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Abstract

Teaching large language models (LLMs) to gen-
erate text with citations to evidence sources
can mitigate hallucinations and enhance verifi-
ability in information-seeking systems. How-
ever, improving this capability requires high-
quality attribution data, which is costly and
labor-intensive. Inspired by recent advances
in self-improvement that enhance LLMs with-
out manual annotation, we present START, a
Self-Taught AttRibuTion framework for iter-
atively improving the attribution capability of
LLMs. First, to prevent models from stagnating
due to initially insufficient supervision signals,
START leverages the model to self-construct
synthetic training data for warming up. To
further improve the model’s attribution abil-
ity, START iteratively utilizes fine-grained pref-
erence supervision signals constructed from
its sampled responses to encourage robust,
comprehensive, and attributable generation.
Experiments on three open-domain question-
answering datasets, covering long-form QA
and multi-step reasoning, demonstrate signif-
icant performance gains of 25.13% on aver-
age without relying on human annotations and
more advanced models. Further analysis re-
veals that START excels in aggregating infor-
mation across multiple sources.

1 Introduction

The rapid development of large language models
(LLMs) (OpenAI, 2023; Zhao et al., 2023) has led
to their prosperity as indispensable tools for infor-
mation seeking. Despite their remarkable capabil-
ity to generate fluent and informative responses to
user queries, LLMs also struggle with hallucina-
tions (Huang et al., 2023). To facilitate factuality
verification, recent research (Bohnet et al., 2022)
has explored attributed text generation, a paradigm
that enables LLMs to generate responses with cita-
tions. By attributing models’ output to verifiable
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sources, it can improve the explainability and cred-
ibility of LLM-generated content (Li et al., 2023).

While beneficial, the ability to attribute con-
textual sources is not inherent in LLMs. Most
work induces LLMs to generate text with citations
via in-context learning (Gao et al., 2023), which
is far from satisfactory (Liu et al., 2023). The
current winning recipe for accurate attribution in-
volves fine-tuning on high-quality attribution re-
sponses1 (Li et al., 2024). However, acquiring
such data typically requires either manual cura-
tion (Malaviya et al., 2023), or distilled from the
most advanced LLMs (Huang et al., 2024a,b), both
of which are costly and not scalable, thus limit-
ing the growth of models’ attribution capability.
One promising solution is self-improvement (Yuan
et al., 2023), which has demonstrated the poten-
tial to boost model performance by learning from
self-generated high-quality samples.

Inspired by this, we aim to explore the poten-
tial of self-improvement in bootstrapping the at-
tribution ability of LLMs. However, achieving
this goal presents several challenges. One sig-
nificant challenge lies in the risk of model stag-
nation during the self-improvement process, pri-
marily due to the insufficient supervision signals
obtained in the early stage. Concretely, consider-
ing the inferior performance of LLMs in handling
the attribution task (Gao et al., 2023), generating
sufficient high-quality attribution responses solely
through sampling proves difficult. This scarcity of
high-quality samples limits the opportunities for
LLMs to self-improve effectively. Another chal-
lenge stems from the limitation of weak supervi-
sion signals. Current self-improvement approaches
(Yuan et al., 2023) primarily involve supervised
fine-tuning on high-quality samples while discard-
ing low-quality ones. When applied to LLM attribu-

1Attribution responses refers to “responses with in-line
citations, e.g., [1][2]”.
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tion, these high-quality samples provide only weak
supervision signals, mainly teaching LLMs on the
surface form of attribution (e.g., proper citation
format) (Li et al., 2024). Such practice may ne-
glect the potential of exploring fine-grained signals
from low-quality samples to learn what constitutes
a desirable attribution response.

To address these challenges, we present START,
a Self-Taught AttRibuTion framework designed
to bootstrap the attribution capabilities of LLMs.
To prevent models from stagnating early due to
insufficient supervision signals, we first leverage
the model to self-construct high-quality synthetic
attribution data (§3.1). The data synthesis process
follows reverse attribution thinking: the model
initially generates a response to a given query,
then breaks it into atomic claims, and finally ran-
domly combines them to create synthetic docu-
ments. This process not only simulates multi-
source information-seeking scenarios but also en-
sures precise attribution, as each document can be
directly traced back to the specific claim it origi-
nated from. These high-quality synthetic data are
then utilized for warming up, providing a good
starting point for LLMs to self-improve. Further-
more, to better explore fine-grained supervision
signals for LLM attribution, we introduce an itera-
tive self-improving recipe (§3.2). Specifically, the
framework meticulously designs fine-grained re-
wards tailored for LLM attribution, covering robust-
ness, comprehensiveness, and attributability. By
scoring multiple candidates through sampling and
selecting those with the highest holistic rewards
for supervised fine-tuning, the framework subse-
quently utilizes low-quality samples to construct
fine-grained preference pairs with diverse optimiza-
tion rewards for preference optimization. This iter-
ative process further fosters the self-improvement
of attribution capabilities.

We conduct extensive experiments across three
open-domain question-answering datasets, cover-
ing long-form QA and multi-step reasoning. Re-
sults indicate that START achieves significant per-
formance gains of 25.13% on average in citation
quality. Moreover, START successfully achieves
self-improvement in LLM attribution, showing pro-
gressive improvements across iterations. Ablation
studies confirm that each component significantly
contributes to the improvement. Further analysis
shows that START not only excels in generating su-
perior attributable responses but also in effectively
aggregating information across multiple sources.

2 Related Work

2.1 Large Language Model Attribution

Attribution has gained significant attention for en-
hancing the interpretability and verifiability of
LLMs (Gao et al., 2023; Li et al., 2023). Recent
studies have focused on improving LLM attribu-
tion in a supervised way. Asai et al. (2023) first
distill GPT-4 to collect high-quality attribution data,
aiming to teach the model to generate grounded an-
swers with citations through self-reflecting. Simi-
larly, Huang et al. (2024a) develop a training frame-
work starting with distilling ChatGPT, followed
by designing reward models to teach the LLM to
generate highly supportive and relevant citations.
Additionally, Li et al. (2024) model the attribution
task from a preference learning perspective, where
they first fine-tune the model on human-labeled at-
tribution datasets and then perform preference op-
timization using synthesized preference data. Fur-
thermore, Huang et al. (2024b) take this further by
extending the attribution format to a fine-grained
citation level, primarily distilled from ChatGPT. It
enables the model to first ground the fine-grained
quotes within the context and then condition the
generation process on them. In contrast to these
methods, START aims to bootstrap attribution ca-
pability without relying on human-labeled data or
distilling from more capable LLMs.

2.2 Self-Improvement for LLMs

High-quality data either human-crafted or distilled
from advanced LLMs has proven effective in en-
hancing the performance of LLMs. However, ac-
quiring such high-quality data can be prohibitively
expensive. Recently, self-improvement approaches
(Gülçehre et al., 2023; Yuan et al., 2024), where
LLMs learn from self-generated samples have
emerged as a viable solution to compensate for
the scarcity of high-quality data. These methods
typically involve employing heuristic rules (Zelik-
man et al., 2022), self-critique (Tian et al., 2024), or
training additional verifiers (Hosseini et al., 2024)
to assess the quality of model-generated samples.
Such practices are particularly effective in rea-
soning tasks, e.g., mathematical reasoning, where
LLMs already demonstrate capable abilities and
can receive precise feedback on correctness. How-
ever, these advantages are absent in the attribution
task, due to its challenging nature. To bridge the
gap, we take an initial step towards exploring the
potential of self-improvement in LLM attribution.
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What is the difference between fresh
water and potable water?

Fresh water refers to water that is not salty or
brackish [1][2]. It may be unsuitable for
drinking without treatment [1]. Potable water,
on the other hand, is water that is safe and
suitable for human consumption [2][3]. 

Seed
Questions

Response

Query

Note: "Step1 does not
generate citations"

Step1: Response Generation Step2: Claim Decomposition Step3: Claim Combination Step4: Document Generation

Response
Instruction: Decompose the

response into claims

Few-shot
examples

Freshwater refers to water that is not
salty or brackish.

Freshwater may be unsuitable for
drinking without treatment.

Atomic Claims

Potable water is safe and suitable for
human consumption.

Claim 1 Claim 2 Claim 3

Noisy
Claim

Claim
Set 2

Claim
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Set 3

Random Combination

Step5: Attribution Relabel

Freshwater, which includes (...), is
characterized by its low salt content, (...)
it unsafe for direct human consumption...

Document 1

Document 2

Document 3

1

2

3

Add Citations

Freshwater, distinguished by its low
salinity  (...)  suitable for human
consumption, preventing health issues...

Potable water is deemed safe for human
consumption as it meets health standards
established by global health authorities...

Claim-to-Document
Generation

Figure 1: The data synthesis pipeline consists of five steps: given a user query, the LLM first generates an informative
response without citations in a closed-book setting. Subsequently, the LLM decomposes this response into atomic
claims. These claims are then randomly grouped into specific sets, which serve as the basis for generating
documents that cover all included claims. Finally, we trace back to the initial response to relabel the citations.

3 Problem Formulation and Methodology

We follow a formulation of attributed text gener-
ation as described in Gao et al. (2023). This task
involves processing a user query q for information-
seeking, given a corpus of retrieved documents
D, to generate a response S with in-line cita-
tions. We assume the response S as consisting
of n statements, such that S = {s1, s2, . . . , sn}.
Each statement si ∈ S cites a list of passage
Ci = {ci1, ci2, . . .}, where cij ∈ D. Citations are
presented in the form of [1][2], which represent
the attribution to specific documents in D.

Next, we present an overview of START, a train-
ing framework designed to teach LLMs to self-
improve their attribution ability, as illustrated in
Figure 2. START consists of two essential stages:
synthetic data warm-up (§3.1) and self-improving
for LLM attribution (§3.2).

3.1 Synthetic Data Warm-Up

The core of self-improvement lies in generating
high-quality samples and iteratively learning from
them. Intuitively, a high-quality attribution re-
sponse should not be distracted by irrelevant doc-
uments (robustness) and capture high coverage of
viewpoints across multiple documents (comprehen-
siveness) while maintaining high citation quality
(attributability). However, existing LLMs typically
show inferior performance in the attribution task,
significantly hindering their ability to generate such
high-quality samples. This limitation poses sub-
stantial challenges to enhancing their attribution
capabilities through self-improvement.

In this stage, we propose utilizing the model to
self-construct high-quality synthetic data for warm-

ing up, enabling the model to have the basic ability
to generate robust, comprehensive, and attributable
responses across multiple sources. The pipeline
consists of the following steps, shown in Figure 1.
More details can be found in Appendix A.

Step 1: Response Generation Given an arbitrary
model, we first sample a query q from seed ques-
tions Q and then generate a long-form answer S
utilizing the parametric knowledge of the model it-
self. The model is required to produce informative
answers that cover multiple perspectives.

Step 2: Claim Decomposition Prior work (Min
et al., 2023) has explored using atomic claims as
a fundamental unit in long-form text generation.
Thus, for the response S, we ask the model to
decompose it into atomic claims. Each atomic
claim represents a distinct piece of information.

Step 3: Claim Combination To ensure that the
response behaves as an aggregation of information
from multiple documents, we randomly combine
different claims into one claim set. This process
helps simulate the natural diversity of viewpoints
and sources, thus enhancing the comprehensiveness
and realism of the synthesized responses.

Step 4: Document Generation For each claim
set, we prompt the model to generate a synthetic
document D that provides a comprehensive dis-
cussion of the grouped claims. Additionally, to
enhance the robustness of the response, we intro-
duce irrelevant documents by uniformly sampling
documents generated from other queries.

Step 5: Attribution Relabel The final step in-
volves labeling the response with citations from
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Rejection Sampling Fine-Tuning Fine-grained Preference Optimization

Why do leaves change color in the fall?

Sampling
(N=16)

As temperatures drop in fall, chlorophyll production
decreases [1]. Anthocyanins become visible [3]. (...) color
leaves yellow, orange, red, and purple [1][3].

Robust: 1.03

Warm-Up

Supervised
Fine-tuning

Synthetic Data

Query

Attribution
response

Iteratively

Attributability Reward

Comprehensiveness Reward

Leaves change color in fall (...) to become visible,
showcasing yellows and oranges primarily due to
carotenoids.

The vehicles' increased awareness could aid the
police (...) The future of passenger rail transport
in the era of automated cars is not clear. 

Without chlorophyll, red and purple pigments called
anthocyanins become visible (...)purples seen in
species like maples during autumn.

Synthetic
Docs

Warmed up
LLM

Attributable: 5/5

Comprehensive: 4/5

1

2

3

Robust: 2.83

Attributable: 1/5

Comprehensive: 2/5

...
In the fall, shorter days and cooler temperatures trigger a
reduction in chlorophyll production[1]. (...) It makes the
future of passenger rail transport not clear [2].

noisy

Supervised fine-tuning

attributable

comprehensive

attributable

comprehensive

Direct Preference
Optimization

Preference
Data

attributable

comprehensive

attributable

comprehensive

Figure 2: Overview of our self-improving framework, which consists of two stages. The model is first warmed
up using synthetic data (§3.1). This provides a good starting point to enable the model to generate high-quality
samples in the subsequent iterative training. Next, the model is further trained via rejection sampling fine-tuning
and fine-grained preference optimization iteratively (§3.2). This iterative process bootstraps the model’s attribution
capability by fully utilizing the supervision signals from its sampled generations.

the generated documents. This process ensures
that each claim within the response is explicitly
attributed to its source. In this way, for each query
q, and documents set D, we can obtain an infor-
mative and attributable response while maintaining
robustness against irrelevant documents.

Next, the model is fine-tuned for warming up
with the MLE objective on the synthesized dataset,
which consists of N data entries, each containing
a query qi, a document set Di, and a high-quality
attributable response yi:

L = −
N∑

i=1

logP (yi|qi,Di; θ) (1)

3.2 Self-Improving for LLM Attribution
In this stage, we propose to iteratively boost the
model’s attribution capability by exploring more
fine-grained supervision signals, rather than solely
relying on golden responses in synthetic data. This
involves leveraging rejection sampling for data
growing and fine-grained preference optimization
for capability evolution.

3.2.1 Rejection Sampling Fine-tuning
After warming up, we first sample N candidates
for each query in the synthetic dataset and then
score each candidate with fine-grained rewards that
cover three key dimensions: robustness, compre-
hensiveness, and attributability.

Attributability serves as the indispensable con-
dition for high-quality attributable generation. It

quantifies the extent to which a response is fully
supported by the cited documents. To accurately
measure attributability, we employ an off-the-
shelf Natural Language Inference (NLI) model2 by
checking whether each statement in the response is
entailed by the corresponding cited documents.

AttrScore =
1

S

S∑

i=1

Entail(Docs, statementi)

(2)
where S is the total number of statements in the
response and Entail returns 1 if the statement i is
entailed by cited documents, and 0 otherwise.

Robustness measures the degree to which a
model-generated response is influenced by irrel-
evant contexts. Considering that we can identify
relevant documents dr within the document set D
for each query q, thus we quantify robustness by
calculating the probability difference of the model
M to generate the response y under different con-
texts. The robustness score is defined as follows:

RobustScore =
PM (y | q ⊕ dr)

PM (y | q ⊕D)
(3)

Empirically, the closer the score is to 1, the less the
response is disturbed by irrelevant documents.

Comprehensiveness measures the extent to
which a response captures all relevant informa-
tion from the source documents. As the golden
responses in the synthetic data are designed to

2huggingface.co/google/t5_xxl_true_nli_mixture
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aggregate and reflect information across multi-
documents, thus we quantify comprehensiveness
by decomposing them into sub-claims and verify-
ing whether these claims are covered by the sam-
pled generation y. We compute the score as below:

CompreScore =
1

C

C∑

i=1

Entail(claimi, y) (4)

where claimi represents sub-claims and C is the
number of golden sub-claims.

Subsequently, we formulate a holistic reward
function (Eq. 5) considering the above dimensions.
This function is employed to rank generated candi-
dates, with the top-ranked candidate being selected
for further supervised fine-tuning.

Reward = I(AttrScore)× CompreScore
RobustScore

(5)

Here, I is an indicator function that returns 1 if
AttrScore = 1, and 0 otherwise.

3.2.2 Fine-grained Preference Optimization
The common way of self-improvement focuses
on updating the model with high-quality samples
while discarding low-quality ones. For LLM attri-
bution, simply supervised fine-tuning with highly
attributable responses only teaches the LLM to
learn surface characteristics of attribution, e.g., the
correct form of citation. Inspired by human cog-
nition, learning from mistakes provides more fine-
grained signals to understand the mechanisms that
drive successful attribution than simply imitating
correct examples. Thus, we aim to fully unlock the
potential of low-quality samples by constructing
fine-grained preference pairs with different opti-
mization rewards for preference optimization.

Given the multi-objective nature of LLM attri-
bution, our focus is specifically on attributability
and comprehensiveness, utilizing corresponding
rewards functions to construct preference data re-
spectively3. Specifically, we pair samples that ex-
hibit high attributability but low comprehensive-
ness with the top-ranked sample selected using a
holistic reward, and vice versa. These preference
pairs, each addressing different optimization objec-
tives, are then aggregated to further train the LLM
via DPO (Rafailov et al., 2023):

LDPO = −E[log σ(r̂θ(x, y+)− r̂θ(x, y
−))]

3We do not optimize separately for robustness as the model
already shows sufficient robustness after rejection sampling
fine-tuning.

r̂θ(x, y) = β log
πθ(y | x)
πref(y | x) (6)

Here, reference model πref is initialized with
the model after rejection sampling to minimize the
distribution shift from the reference distribution.

4 Experiments

4.1 Datasets
Following previous work (Ye et al., 2023; Li et al.,
2024), we conduct our experiments using two long-
form question-answering datasets: ASQA (Stel-
makh et al., 2022) and ELI5 (Fan et al., 2019), as
well as a multi-step reasoning dataset, StrategyQA
(Geva et al., 2021). Both ASQA and ELI5 feature
factoid long-form answers that require synthesiz-
ing highly relevant documents in response to a user
query. In StrategyQA, answers demand a combina-
tion of information-seeking and implicit reasoning.
Further details on the data statistics, knowledge
corpus used for retrieval, and examples for each
dataset are provided in Appendix B.

4.2 Evaluation
Following previous research (Gao et al., 2023), we
evaluate model-generated responses mainly on two
dimensions: Citation Quality and Correctness.
Our evaluation methodology combines both auto-
mated metrics and human evaluation.

Automatic Evaluation. To assess citation qual-
ity, we calculate the citation precision, citation
recall, and its harmonic mean citation F1 based
on the definition in Gao et al. (2023). We use
TRUE (Honovich et al., 2022), a T5-11B model
fine-tuned on a collection of natural language infer-
ence (NLI) datasets to examine whether the cited
documents entail the generated statement. For cor-
rectness, different datasets are measured differently.
For ASQA, we report the exact match recall (EM
Rec.) of correct short answers. For ELI5, we re-
port the claim recall (Claim) by checking whether
the model output entails the sub-claims generated
by text-davinci-003. For StrategyQA, the for-
mat of answers begins with yes/no, we evaluate
correctness by reporting the accuracy (Acc.). See
Appendix C for more details.

Human Evaluation. We collected a total of
150 instances from the test sets of ASQA, ELI5,
and StrategyQA for human evaluation, with each
dataset providing 10 instances from five different
systems. The evaluation is divided into two parts:
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Model
ASQA ELI5 StrategyQA

Correctness Citation Correctness Citation Correctness Citation

EM Rec. Rec. Prec. F1. Claim Rec. Prec. F1 Acc. Rec. Prec. F1

In-context Learning & Post-hoc

Llama-2-13B (ICL) 35.2 38.4 39.4 38.9 13.4 17.3 15.8 16.5 65.6 20.6 33.1 25.4
Llama-2-13B (PostAttr) 25.0 23.6 23.6 23.6 7.1 5.7 5.8 5.8 64.3 8.7 8.7 8.7

Training-based

Distill-Llama-3-70B-Instruct 41.1 60.4 53.8 56.9 12.9 28.7 25.2 26.8 70.8 28.4 30.7 29.5
Distill-Mixtral-8x7B-Instruct 40.3 64.9 63.5 64.2 13.8 34.3 35.0 34.6 63.9 38.4 49.2 43.1

Self-RAG (Asai et al., 2023) 31.7 70.3 71.3 70.8 10.7 20.8 22.5 21.6 62.1 31.4 36.5 33.8
AGREE (Ye et al., 2023) 39.4 64.0 66.8 65.4 9.4 21.6 16.0 18.4 64.6 30.2 37.2 33.3
APO (Li et al., 2024) 40.5 72.8 69.6 71.2 13.5 26.0 24.5 25.2 61.8 40.0 39.1 39.6
FGR (Huang et al., 2024a) 38.7 73.5 74.7 74.1 9.8 53.1 55.9 54.5 64.9 29.5 42.4 34.8

START (Warming-up) 39.2 23.2 23.9 23.5 11.9 9.9 10.2 10.0 61.2 9.4 9.6 9.5
START (Iteration 1) 42.2 68.8 75.6 72.0 11.3 47.4 50.5 48.9 73.4 44.4 48.6 46.4
START (Iteration 2) 42.9 76.1 81.0 78.5 10.0 65.6 65.1 65.3 72.7 51.9 54.1 53.0
START (Iteration 3) 44.2 76.2 84.2 80.0 9.6 62.4 69.1 65.6 69.6 60.0 56.6 58.2

Table 1: Main result between our method and baselines. Experiments are evaluated on ASQA, ELI5, and StrategyQA
datasets. For most baselines, we use the result of previous works (Asai et al., 2023; Ye et al., 2023; Li et al., 2024).

citation quality and overall quality (comprehensive-
ness and correctness). More details in Appendix D.

4.3 Baselines

We compare START with the following baselines.
For more details, please refer to Appendix E.

In-context Learning (ICL). Following Gao et al.
(2023), we enable the LLM to generate citations
via in-context learning. For each query, we first
retrieve five relevant documents and then prompt
the LLM with two-shot demonstrations.

Post-hoc Attribution (PostAttr). Following Ye
et al. (2023), given a query, we first instruct the
LLM to generate an initial response leveraging its
parametric knowledge. For each statement in the
response, we use the NLI model4 to find the maxi-
mally supported document and cite accordingly.

Training-based Methods. Training on high-
quality data serves as a strong baseline to unlock
the attribution ability of LLMs. We consider the
following training-based methods.

Knowledge Distillation employs the most capa-
ble LLMs, e.g., Llama-3-70B-Instruct and Mixtral-
8x7B-Instruct, as teacher models to train a student
model on distilled attribution data.

Self-RAG (Asai et al., 2023) first collect data
distilled from GPT-4, then teach the LLM to re-
trieve on-demand while reflecting on its generation
to improve both generation quality and attributions.

AGREE (Ye et al., 2023) trains the LLM to self-
ground its response in retrieved documents using

4We use the same NLI model during citation evaluation.

automatically collected data and then leverages test-
time adaptation to reinforce unverified statements.

APO (Li et al., 2024) models LLM attribu-
tion as a preference learning task, where they
first supervised-fine-tuned on human-labeled high-
quality data and then automatically collect prefer-
ence data for preference optimization.

FGR (Huang et al., 2024a) first collects attribu-
tion data distilled from ChatGPT and then designs
rewards tailored for LLM attribution to teach the
LLM to generate supportive and relevant citations.

4.4 Implementation Details

For a fair comparison, all training-based baselines
and START employ Llama-2-13b-base (Touvron
et al., 2023). Further details on the implementation
of START are presented in Appendix F.

5 Results

5.1 Main Results

We provide the main results and the performance
of START across different iterations in Table 1.

START effectively improves performance. As
shown in Table 1, START shows superior perfor-
mance across three datasets and achieves state-
of-the-art results in citation quality. Specifically,
START shows significant improvements over both
ICL and Post-hoc approaches, highlighting the
benefits of supervised signals in unlocking the
attribution ability of LLMs. Notably, compared
with methods that rely on distilling from more ad-
vanced LLMs or training on human-annotated data,
START achieves performance improvement of at
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Model
ASQA ELI5 StrategyQA

Correctness Citation Correctness Citation Correctness Citation

EM Rec. Rec. Prec. F1. Claim Rec. Prec. F1 Acc. Rec. Prec. F1

START (Iteration 1) 42.2 68.8 75.6 72.0 11.3 47.4 50.5 48.9 73.4 44.4 48.6 46.4
w/o. warm-up 35.7 36.3 32.7 34.4 12.1 15.2 13.7 14.4 65.9 18.0 17.2 17.6
w/o. preference 40.6 42.2 47.2 44.6 12.9 16.5 17.4 16.9 63.7 21.5 24.6 22.9

START (Iteration 2) 42.9 76.1 81.0 78.5 10.0 65.6 65.1 65.3 72.7 51.9 54.1 53.0
w/o. warm-up 33.5 57.4 52.1 54.6 10.0 26.7 23.0 24.7 69.0 32.4 33.2 32.8
w/o. preference 39.8 50.8 53.6 52.2 12.5 22.5 23.3 22.9 65.7 27.2 30.4 28.7

START (Iteration 3) 44.2 76.2 84.2 80.0 9.6 62.4 69.1 65.6 69.6 60.0 56.6 58.2
w/o. warm-up 28.6 67.3 58.2 62.4 6.4 46.8 38.4 42.2 70.4 44.9 39.2 41.9
w/o. preference 40.7 55.7 58.3 57.0 11.9 25.3 26.2 25.7 67.8 31.3 33.5 32.4

Table 2: Ablation study results across three datasets over three iterations. We compare START with two variants:
one that does not utilize synthetic data for initial warming-up (w/o warm-up) and another lacking fine-grained
preference optimization for self-improvement (w/o preference).

Model Iteration 1 Iteration 2 Iteration 3

START 42.5% 90.2% 95.9%
w/o. warm-up 3.24% 41.2% 83.8%

Table 3: The pass rate comparison between START and
START (w/o. warm-up) across different iterations during
the rejection sampling stage.

least 8.0%, 20.4%, and 47.0% in citation quality
for ASQA, ELI5, and StrategyQA respectively. Re-
garding correctness, START also achieves gains of
at least 9.1% and 7.2% on both ASQA and Strate-
gyQA, despite a slight decrease on ELI5.

START successfully achieves self-improvement.
We compare the performance of START from itera-
tion 0 to 3 in Table 1, and the results demonstrate
consistent improvements across iterations. Initially,
at iteration 0 (after warm-up), thanks to the syn-
thetic training data, the model shows decent per-
formance after warm-up. By iteration 1, START

exhibits remarkable effectiveness in improving its
performance by leveraging its own generated sam-
ples (e.g., 23.5 → 72.0 on ASQA, 10.0 → 48.9 on
ELI5, 9.5 → 46.4 on StrategyQA). Subsequent it-
erations continue this trend of incremental improve-
ment, reaching a convergence point at iteration 3.

5.2 Ablation Study and Analysis
We conduct comprehensive ablation studies and
analyses to understand how each component in
START contributes to the significant improvement.

Effect of synthetic data warming-up. To
demonstrate the importance of utilizing synthetic
data for initial warm-up in START, we con-
duct a comparative ablation study employing
Llama-2-13b for self-improvement, omitting the
initial warm-up stage. Table 2 shows the ablation

results (w/o. warm-up) across three iterations. We
observe that omitting the initial warm-up stage can
lead to a significant performance drop in the first it-
eration. Additionally, as the iteration increases, the
performance of the model without warm-up shows
only modest improvements and remains substan-
tially inferior to the model that underwent warm-
up. Moreover, we also calculate the pass rate of
sampled response in each iteration as shown in Ta-
ble 3. The findings indicate that the model with
warm-up exhibits a higher pass rate in the first it-
eration, which allows the model to utilize more
supervised signals for self-improvement. These re-
sults suggest that warming up effectively facilitates
the bootstrapping of supervised data, thus prevent-
ing early model stagnation. It’s worth noting that
while the warm-up strategy effectively enriches the
model with supervision signals at an early stage, it
does not lead to noticeable improvements in cita-
tion quality, as shown in Table 1. We hypothesize
that this limitation stems from the inherent diffi-
culty LLMs face in synthesizing information from
multiple sources to generate comprehensive and
attributable responses solely through direct super-
vised fine-tuning.

Effect of fine-grained preference optimization.
To further understand the significance of fine-
grained preference optimization, we compare an
ablation of START that solely relies on high-quality
samples for iteratively supervised fine-tuning, dis-
carding low-quality samples for fine-grained pref-
erence optimization. As shown in Table 2, there
is a significant decline in performance when fine-
grained preference optimization is removed. This
highlights the effectiveness of START in fully un-
locking the potential of low-quality samples to en-
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Figure 3: The impact of supervision signals from different stages (synthetic data v.s. self-improvement) on
attribution performance across ASQA, ELI5, and StrategyQA. The blue line represents the model that undergoes
only supervised fine-tuning use synthetic data at iteration 0. The red line represents the model that first trains for
two epochs with synthetic data at iteration 0, followed by one iteration of self-improvement.
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Figure 4: Ablation study on the effect of synthetic data
size on attribution and correctness performance. We
sample 1k, 3k, and 5k user queries for data synthesis.
hance attribution performance.

Effect of synthetic data size. We investigate the
effect of varying synthetic data sizes on the per-
formance of START. Figure 4 demonstrates their
effect on citation quality and correctness after three
iterations of self-improving. Specifically, we sam-
ple 1k, 3k, and 5k unlabeled queries to generate
synthetic training data accordingly, which provides
different levels of supervision signals. As shown in
Figure 4, even with 1k synthetic data points, START

demonstrates comparable performance. Moreover,
as the training size increases, START achieves no-
table improvement in citation quality and exhibits
stability in correctness.

Supervision signals from synthetic data v.s. iter-
ative self-improvement. We further investigate
the differential impact of supervision signals de-
rived from data synthesis versus those from the
iterative self-improvement stage. We utilize syn-
thetic training data to train the model for multiple
epochs, extending up to 10 epochs, and compare
its performance to that of a model that undergoes
only the first iteration of self-improvement. As de-
picted in Figure 3, training with synthetic data dur-
ing the initial iteration yields minimal performance
gains. The attribution performance climbs slowly

Attribution Overall Quality

Full Partial No Corr. Comp.

ChatGPT (ICL) 68.5% 22.1% 9.4% 3.6 4.4
Distill-Llama-3-70B-Instruct 54.6% 32.4% 13.0% 2.9 3.2
Self-RAG (Asai et al., 2023) 45.7% 27.5% 26.8% 2.4 2.1
FGR (Huang et al., 2024a) 58.4% 28.7% 12.9% 2.5 2.8
START (Ours) 76.2% 18.3% 5.5% 3.5 4.6

Table 4: Human evaluation results on attribution,
correctness (Corr.), and comprehensiveness (Comp.).
Bold numbers indicate the best performance, while “_”
indicates the second-best performance.

as training epochs increase and fails to surpass the
performance of the model after just one iteration
of self-improvement. This observation reveals the
importance of the supervision signals provided by
the model itself during self-improvement.

6 Human Evaluation

Human evaluation results, detailed in Table 4, in-
dicate that START generates significantly more at-
tributable responses compared to all baselines, even
surpassing ChatGPT5. Specifically, 76.2% of the
statements generated by START are fully supported
by the cited documents, which outperforms Chat-
GPT by 11.24%. Additionally, 18.3% of the state-
ments are partially supported, with only 5.5% un-
supported. In terms of factuality, START outper-
forms all training-based baselines, slightly inferior
to ChatGPT. Moreover, START achieves the high-
est score in comprehensiveness, demonstrating its
exceptional ability to generate responses that ex-
tensively cover information from multiple sources.
Overall, these findings are in line with the auto-
matic evaluation results in Table 1.

7 Conclusion

We propose START, a self-improvement framework
to push the frontier of LLM attribution. We iden-

5We utilize gpt-3.5-turbo-0125 version.
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tify two key limitations for LLM attribution self-
improvement. To address these, START first lever-
ages self-constructed synthetic data for warming
up, aiming to prevent models from early stagna-
tion due to insufficient supervision signals. To ex-
plore more fine-grained supervision signals, START

constructs fine-grained preference supervision sig-
nals from low-quality samples for preference opti-
mization. Both automatic and human evaluations
demonstrate significant improvement in attribution
without relying on human annotations and more
advanced LLMs.

Limitations

Despite significant performance improvements, our
work presents several limitations worth noting.
Firstly, while our data synthesis process provides
a good starting point for the model to self-improve
and demonstrate some generalization on existing
benchmarks, it may not cover all scenarios en-
countered in user information-seeking. This limita-
tion raises concerns regarding the generalizability
of synthetic data in a more complex information-
seeking environment. Secondly, the iterative train-
ing pipeline of our self-improving framework is
time-consuming, presenting a significant trade-
off between performance and training duration.
Thirdly, although our self-improving framework
does not rely on human annotations and more ad-
vanced LLMs, it still necessitates the integration of
off-the-shelf NLI models to guarantee the quality
of attribution in the generated samples. The perfor-
mance of the NLI model significantly impacts the
quality of our outputs to a certain extent. To move
towards a fully self-improving framework that does
not rely on external judgment, future research could
investigate the use of intrinsic attribution signals
derived directly from the LLM itself.

Acknowledgements

Xiaocheng Feng is the corresponding author of
this work. We thank the anonymous review-
ers for their insightful comments. This work
was supported by the National Natural Science
Foundation of China (NSFC) (grant 62276078,
U22B2059), the Key R&D Program of Hei-
longjiang via grant 2022ZX01A32, the Interna-
tional Cooperation Project of PCL, PCL2022D01
and the Fundamental Research Funds for the Cen-
tral Universities (Grant No.HIT.OCEF.2023018).

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
CoRR, abs/2310.11511.

Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni,
Daniel Andor, Livio Baldini Soares, Jacob Eisen-
stein, Kuzman Ganchev, Jonathan Herzig, Kai Hui,
Tom Kwiatkowski, Ji Ma, Jianmo Ni, Tal Schuster,
William W. Cohen, Michael Collins, Dipanjan Das,
Donald Metzler, Slav Petrov, and Kellie Webster.
2022. Attributed question answering: Evaluation
and modeling for attributed large language models.
CoRR, abs/2212.08037.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
long form question answering. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
3558–3567. Association for Computational Linguis-
tics.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 6465–6488. Association for Compu-
tational Linguistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? A question answering benchmark with
implicit reasoning strategies. Trans. Assoc. Comput.
Linguistics, 9:346–361.

Çaglar Gülçehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. TRUE: re-evaluating factual
consistency evaluation. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL 2022, Seattle, WA,
United States, July 10-15, 2022, pages 3905–3920.
Association for Computational Linguistics.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C.
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. CoRR, abs/2402.06457.

Chengyu Huang, Zeqiu Wu, Yushi Hu, and Wenya
Wang. 2024a. Training language models to generate

3830

https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.48550/ARXIV.2212.08037
https://doi.org/10.18653/V1/P19-1346
https://doi.org/10.18653/V1/P19-1346
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.398
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.398
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.1162/TACL_A_00370
https://doi.org/10.48550/ARXIV.2308.08998
https://doi.org/10.18653/V1/2022.NAACL-MAIN.287
https://doi.org/10.18653/V1/2022.NAACL-MAIN.287
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.04315


text with citations via fine-grained rewards. CoRR,
abs/2402.04315.

Lei Huang, Xiaocheng Feng, Weitao Ma, Yuxuan Gu,
Weihong Zhong, Xiachong Feng, Weijiang Yu, Wei-
hua Peng, Duyu Tang, Dandan Tu, and Bing Qin.
2024b. Learning fine-grained grounded citations for
attributed large language models. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 14095–14113. Association
for Computational Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR, abs/2311.05232.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Dongfang Li, Zetian Sun, Baotian Hu, Zhenyu Liu, Xin-
shuo Hu, Xuebo Liu, and Min Zhang. 2024. Improv-
ing attributed text generation of large language mod-
els via preference learning. CoRR, abs/2403.18381.

Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu,
Ziyang Chen, Baotian Hu, Aiguo Wu, and Min
Zhang. 2023. A survey of large language models
attribution. CoRR, abs/2311.03731.

Nelson F. Liu, Tianyi Zhang, and Percy Liang. 2023.
Evaluating verifiability in generative search engines.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 7001–7025. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Chaitanya Malaviya, Subin Lee, Sihao Chen, Elizabeth
Sieber, Mark Yatskar, and Dan Roth. 2023. Ex-
pertqa: Expert-curated questions and attributed an-
swers. CoRR, abs/2309.07852.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023.
Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 12076–12100.
Association for Computational Linguistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2022. Large dual encoders are generalizable
retrievers. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, De-
cember 7-11, 2022, pages 9844–9855. Association
for Computational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Dmytro Okhonko, Samuel Broscheit, Gautier Izacard,
Patrick S. H. Lewis, Barlas Oguz, Edouard Grave,
Wen-tau Yih, and Sebastian Riedel. 2021. The web
is your oyster - knowledge-intensive NLP against a
very large web corpus. CoRR, abs/2112.09924.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In KDD ’20: The 26th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 3505–3506. ACM.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 8273–8288.
Association for Computational Linguistics.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. CoRR, abs/2404.12253.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

3831

https://doi.org/10.48550/ARXIV.2402.04315
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.838
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.838
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2403.18381
https://doi.org/10.48550/ARXIV.2403.18381
https://doi.org/10.48550/ARXIV.2403.18381
https://doi.org/10.48550/ARXIV.2311.03731
https://doi.org/10.48550/ARXIV.2311.03731
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.467
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.48550/ARXIV.2309.07852
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.669
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.669
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2112.09924
https://arxiv.org/abs/2112.09924
https://arxiv.org/abs/2112.09924
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.48550/ARXIV.2404.12253
https://doi.org/10.48550/ARXIV.2404.12253
https://doi.org/10.48550/ARXIV.2404.12253


Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Xi Ye, Ruoxi Sun, Sercan Ö. Arik, and Tomas Pfister.
2023. Effective large language model adaptation for
improved grounding. CoRR, abs/2311.09533.

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv,
Nathaniel Mills, Assaf Toledo, Eyal Shnarch, and
Leshem Choshen. 2024. Genie: Achieving hu-
man parity in content-grounded datasets generation.
CoRR, abs/2401.14367.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. CoRR,
abs/2401.10020.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

A Data Synthesis

A.1 Data Sources

The queries employed for data synthesis are
sourced from the Wish-QA (Yehudai et al., 2024),
which provides high-quality grounded data suit-
able for content-grounded generation tasks such
as long-form question-answering and summariza-
tion. Specifically, we utilize the ELI5 subset of
the WishQA, noted for its high lexical diversity,
comprising a total of 8,413 queries. Notably, we
randomly sample 5,000 user queries for our data
synthesis, resulting in the creation of 5,000 syn-
thetic data points.

A.2 Prompts for Data Synthesis

We detail the prompts employed in the synthetic
data generation stage, covering response genera-
tion, claim decomposition, and document genera-
tion, shown in Figure 5.

A.3 Implementation Details

In our work, we use Llama-2-13b-base for data
synthesis, as our goal is to realize self-improving
for the attribution ability of LLMs, the models used
in the data synthesis stage and the subsequent main
experiment need to be consistent without introduc-
ing additional more powerful models. To enhance
the LLM’s ability to accurately follow instructions
at each step, we utilize in-context learning, incorpo-
rating two demonstrations for response generation,
claim decomposition, and document generation.

A.4 Quality of Synthetic Data

We focus on evaluating the attributability of the
final response. Specifically, we employ an off-
the-shelf Natural Language Inference (NLI) model,
TRUE (Honovich et al., 2022), to verify whether
each statement in the response is fully supported by
the cited documents and to check for the presence
of any irrelevant citations. The results indicate that
the synthetic data are of significantly high qual-
ity: 92.3% of the statements are fully supported
by the cited documents, and 94.1% are free from
irrelevant citations.

B Details of evaluation datasets

Our evaluation utilizes the ASQA, ELI5, and Strat-
egyQA datasets. For both ASQA and StrategyQA,
Wikipedia serves as the external knowledge base,
specifically employing the Wikipedia snapshot
from 2018-12-20. For the ELI5 dataset, the ex-
ternal knowledge source is Sphere (Piktus et al.,
2021). Regarding the retrievers, we use the dense
retriever GTR (Ni et al., 2022) for Wikipedia and
the sparse retriever BM25 for Sphere. Detailed
statistics for these datasets are presented in Table 5.
In line with previous research by Gao et al. (2023),
we use the same evaluation datasets for ASQA and
ELI5. Regarding StrategyQA, we adopt the settings
of Ye et al. (2023), utilizing a randomly split sub-
set of 490 test instances for evaluation. To further
clarify, we provide an example from each dataset
in Table 6.
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(a) Prompt template for response generation

Instruction: Given a question, generate a detailed and informative response that covers multiple
perspectives and synthesizes information from various sources. Limit the response to a maximum of
five statements.

Question: [Question]

Response:

(b) Prompt template for claim decomposition

Instruction: Given a detailed and informative response, break it into its constituent claims.
Identify and list each distinct claim, ensuring to capture all essential elements and nuances
presented in the original response.

Response: [Response]

Claims:

(c) Prompt template for document generation

Instruction: Given a claim, generate a 100-word document with a title. The main content of the
document should elaborate on the claims and contain the main content of the claim.

Claim: [Claim]

Documents:

Figure 5: Illustration of the prompting design for the data synthesis pipeline.

(a) An example of ASQA

Question: Who is the original artist of sound of silence?

Documents: [The retrieved documents are omitted here]

Answer: There are several songs with the title "Sound of Silence". Sounds of Silence is the
second studio album by Simon & Garfunkel, released on January 17, 1966. The album’s title is a
slight modification of the title of the duo’s first major hit, "The Sound of Silence", which was
recorded in March 1964 and originally was released as "The Sounds of Silence". Another "Sound
of Silence" is a song performed by Australian recording artist Dami Im, and is best known as
Australia’s entry at the Eurovision Song Contest 2016.

(b) An example of ELI5

Question: How does so much of our trash end up in the ocean?

Documents: [The retrieved documents are omitted here]

Answer: Because water flows downhill and very often ends up in rivers which very often end up in
oceans. So when it rains, trash is washed downhill and into streams and rivers and ultimately the
ocean.

(c) An example of StrategyQA

Question: Did Curiosity outlive its expected lifespan?

Documents: [The retrieved documents are omitted here]

Answer: No. "Curiosity" rover has outlasted its expected lifespan. The rover was designed
to last for months, but is still operating after years on Mars. In August 2017, "Curiosity"
celebrated its fifth anniversary on Mars and is expected to continue its mission for years to come.
The longevity of "Curiosity" can be attributed to the advanced technology used in the rover’s
design and the meticulous planning and preparation done by the engineers and scientists. With the
advancement of technology and the continued refinement of the mission, "Curiosity" is likely to
continue operating for many more years to come.

Figure 6: Examples of the ASQA, ELI5, and StrategyQA datasets.
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(a) Prompt template of ASQA and ELI5

Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use
an unbiased and journalistic tone. Always cite for any factual claim. When citing several
search results, use [1][2][3]. Cite at least one document and at most three documents in each
sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of
the documents.

Question: [Question]

Documents: [Documents]

(c) Prompt template of StrategyQA

Instruction: Answer “yes” or “no” first. Then, write a clear and concise answer that combines
reasoning with relevant search results and cite the sources properly, even if some might be
irrelevant.

Question: [Question]

Documents: [Documents]

Figure 7: Illustration of the prompting design of evaluation datasets.

Dataset Source # Examples

ASQA (Stelmakh et al., 2022) Wiki 948
ELI5 (Fan et al., 2019) Sphere 1000
StrategyQA (Geva et al., 2021) Wiki 490

Table 5: Statistics of datasets used for evaluation.

C Automatic Evaluation Details

We provide a detailed description of the evaluation
metrics employed to assess the quality of the model-
generated responses.

Citation Quality. Citation Quality is a critical
evaluation dimension in attributed text generation,
assessing whether the answer is fully supported by
the cited documents and that no irrelevant docu-
ments are cited. Following Liu et al. (2023) and
Gao et al. (2023), the evaluation of citation quality
is typically divided into two parts: Citation Recall
and Citation Precision.

Citation Recall evaluates whether all generated
statements are fully supported by the cited docu-
ments. Specifically, for each statement si ∈ S,
its citation recall is scored as 1 if there is at
least one valid citation (Ci ̸= ∅) and the concate-
nation of cited documents concat(Ci) fully sup-
port the statement (ϕ(concat(Ci), si) = 1), where
ϕ(premise, hypothesis) is an NLI model that out-
puts 1 if the premise entails the hypothesis. The
final citation recall is calculated by averaging over
all statements in S.

Citation Precision assesses whether any citations
in the response are irrelevant. A citation ci,j is

determined as “irrelevant” if (a) ci,j alone cannot
support statement si and (b) removing ci,j does not
affect the rest of the citations to support si.

Citation F1 is a metric that combines citation
precision and citation recall by calculating their
harmonic mean. In our work, we utilize this metric
to evaluate the overall citation quality of the re-
sponse, where a higher Citation F1 score indicates
a more accurately and comprehensively attributed
response.

F1 = 2 · citation precision · citation recall
citation precision + citation recall

, (7)

Correctness. Correctness is crucial in long-form
QA tasks. Given the ambiguous nature of the
ASQA dataset, where each question requires mul-
tiple short answers to cover different aspects, we
follow Stelmakh et al. (2022) and calculate the re-
call of correct short answers using exact match.

As for the ELI5 dataset, evaluating the cor-
rectness of long-form answers is challenging.
Thus, the ALCE benchmark employs Instruct-
GPT (text-davinci-003) to generate three "sub-
claims" based on the human-annotated answers. To
assess correctness, we use a T5-11B model6 that
has been fine-tuned on a collection of NLI datasets
to check whether the model-generated outputs en-
tail these sub-claims.

6https://huggingface.co/google/t5_xxl_true_
nli_mixture
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D Human Evaluation Details

Considering the open-ended nature of long-form
QA tasks, automatic evaluation of correctness may
not cover all possible answers. Furthermore, the
evaluation of citation quality is constrained by the
capabilities of the off-the-shelf NLI model, which
may not adequately detect cases of partial sup-
port. Therefore, we conduct a human evaluation
to assess the attribution quality and correctness of
START. We recruited two annotators, holding at
least a bachelor’s degree to participate in our study.

To evaluate citation quality, annotators are asked
to verify whether each statement in the responses
is fully supported, partially supported, or not sup-
ported by the cited documents and identify error
types if the statement is not fully supported.

Next, we evaluate the overall quality of the re-
sponses, focusing on comprehensiveness and cor-
rectness. Annotators are asked to rate both compre-
hensiveness and correctness using a 5-point Likert
scale, capturing different levels of content coverage
and factuality.

E Baselines

Knowledge Distillation: We employ supervised
fine-tuning to teach Llama-2-13B to generate re-
sponses with citations, utilizing training data dis-
tilled from the most advanced LLMs. Specifically,
the queries and documents are sourced from our
synthetic dataset and the attributed responses are
generated by Llama-3-70B-Instruct / Mixtral-8x7B-
Instruct.

Self-RAG (Asai et al., 2023): The method in-
volves training the LLM to generate text with re-
flection tokens, which are categorized into retrieval
and critique tokens to indicate the need for retrieval
and the attributability of its generation, respec-
tively. Specifically, it first collects over 145,619
supervised data by prompting GPT-4 with specific
instructions to generate responses with reflection
tokens for knowledge-intensive queries. These
data are then used to train the LLM to generate
responses with self-reflection via supervised fine-
tuning.

AGREE (Ye et al., 2023): The method involves
training the LLM to generate grounded claims with
citations and to identify unverified claims. Specif-
ically, it first collects 4,500 attribution data via
post-hoc attribution with the help of an NLI model.

These data are then used to train the model to gen-
erate grounded responses with citations and also
clearly state the unsupported statements. An iter-
ative retrieval process is employed to search for
additional information for the unsupported state-
ments via a test-time adaptation (TTA) strategy.

APO (Li et al., 2024): This method models the
attributed text generation task as a preference learn-
ing task. Specifically, the model is first trained
using 6,330 human-labeled high-quality attribution
data for supervised fine-tuning to learn the basic
ability of attribution. It then leverages automat-
ically constructed preference data for preference
learning, where a positive response is generated
from relevant documents accompanied by a posi-
tive prompt, while a negative response is generated
using irrelevant documents or a negative prompt.

FGR (Huang et al., 2024a): The method first
collects 3,000 in-domain user queries along with re-
trieved documents and then leverages ChatGPT to
generate high-quality attributed responses. These
data then serve as training data to teach the model
the basic ability of citation generation via super-
vised fine-tuning. Subsequently, the method de-
signs reward models to teach the model to gen-
erate well-supported and accurate responses via
fine-grained reinforcement learning.

To ensure a fair comparison, we employ the same
base model (Llama-2-13b-base) for evaluating
all baselines. For Self-RAG, AGREE, and APO,
we directly utilize their published experimental re-
sults. In the case of FGR, which does not pro-
vide Llama-2-13b-base results, we reproduce the
experiments using the official code and the same
settings provided by the authors.

F Implement Details

In all experiments, training is conducted using eight
A100-80GB GPUs, leveraging Deepspeed stage
3 (Rasley et al., 2020) for multi-GPU distributed
training, with training precision Bfloat16 enabled.

During the initial warm-up stage, we employ the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a warm-up ratio of 0.03. The total batch size
is set at 64, and the learning rate is maintained at
2e-5. The maximum input sequence length is con-
figured to 2048 tokens. The model is trained with
only 20% of the synthetic dataset for two epochs in
this stage. This strategy is designed to prevent the
model from overfitting to the synthetic data during
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the warm-up stage, enabling it to generate more
diverse samples in the subsequent rejection sam-
pling fine-tuning stage. In the self-improving stage,
we conduct rejection-sampling fine-tuning for three
epochs at each iteration, maintaining the same train-
ing settings as those used during the warming-up
stage. To get the highest quality responses dur-
ing rejection sampling, we set the threshold for
attributability reward at 1.0, ensuring that every
statement in the response is fully supported by the
cited documents. For comprehensive, we set the
threshold to 0.8, which means that at least 80% of
the statements need to be cited. Subsequently, dur-
ing the fine-grained preference optimization, the
model is further trained for one additional epoch
using a learning rate of 1e-5.

During the evaluation, we utilize the vLLM
framework (Kwon et al., 2023) for efficient infer-
ence. Without special instructions, the sampling
parameters are specifically configured with a tem-
perature of 1.0 and a top-p setting of 0.95. We
present detailed prompts used during the evalua-
tion process in Figure 7.
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