ____ of ________________________________________________________________ Score: 3.50

Raw Text: I really remember is feeling wonderful in the oatmeal bath.

Template: _ really remember_______________________ Score: 3.00

……

Top ΔP

Mine Templates with Top Scores

_ believe _________ when luck _______________ feel _____________

I can't believe it when luck suddenly changes, and I feel completely astonished.

LLM Filling
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Figure 3: The overview of text grafting with the minority class “Surprised” in the Emotion dataset as an example.
Text grafting includes two stages: 1) Text (Template) Mining: Create scored templates and select the ones with the
top scores. 2) Data Synthesis: Prompt the LLM to fill in the templates to synthesize in-class texts.

Baselines We include various text mining and
data synthesis methods as the baselines for compar-
ison to illustrate the advantage of our text grafting.

Text mining methods include,
• Prompting Confidence (Brown et al., 2020),

which is a prompting method that directly queries
an LLM whether the text falls in the target mi-
nority class, and uses the probability logit of an-
swering “yes” for ranking. Considering the class
minority, the mining rate is set to 1%.

• Debiased Seed Word (Dong et al., 2023a),
which is the current state-of-the-art XWS-TC
method. This method uses a seed word (the same
as the label name) to match the target minority
class and then drops the seed word from the con-
text to eliminate spurious correlation. Then the
texts are filtered by text selection (Mekala et al.,
2022) to produce the final mined texts.
Data synthesis methods include,

• ZeroGen (Ye et al., 2022a), which directly
prompts the LLM to synthesize texts in or out of
the target minority class.

• In-Context Generation (Dong et al., 2023b),
which uses raw texts as the in-context examples
to generate texts with a similar writing style as
the raw corpus.

• Incubator (Peng and Shang, 2024), which uses
instruction-tuned LLMs and in-context learning
based on annotated instruction-to-dataset sam-
ples to generate data points for fine-tuning.

All text synthesis methods synthesize 1000 texts
as positive (in the target minority class) or negative
samples (out of the target minority class, 2000 in
total).

The LLM used for text mining is a popular and
advanced open-source LLM, Gemma (Mesnard
et al., 2024) (gemma-1.1-7b-it) with accessible
possibility logits. The LLM used for data synthe-
sis is the state-of-the-art LLM, GPT-4o (OpenAI,
2024).

Grafting Hyperparameters The mining rates of
our text grafter are set to 25% (K%) for potential
components in templates and 10% (N%) for poten-
tial templates. Thus, the synthesized data number
is less than 1000, not more than the data number
from pure data synthesis.

Fine-tuning Hyperparameters We fine-tune a
RoBERTa-Large (Liu et al., 2019) as the classifier
with the AdamW (Loshchilov and Hutter, 2019)
as the optimizer whose learning rate is initialized
to 1 × 10−5. The classifier is fine-tuned by 10
epochs with batch size 8 and 20% training data are
split for validation to select the best-performing
checkpoint. All the experiment results are achieved
by an average of 5 runs. The two stages in text
grafting apply the same LLM as text mining and
data synthesis.
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Dataset TWEET PATENT EMOTION 20NEWS

AverageDistribution Tweet Patent Tweet News
Minority Class Optimism Mechanical Surprised Religion Politics
Class Proportion 8.9% 7.0% 3.6% 3.3% 4.1%

Supervised 45.88 34.30 32.28 24.10 32.27 35.14

Text Mining
(TM)

Prompting Confidence 17.93 14.59 7.00 6.50 15.77 12.81
Debaised Seed Word 19.15 20.46 8.78 11.47 19.53 15.88

Data Synthesis
(DS)

ZeroGen 10.82 24.17 7.19 6.97 17.60 13.35
Incubator 22.46 20.86 7.44 23.96 24.48 19.84
In-Context Generation 16.24 24.53 22.24 21.98 24.13 21.83

TM+DS Text Grafting (Ours) 32.70 25.42 27.46 25.32 27.32 27.64

Ablation

w/o Mining 26.54 16.74 24.32 17.69 15.16 20.09
w/o Synthesis (DC-PMI) 17.86 11.34 7.34 4.33 4.28 9.03
w/ Random Masking 30.11 19.07 23.37 23.57 26.65 24.55
w/ MF → ICG 21.31 20.58 15.33 23.60 25.06 21.18

Zero-Occur
Debaised Seed Word 0.00 17.66 5.88 8.79 20.73 10.61
In-Context Generation 18.84 23.15 19.50 20.63 24.11 21.25
Text Grafting (Ours) 30.61 25.27 31.08 26.15 25.54 27.73

Table 3: Text mining performance (F1 Score) for minority classes among different datasets.

Method EMOTION TNEWS
Language English Chinese

Debiased Seed Word 19.14 22.84
+ Text Grafting 31.30 28.61

Table 4: Results (Macro F1 Score) on end-to-end XWS-
TC for different languages. Emotion (English) contains
minority classes “Surprised” and “Love” while TNEWS
(Chinese) has a minority class “Stock”.

4.2 Main Result

The main results from our experiments are pre-
sented in Table 3. The comparison inside text
mining methods shows the advantage of the seed
method over the prompt method, consistent with
the findings of Wang et al.. The comparison among
text synthesis methods reflects the importance of
knowledge about the distribution of the corpus, as
in-context generation outperforms other baselines
with raw texts as an example for synthesis. Finally,
text grafting outperforms all the baselines, which
verifies the benefit of text grafting to produce in-
class and near-distribution texts.

However, there is still a significant gap between
the performance of supervised classification and
XWS-TC even with text grafting. This indicates
the grafted texts still have differences with the raw
corpus distribution for further improvement.

4.3 Ablation Study

Table 3 also includes the ablation study results for
text grafting in the Ablation columns. The first

Principal Component 1
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Original (Other)
Text Mining (Debiased Seed Word)
Data Synthesis (Incubator)
Text Grafting (Ours)

Figure 4: The visualization of text distributions from
different methods.

comparison focuses on the necessity of text mining
and data grafting in the pipelines of text grafting.
Without Mining removes the template score-based
sorting and lets the LLM fill in randomly selected
templates, which significantly underperforms the
initial grafting. Without Synthesis does not create
templates for data synthesis, but directly uses the
∆p averaged over all words to mine texts for fine-
tuning, equal to DC-PMI (Holtzman et al., 2021).
The result is similar to the Prompting Confidence
method, which shows the limitation of text mining
for minority classes. Then we emphasize the ne-
cessity of intermediate templates. With Random
Masking randomly masks the mined texts instead
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Text Grafting (w/o Negative Synthesis, 1000 LLM DS Calls)

Figure 5: The analysis on the necessity of negative data
synthesis.

of following the word-level potential ∆p, which
also results in a performance drop. With Mask
Filling → In-Context Generation takes the mined
texts as the in-context examples, which result in
a similar performance as the one without mining,
indicating the importance of template creation and
filling. Based on these ablation results, our grafting
framework is shown to be essential for achieving
optimal performance by effectively combining data
synthesis, text mining, and templates.

4.4 Further Analysis

Q1: How does Text Grafting Benefit End-to-
End XWS-TC? Table 4 shows how text graft-
ing can be integrated into end-to-end XWS-TC
pipelines for different languages. We include the
English Emotion dataset with “Surprised” and
“Love” as the minority classes and the Chinese
TNEWS dataset (Xu et al., 2020) with a minor-
ity class “Stock”. For the minority classes, texts
are synthesized by grafting while other classes
apply the traditional debiased seed word method.
The result shows text grafting improves end-to-end
XWS-TC on different languages, which verifies
the cross-lingual benefit of integrating text grafting
into XWS-TC pipelines to handle minority classes.

Q2: What if the class proportion is 0%? In the
Zero-Occur part of Table 3, we also include the dis-
cussed extreme situation when the raw corpus does
not contain any text falling in the target minority
class. A dramatic drop appears in the performance
of text mining as there is no ground truth that any
miner can get. The data synthesis and text graft-
ing methods are robust to this change as they do
not require the existence of ground truth examples.
Thus, text grafting is verified to be applicable to
raw corpus without the target minority class. Thus,
text grafting can be based on a small subset of the
corpus which might not contain the target minority
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Figure 6: Analysis of the effect of mask ratio.
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Figure 7: Analysis of the effect of data number.

class to boost efficiency.

Q3: How are grafted texts “near-distribution”?
In Figure 4, we apply semantic text embeddings
(Gao et al., 2021) to represent the texts mined or
synthesized by different methods. These embed-
dings are then reduced to 2-dimension by principal
component analysis (F.R.S., 1901) for visualiza-
tion. We use the “Optimism” class of the TweetE-
val benchmark and compare the most competitive
methods (Debiased Seed Word, Incubator, Text
Grafting) of different frameworks. We can observe
that text mining only discovers a limited proportion
of in-class texts. The synthesized texts fall into a
very different domain from the raw corpus, which
fine-tunes an out-of-domain classifier with limited
generalizability. In contrast, the grafted texts are
much more near-distribution, contributing to the
performance of the fine-tuned classifier.

Q4: Is Negative Data Synthesis Necessary? For
data synthesis-based methods, the synthesis of neg-
ative data is an essential stage in the pipeline, which
doubles the calls for LLM to synthesize texts. In
text grafting, we efficiently use the raw texts as the
negative examples. Thus, we explore the necessity
of negative synthesis by evaluating the performance
of data synthesis (In-Context Generation) and text
grafting with or without negative data synthesis
with the results presented in Figure 5.

Based on the results, we observe negative data
synthesis is very necessary to pure data synthesis as
the performance drops dramatically by removing
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________weight 221___old___________please__

senator johnson's stance on the new policy carries significant weight. the 

221-page document, though old, still holds relevance in today's political 

climate. please stay informed and engaged.

i'm looking for a singer featherweight 221 sewing machine (old, black 

sewing machine in black case). please contact:

senator maria hernandez, a strong advocate for environmental policies, will 

address the upcoming climate summit in geneva. attendees can expect:

T
em
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te
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In-Context Generation

Template Filling

____ shot__ 1923_ which famous wolf was shot in 1923?

what mexican leader was shot dead in 1923? what bird species was declared extinct in 1914?

T
em

p
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te
 C

re
a

ti
o

n

In-Context Generation

Template Filling

Strength: Able to adapt hard templates to in-class texts (Raw News Paragraph → Religion News Paragraph)

Failure: Not necessary when text distribution is not special (Raw Question → Animal Question)

Figure 8: A case study on the strength and possible failure of text grafting.

this stage. In contrast, text grafting without neg-
ative data synthesis works even better, indicating
that our text grafting can work more efficiently by
reducing the effort to call LLM at double times.
We attribute this efficiency to the near-distribution
property of the grafted texts, which makes the dis-
crimination between them and the original raw
texts no longer degrade to the classifying of text
sources (Mitchell et al., 2023).

Q5: What mask ratio to choose? In Figure 6,
we analyze the mask ratio used in text graft-
ing. Within the considered set of mask ratios,
{0.5, 0.625, 0.75, 0.875, 1.0}, the best-performing
ratio is 0.75 among different datasets, the same as
the setup in our experiments. We can also observe
a trend of performance decrease when the mask
ratio becomes away from 0.75. This indicates a
too-high masking ratio will make the synthesized
text deviate from the domain of raw corpus (100%
leads to in-context generation). On the other hand,
a too-low mask ratio will limit the synthesizer to
generate in-class texts, which might cause more
severe performance drops.

Q6: How many templates to mine? In Figure 7,
we further analyze the necessary number of tem-
plates to train a strong classifier, which can guide
the efficient application of text grafting. The result
of the “surprised” class shows about 200 samples
can reach the best performance, which results in
about $0.2 budget for each class (OpenAI, 2024).

We also present how the efficiency of text min-
ing (Debiased Seed Word) and data synthesis (In-
Context Generation) is affected by sample numbers.
Text mining cannot fine-tune a well-performing
classifier due to severe noise in minority class min-
ing. Data synthesis shows a similar scaling trend
as text grafting but generally underperforms text
grafting.

Function Prompt

TM-V1 (Ic) “Please write a <style> with attribute
<label>.”

TM-V1 (Ir) “Please write a <style>.”

TM-V2 (Ic) “Provide me with a <label> <style>.”
TM-V2 (Ir) “Provide me with a <style>.”

DS-V1 “Complete the empty fields in the tem-
plate to generate a <label> <style>.”

DS-V2 “Complete the template by filling in the
blanks to create a <label> <style>.”

Table 5: The prompt variants for robustness evaluation.

Variant Original V1 V2

DS 27.64 27.74 27.35
TM 27.64 28.12 27.79

Table 6: Results on prompt variants.

Q7: Is grafting robust to prompt templates?
We rerun the experiments in Table 3 with prompt
variants to evaluate the robustness of text graft-
ing. We apply the prompt variants in Table 5 and
illustrate the averaged F1 score over the 5 minor-
ity categories in Table 6. The result verifies our
text grafting framework robust to specific prompt
design.

5 Case Study

In Figure 8, we depict workflows of text grafting in
comparison with in-context generation to illustrate
the strength of grafting and possible failure.

Strength of text grafting is the ability of state-
of-the-art LLMs to fill in hard templates as shown
in the first case. While the template is not easy to
be grafted into the target “Politics” class, the LLM
comes up with the methodology to synthesize such
a text. The text is also more similar in writing style
to the original text than the in-context generation,
which depicts the benefit from text grafting.
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Failure of text grafting can happen when the cor-
pus does not have a writing style very far from
the way that LLMs can imitate. As shown in the
second case, the LLM can synthesize the animal
question without the intermediate template on the
TREC corpus (Li and Roth, 2002), which reduces
the necessity of text grafting. The XWS-TC of the
minority class “Animal” on this corpus also shows
a similar performance between data synthesis (F1
Score = 53.88) and text grafting (F1 Score = 53.46),
which again emphasizes “near-distribution” to be
an essential motivation to use text grafting.

6 Conclusion and Future Work

We introduced text grafting, a technique to gener-
ate in-distribution texts for minority classes using
LLMs. By mining high-potential masked templates
from the raw corpus and filling them with state-of-
the-art LLMs, we achieve significant improvements
in classifier performance on minority classes. Our
analysis and case studies demonstrate the effective-
ness of text grafting in enhancing text synthesis for
minority classes. Future work will concentrate on
improving the precision of template mining and
the extension of text grafting to other tasks like
information extraction.

Limitation

Despite the presented strengths in the paper, there
are still several limitations in the text grafting
pipeline. As a hybrid method, text grafting requires
a large raw corpus more than data synthesis and
LLM calls more than text mining. Other limitations
of text grafting also succeed from text mining and
data synthesis, such as the dependency on LLM
ability (for mining and synthesis). Thus, the appli-
cation scope for text grafting depends on how LLM
comprehends the class name semantics. The per-
formance of different classes might also be biased
to the LLM ability in different classes.
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