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Abstract

Language models recognized as a new form of
knowledge bases, face challenges of outdated,
erroneous, and privacy-sensitive information,
necessitating knowledge editing to rectify er-
rors without costly retraining. Existing meth-
ods, spanning model’s parameters modification,
external knowledge integration, and in-context
learning, lack in-depth analysis from a model
interpretability perspective. Our work explores
the instability in in-context learning outcomes,
providing insights into its reasons and distinc-
tions from other methods. Leveraging findings
on the critical role of feed-forward MLPs in
decoder-only models, we propose a tailored
knowledge editing method, TailoredKE, that
considers the unique information flow of each
sample. Model interpretability reveals diverse
attribute recall across transformer layers, guid-
ing edits to specific features at different depths
and mitigating over-editing issues.

1 Introduction

Language models have been proven to be a new
form of dynamic knowledge bases (Cao et al., 2021;
Petroni et al., 2019). However, the addition and
removal of knowledge within it are not as straight-
forward as in traditional knowledge graphs.

As time progresses and the real world undergoes
changes, language models often contain outdated
or erroneous knowledge (Lazaridou et al., 2021;
Lewis et al., 2020; Shuster et al., 2021), as well
as unintentionally learned user privacy information
(Carlini et al., 2021, 2022) and biased information
(Bolukbasi et al., 2016). These errors or redun-
dant information need to be corrected or removed
to prevent any adverse impact. In such scenarios,
the most common approach is typically retraining
from scratch or finetuning the language models, in
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which the costs are notably high. Additionally, in
situations with limited data, this can easily lead to
unstable training results and overfitting problems.
To address this challenge, researchers have intro-
duced the concept of knowledge editing, aiming to
modify specific knowledge within the model while
ensuring that the storage of unrelated knowledge
remains unaffected.

Many recent works have made progress in mod-
ifying the knowledge storage or intervening the
retrieval processes within models, whether through
the modification of internal model parameters
(Meng et al., 2022a,b), the incorporation of external
knowledge materials (Mitchell et al., 2022; Huang
et al., 2022; Dong et al., 2022), or In-Context Learn-
ing without parameter modification (Zheng et al.,
2023; Zhong et al., 2023; Cohen et al., 2023). How-
ever, there is still a lack of in-depth analysis from
the perspective of model internal interpretability
to understand why these methods succeed in edit-
ing, especially for In-Context Learning methods
that treat large models as black boxes and thus lack
theoretical analysis, which also has the drawback
of being overly sensitive to text prompts and thus
have unstable editing outcomes. In our work, we
explored the reasons behind the instability of edit-
ing outcomes in In-Context Learning and examined
the differences compared to other methods from
the model interpretability perspective in §3.1.1.

Some other work (Geva et al., 2021; Meng
et al., 2022a) have investigated how such relational
knowledge is stored in decoder-only language mod-
els and found that the feed-forward MLPs in the
middle layers are crucial and serve as key–value
memories of much information associated with the
entities. Meng et al. (2022a,b) provided valuable
methods for knowledge editing based on this dis-
covery. However, they did not consider the dis-
tinct characteristics of each editing sample and
the unique processes of information flow associ-
ated with them, thus easily leading to the problems
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of over-editing: modifying parameters excessively
and consequently affecting irrelevant peripheral
knowledge. In-depth analysis lies in §3.1.2.

To better address the unstable knowledge editing
problems and the over-editing issues mentioned
above, we design and propose a more tailored
knowledge editing method, TailoredKE, which is
based on the actual information flow of each indi-
vidual sample to perform a more precise knowledge
intervention, drawing inspiration from Geva et al.
(2023) which further reveal the specific process of
how knowledge is extracted and recalled from the
model parameters.

Specifically, we traced the process of in-
ternal knowledge recall, capturing different at-
tributes which are recalled across various layers
of transformer-based language models and asso-
ciated with a specific piece of knowledge when
performing editing. For instance, considering the
entity “iPod”, the shallow layers of language mod-
els will only recall it as a device and related to
music, while deeper layers will be able to recall its
association with the “Apple” company and other
products like “iPhone” and “iPad”. Based on the
analysis of these features, we dynamically select
different editing layers for each sample, rather than
choosing the fixed layers for all editing as done
in previous work (Meng et al., 2022a,b; Li et al.,
2023). Tailoring our edits based on the specific
features recalled at different layers not only allows
us to address the needs of the actual editing goal
(e.g., if our goal is to modify only the “iPod”s man-
ufacturing company) but also ultimately effectively
alleviates the issues of over-editing and the poten-
tial impact on irrelevant facts in these traditional
parameter editing methods as detailed in §3.3.

What is more, in the actual training process, it
is crucial for a piece of knowledge to manifest in
diverse forms to enable the model to genuinely re-
member it, moving beyond mere template-based
memorization. As this knowledge appears more
frequently in diverse forms, the model’s memory
of it becomes more profound, establishing a more
stable representation inside. Hence, drawing in-
sights from this perspective about how to deepen
the model’s memory of knowledge, in TailoredKE
we have introduced diverse structures and expres-
sions during the knowledge editing process, de-
scribed in §3.2. This ultimately leads to a signifi-
cant enhancement in performance across various
metrics, signifying the strengthening of the model’s
ability to retain new knowledge. The main structure
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Figure 1: This outlines the main structure of our method,
TailoredKE, which encompasses three steps for accom-
plishing a more effective and targeted knowledge editing
process: (a) Strengthen the new memory by modifying
its syntactic structure and calculating a shared weight:
(b) Locate the key layers by observing the evolution of
entity representation in actual scenarios: (c) Achieve
new knowledge injection by updating the parameters of
the MLPs which are selected in (b).

of our method, TailoredKE, is illustrated in Figure
1. The source code of the software used to run
the experiments of this paper is available at https:
//github.com/yihuaihong/TailoredKE.

2 Related work

2.1 Knowledge Storing

Understanding how knowledge is stored within lan-
guage models and how information flows, transfers,
and integrates into them has consistently been a cru-
cial part of studying language models.

Some recent research has indicated that the trans-
formers’ MLP can be conceptualized as key-value
memories used to retain factual knowledge by the
use of the causal tracing method (Pearl, 2022; Vig
et al., 2020; Meng et al., 2022a), with the hidden
states of the subject will serve as a key to map and
recall its relevant knowledge. This conclusion was
further investigated and explored by other works
(Geva et al., 2023; Dar et al., 2023; Geva et al.,
2022a), which artificially blocked certain compo-
nents within transformers to examine their specific
functions in the inference process. It reveals that
the representation at the subject’s last-token posi-
tion undergoes the attributes’ enrichment, recalling
and integrating a wealth of pertinent knowledge
from the MLP sublayers. In contrast, the sentence’s
last-token position will extract the relationship at-
tribution from other positions and subsequently em-
ploy it via attention components to extract the most
relevant attribution recalled by the subject token.
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Finally, after inputting the obtained final represen-
tation into the classifier, the model generates the
predicted next token for the sentence. These works
have shed light on the extraction process of internal
knowledge within language models from an inter-
pretability standpoint. They serve as inspiration
for our research on enhancing the editing of model
knowledge.

In some other works, which from the model train-
ing perspective investigate the model’s storage of
knowledge and memories (Cohen et al., 2023; Zhu
and Li, 2023), they experimentally confirmed that
only when the same entity appears multiple times in
training texts with various sentence structures, this
entity has a stable representation that can be used
to infer and recall the corresponding knowledge,
which signifies that the model genuinely memo-
rizes this knowledge, rather than merely memoriz-
ing the patterns (a certain word will always follow
a specific combination of sentences).

2.2 Knowledge Editing
Language models often accumulate outdated or er-
roneous information over time. The most common
approach to address such issues is to retrain the
model with more accurate and timely data (Zhu
et al., 2020). However, retraining requires substan-
tial resources and time. Hence, researchers are
actively seeking more efficient methods to adjust
models to incorporate more accurate and current
knowledge while discarding outdated or inaccurate
information.

To achieve knowledge editing within the model
effectively, now there are two main approaches
based on whether they modify their parameters or
not. If they modify their parameters, two strate-
gies currently stand out: locating the specific pa-
rameters for subsequent modification (Meng et al.,
2022a,b) which insert the weights containing new
knowledge into certain layers of the transformers,
or employing meta-learning (Mitchell et al., 2021;
De Cao et al., 2021) which utilizes a hyper network
to acquire the essential gradient for modifying the
language model.

When choosing not to modify model parameters,
the primary two methods are memory-based meth-
ods (Mitchell et al., 2022; Huang et al., 2022; Dong
et al., 2022), and in-context learning (Cohen et al.,
2023; Zheng et al., 2023; Zhong et al., 2023). In
the in-context Knowledge Editing (IKE) (Zheng
et al., 2023), they retrieved the top-k most relevant
sentences concerning the new knowledge and insert

these into the prompt, preceding the input to query
the model. While Zhong et al. (2023) proposed
MeLLo, which utilized the Chain of Thought strat-
egy (Wei et al., 2022) to help design the prompt
and perform in-context learning.

3 The Proposed Method

The current two most effective methods in the
field of knowledge editing are In-Context Learn-
ing, such as IKE (Zheng et al., 2023) and MeLLo
(Zhong et al., 2023), and the Parameters Editing
methods like MEMIT (Meng et al., 2022b) and
ROME (Meng et al., 2022a). However, each has
its own noticeable and impactful shortcomings that
cannot be overlooked.

The main problem with the parameters editing
methods such as ROME or MEMIT is that they
are too aggressive in modifying the parameters and
will sometimes establish an excessively forced re-
lationship between subject and object, potentially
leading to the answer always being a new object re-
gardless of the query’s context (Zheng et al., 2023),
which may also impact the storage of irrelevant
knowledge that does not require modification. We
validate and investigate this issue more in-depth in
§3.1.2.

When it comes to in-context learning, its per-
formance is largely limited by the length of the
prompt window, due to the necessity of adding the
text prompt containing relevant knowledge before
the query. In most cases, a longer prompt will pro-
vide better editing capabilities (Zheng et al., 2023).
Moreover, in-context learning does not genuinely
enable the model to learn new knowledge or forget
the old one at the parameter level. Hence, if the
prompt is inaccurate or malicious (such as attempts
to bypass the language model’s security measures
to output private or harmful content), it may gen-
erate incorrect or harmful results. Therefore, it
cannot provide a truly robust and stable knowledge
editing effect. In §3.1.1, we leverage a model in-
terpretability technique, representation projection,
to gain a deeper understanding of the underlying
reasons behind this.

3.1 Existing Knowledge Editing Methods

3.1.1 Entity’s Representations
The approach we use to better understand the inner
workings of existing Knowledge Editing methods is
to project the token representation in transformers
onto the vocabulary space (Geva et al., 2023; Dar
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et al., 2022; Geva et al., 2022b; Ram et al., 2022).
The representation of each token at every layer,
as well as the projections to vocabulary, can be
expressed by the following formulas:

X l+1
i = X l

i +M l
i +Al

i, (1)

Probli = H(X l
i), (2)

where X l
i represents the representation of the i-th

token in l-th layer, while M l
i and Al

i are the outputs
from the MLP and Attention components in the l-th
layer respectively. The H(·) is the model’s vanilla
prediction head (also known as the unembedding
matrix) which projects the internal representation
onto the vocabulary space, and Probi represents
the corresponding probability distribution.

To investigate the issues behind the in-context
learning method, we followed the in-context edit-
ing (ICE) baseline (Cohen et al., 2023) and utilized
the prompt “Imagine that Apple is a product re-
leased by Microsoft.” ahead of the original query
for this example. From the results in Table 1, we
can observe that after applying the in-context learn-
ing method, the model can successfully generate
the new object “Microsoft” at the last token’s posi-
tion in deeper layers, although the subject’s attri-
bution enrichment process is different and affected
by the prepended prompts. However, we can also
notice an unstable output distribution, which incor-
porates the outdated object “Apple”. This reveals a
substantial drawback, highlighting that it is not a
thorough knowledge editing method. So in cases
where the prompt is poorly designed, there is a risk
of reintroducing old knowledge into the output.

When using the MEMIT method to edit param-
eters, the model’s attributions change noticeably
after the edited layer at the subject token’s posi-
tion. The attributions become more relevant to
new objects and are notably closer. This indicates
that MEMIT has a direct impact on the process
of enriching the subject’s representation, causing
changes in various attributes and related informa-
tion that are recalled during this procedure. Al-
though the approach is comprehensive, it has the
drawback of potential over-editing, which we will
highlight in the next section.

3.1.2 Over-Editing Issues
While some knowledge editing methods involv-
ing parameter modifications have proven highly
effective in altering the corresponding knowledge
(Meng et al., 2022a,b), some work has revealed

that this type of knowledge editing approach has
the side effect of over-editing (Zheng et al., 2023),
referring to the impact on other out-of-scope facts
during the editing of a target fact. In our work, we
observed that this issue becomes much more seri-
ous if these out-of-scope facts are closely related
to the original facts, especially when the relevance
exists among the subjects.

To delve deeper into this problem, we con-
structed a more elaborate dataset comprising 200
sets of editing pairs that were manually crafted.
Each set includes 10 distinct but similar subject
entities, sharing the same relation and featuring
a common new object for editing. When editing
such an existing fact (subject s, relation r, object
o) to a new fact (subject s, relation r, new object
onew), we tested on other subject entities which
have very similar representations to the original
ones in the language model and computed this met-
ric ∆P (onew|sothers, r). It calculates the extent to
which the probability of the new object varies in
the language model’s output distribution when in-
putting other unrelated yet similar subjects and the
same relationship mapping statements. When the
degree of this probability change is greater, it sug-
gests a larger impact of over-editing side effects on
these unrelated subjects.

For instance, by editing the new fact “iPod is a
product released by Microsoft”, we examine the
impact on other different but related subject enti-
ties like “iPhone”, “iPad”, “Macbook” and so on,
which are all products created by “Apple” com-
pany and have a similar representation in language
models. We do this by measuring the extent of
probability change of the token “Microsoft” in the
output’s distribution. The experimental results on
this dataset indicate that on average, 47% of similar
entities will be affected by over-editing when edit-
ing one of them in a pair. This effect is more serious
when using parameter editing methods compared
to In-Context Learning. Detailed results are pre-
sented in Table 2, showing the degree to which the
probabilities of other objects are elevated, which
are similar but not in need of modification.

In order to address the problems mentioned in
§3.1, and achieve a more thorough and complete
knowledge modification within the model while
mitigating over-editing issues, we propose a better
knowledge editing method in the remaining subsec-
tions.
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Method Layer Top-scoring tokens

GPT-J 13(Subject Token) iPhone, Music, Touch, devices, touch, music, Software, Archives, device, battery, Touch
22(Subject Token) music, Music, touch, Touch, song, device, songs, Music, software, devices, video, iPhone, iPod
22(Last Token) Apple, iPod, Apple, apple, iTunes, iPhone, apple, Sony, Microsoft, Macintosh, Nintendo, Mac
27(Last Token) the, Apple, a, American, in, and, apple, an, one, T, Mac, Steve, San, App, company

ICL 13(Subject Token) is, has, was, ’s, Q, os, =, ose, ure, /, ty, isn, will, ul, does, :, ://, TM, ort, are, name, au, isc
22(Subject Token) means, works, music, uses, will, does, plays, comes, stands, sales, needs, belongs, software
22(Last Token) Microsoft, Apple, Microsoft, Windows, Google, Sony, Samsung, apple, MS, IBM, iPod
27(Last Token) \n, the, a, ? ,, ”, ., ..., :, Microsoft, (, −, and, Apple, R, M, ′, ?, micro, A, E, P, in, an, m, is, T

MEMIT 13(Subject Token) Touch, touch, Wireless, Archives, Touch, devices, Square, Software, software, device
22(Subject Token) software, music, computer, Windows, Music, touch, devices, users, Touch, Software, device
22(Last Token) Microsoft, Microsoft, Windows, microsoft, Intel, Apple, MS, Nokia, Redmond, IBM, Xbox
27(Last Token) Microsoft, the, a, Bill, N, ,̈ MS, micro, E, S, and, one, American, US, Micro, C, computer

Table 1: Top-scoring tokens by token’s representations of GPT-J (Layer = 13 and 22) for the entity of "iPod"
before and after the Knowledge Edit (New Fact: iPod is a product released by Microsoft; Old Fact: iPod is a
product released by Apple). Note: The presence of several repeated words is due to some instances in the model’s
tokenization table, such as ’Microsoft’ and ’ĠMicrosoft’, which may decode into the same word, ’Microsoft’.

Method ∆P (onew|sothers, r)
ROME 10.3%
MEMIT 9.9%
ICL 3.7%
Ours 3.9%

Table 2: Evaluation shows that editing methods will
over-edit (sothers, r, onew) when editing (s, r, o) →
(s, r, onew). ∆P (onew|sothers, r) shows the degree to
which the probabilities of other similar objects are in-
creased.

3.2 Expressing Knowledge in Diverse Forms

Zhu and Li (2023) discuss how models store knowl-
edge. When an entity appears in different sentence
structures within the training set, it helps the model
to memorize that entity. This enables the model
to use it for reasoning and providing responses
to related questions rather than just repeating the
same answer when it encounters similar queries.
Utilizing the language model itself, we rephrase
knowledge statements while maintaining subject,
relationship, and object to assist the model in re-
taining new knowledge. This process serves as a
form of data augmentation involving altering the
sentence structure and expressions. An example is
shown in Table 3.

After receiving these rephrased sentences for
the same new factual knowledge, we encode them
simultaneously into the model by calculating a
shared weight and updating the ones in the MLP
modules of certain layers. The MLP modules con-
sisting of two layers each are treated as key–value
memories (Kohonen, 1972; Geva et al., 2021). The
output representation after the MLP can be ex-

Prompt New fact: The Space Needle is located
in Palace. Please rephrase this new fact,
fill in the blank spaces within this tem-
plate into 10 types: The Space Needle {}
Palace.

Answer 1. is situated in
2. stands in
3. is placed in
4. positioned in
5. towers over
6. rises above
7. looms over
......

Table 3: Description of the prompt and corresponding
answers.

pressed in a formula like this:

M l
i = W l

outσ(W
l
inγ(A

l
i +H l−1

i )), (3)

where the matrices W l
out and W l

in represent the
two-layer neural network of MLP in each layer,
while σ and γ represent the non-linear activation
function and the layernorm function.

Specifically, the Win matrices in the first layer
encode entities into their corresponding keys, while
the Wout matrices in the second layer map these
keys to attributes and associated information re-
lated to the entities. Therefore, to modify the map-
ping relationship between entities and target at-
tributes or to add new attributes, we only need
to adjust the Wout matrices to encode new target
knowledge for the entities.

We obtain this target weight by optimizing the
objective function proposed by MEMIT (Meng
et al., 2022b) and searching for values that can
better represent the target attributes and new knowl-
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edge:

Wtarget = argmin
W

(∑n
i=1 ∥Wki − vi∥2

+
∑n+m∗t

i=n+1 ∥Wki − vi∥2
) (4)

where n represents the count of original knowl-
edge elements to be preserved, whereas m denotes
the amount of new knowledge to be added, and
t signifies the number of times each new knowl-
edge is rephrased and undergoes structural modifi-
cations. The ki and vi represent the corresponding
encoded entity and its mapping attribute separately.
Through this approach, we have identified repre-
sentations that better capture the essence of new
knowledge and its corresponding attributes. Hence,
we can compute better weights for mapping to these
corresponding representations. The intuitive results
after employing this method are presented and dis-
cussed in §4.3.

3.3 Preciser Selection of the Layers to Edit

In previous methods like ROME (Meng et al.,
2022a) and MEMIT (Meng et al., 2022b), their
knowledge editing layers remained fixed for all
samples, regardless of the feature of each indi-
vidual sample. For instance, on the backbone of
GPT2-XL, in ROME, the editing layers were con-
sistently set at the 17th layer for all samples, while
in MEMIT, the editing layers were fixed at lay-
ers 13, 14, 15, 16, and 17, which clearly appears
to be arbitrary. Gupta et al. (2023) observed that
modifying the shallow layers of the model tends to
achieve better results for commonsense knowledge
which is relatively simpler compared with most of
the factual knowledge. Therefore, to attain more
effective knowledge editing outcomes for varying
difficulty levels of knowledge, it is necessary to
selectively edit different transformer layers based
on the characteristics of each knowledge itself.

Given that the parameter modification method
fundamentally involves adjusting the subject rep-
resentation enrichment within the model’s internal
MLPs, and considering that the MLPs recall differ-
ent attributions at each layer, it becomes essential
to research the specific layer where a particular
attribute of an entity begins to be recalled. This
allows for targeted editing at specific layers, aiming
to modify a specific entity’s attribute while mini-
mizing the impact on other attributes.

Since subject representation enrichment is a con-
tinuous process across different layers, we designed

a more precise layers selection strategy named Dy-
namic Editing Window approach. This method
dynamically selects the layers for editing based on
the unique characteristics of each knowledge and
the actual entities’ representations enrichment pro-
cess. To be specific, before editing certain knowl-
edge, we observe its attribution enrichment process,
which is described in §3.1.1. After receiving the
representation obtained from each layer through
their corresponding MLPs, we feed them into a
classifier, projecting them to the vocabulary space
and yielding probability values for the original ob-
ject’s token, as described in Eq. 2 and Eq. 3, which
is not time-consuming in practical applications. We
then identify the two layers that have the highest
probabilities and consider all the layers between
them as the main part of the enrichment process for
the subject to recall important information related
to the original object. These layers are the ones
that require editing. The formula representing how
to choose these two is outlined below:

i, j = argmax
i,j

{pi, pj | pi ̸= pj , pi, pj ∈ Probs},
(5)

Probs = {H(M1
i ), H(M2

i ), . . . ,H(Mn
i )}, (6)

in which the M l
i are the outputs from the MLP

component in the l-th layer of the subject’s token.
The H(·) represents the model’s vanilla prediction
head, which projects the internal representation
onto the vocabulary space. After the calculation,
all the layers between these two selected layers i
and j constitute the defined scope for modification.
Note that although Dynamic Editing Window can
flexibly select the layers to be edited based on the
different characteristics of each sample, this strat-
egy supports both single fact editing and batch facts
editing.

The initial result about preventing the over-
editing problems is in Table 2, which demonstrates
that we can significantly alleviate the issue of over-
editing with the original parameter editing method
by choosing more appropriate layers to edit, reduc-
ing it to a level comparable to In-Context Learning.

4 Experiment

4.1 Experimental Setup

We employ two recent auto-regressive decoder-
only language models of varying sizes: GPT-J
(Chen et al., 2021) with 6 billion parameters, and
LLaMA-2 (Touvron et al., 2023) with 7 billion pa-
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rameters. We completed all experiments on a single
80GB NVIDIA A800 GPU.

We have chosen several leading methods in the
Knowledge Editing domain as baselines, including
top-performing approaches that involve locating
and modifying model parameters, such as ROME
(Meng et al., 2022a), MEMIT (Meng et al., 2022b)
and PMET (Li et al., 2023). Additionally, we
considered other methods that incorporate exter-
nal knowledge supplementation, such as MEND
(Mitchell et al., 2021) and SERAC (Mitchell et al.,
2022) for performance comparison with ours.

Furthermore, we tested these three crucial met-
rics of Knowledge Editing: Efficacy, Generaliza-
tion and Specificity on two popular model editing
datasets COUNTERFACT (Meng et al., 2022a) and
ZsRE (Levy et al., 2017), along with an additional
dataset proposed by Yao et al. (2023) that assesses
the metric of Portability. Efficacy is the most
direct indicator of the success of knowledge edit-
ing, measuring the proportion of cases where the
model’s predictions match the new ground truth o∗i .
Generalization is the same metric but applied on
different queries, each expressing the same ques-
tion but with different expressions. Specificity
measures the impact of knowledge editing on ir-
relevant knowledge. Higher scores indicate less
influence, aligning more closely with the original
model. Portability is used to assess the effective-
ness of model editing in transferring knowledge to
related content, evaluated on one-hop and multi-
hop problems. More explicit definitions of these
metrics are presented in Appendix A.

4.2 Results
The main result on the COUNTERFACT Dataset
with one editing operation per iteration is presented
in Table 4. This demonstrates that our approach,
TailoredKE, surpasses existing methods across mul-
tiple knowledge editing metrics on both two back-
bones, GPT-J and LLaMA-2-7b. The combination
of two strategies, diverse knowledge forms and
preciser selection of the layers to edit, results in
significant improvements across three key metrics.
This suggests that it is not just a more robust and en-
hanced knowledge editing method, enhancing the
acquisition of new knowledge and the eradication
of outdated knowledge (Efficacy, Generalization),
but also better at minimizing the impact of other
irrelevant information (Specificity).

TailoredKE also maintains the performance of
the original model on fluency and consistency com-

Figure 2: This chart illustrates the comparison between
our method and the current two most efficient base-
lines under varying knowledge editing counts: 1, 10,
102, 103, and 104. Additionally, we have incorpo-
rated ablation experiments, where TailoredKERephrase

represents the sole impact of knowledge rephrasing,
and TailoredKETargeted signifies the included influence
of Dynamic Window Selection without the effects of
knowledge rephrasing.

pared with other baselines, enabling it to generate
grammatically sound and fluent sentences. The spe-
cific roles of these two strategies on different met-
rics are thoroughly discussed in the Ablation Study
§4.5. In this table, we also observe that the four
approaches of parameter editing can yield more
comprehensive editing compared to other meth-
ods involving external memory access including
MEND and SERAC, especially in terms of Efficacy
and Generalization.

4.3 The Effect of Diverse Knowledge Forms

We evaluate the enhancements provided by the
knowledge representations in diverse forms for the
conventional parameters-editing approaches like
MEMIT (Meng et al., 2022b). Additionally, we
adjusted the number of knowledge forms and ob-
served how this variation impacted the knowledge
editing effectiveness.

The result is shown in Table 5. After employ-
ing rephrasing sentences with diverse structures of
knowledge, we observe notable improvements in
the performance across the three key indicators of
knowledge editing. Furthermore, as the frequency
of rephrasing increases, there is a further enhance-
ment in the effectiveness of knowledge editing.
This suggests that altering the structure of knowl-
edge and presenting the model with diverse forms
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Editor Efficacy Generalization Specificity Fluency Consistency

GPT-J 15.2 17.7 83.9 622.4 29.4

MEMIT 99.6 64.1 73.5 606.0 36.9
PMET 99.6 62.2 69.7 597.9 38.7
SERAC 93.2 61.1 71.3 619.1 38.9
MEND 93.2 53.2 82.9 618.4 31.1
ROME 91.2 43.1 49.1 614.2 37.1
TailoredKE 99.8 73.5 74.5 619.5 38.9

LLAMA-2 16.2 18.1 84.5 631.2 31.1

PMET 93.0 87.9 72.1 597.3 39.0
MEMIT 92.9 85.9 76.3 619.1 38.9
ROME 92.5 87.0 51.0 614.2 37.4
TailoredKE 96.1 91.0 79.1 619.5 40.1

Table 4: The performance of TailoredKE on the COUNTERFACT Dataset with one editing operation per iteration.
The definitions of the metric Efficacy, Generalization, and Specificity are provided in §4.1. Fluency and
Consistency are proposed by ROME (Meng et al., 2022a) to evaluate the fluency and semantic consistency of
generated sentences, with calculation details provided in §A.

Method Efficacy Generalization Specificity

ROME 97.6 88.1 24.2
MEMIT 96.7 88.7 26.4
MEMITRephrase∗5 97.5 89.2 26.2
MEMITRephrase∗10 97.9 89.5 26.1
MEMITRephrase∗20 99.8 90.3 26.2

Table 5: Editing result on the ZsRE dataset after using
rephrasing sentences on the backbone of GPT-J.

of the same information facilitates a more robust
retention and understanding of the knowledge.

4.4 Evaluations Considering the Portability
Problems

Portability is a new metric recently proposed by the
knowledge editing community. It assesses whether
modifications to specific knowledge will extend
to related knowledge, testing whether the modi-
fications are only superficial (Cohen et al., 2023;
Yao et al., 2023; Zhong et al., 2023). We utilize the
dataset introduced by Yao et al. (2023) to assess the
Portability metric, examining whether the editing
in our approach can effectively impact the perti-
nent knowledge that ought to be influenced. This
dataset is built upon COUNTERFACT and ZsRE,
incorporating sentence data generated by GPT-4
to measure surrounding entities. The relevant re-
sults are presented in Table 6. We can observe
that TailoredKE outperforms other methods in this
Portability metric, with its rephrasing functionality
playing a predominant role, while the impact of
targeted edits is minimal, primarily contributing to
the reduction of over-editing.

4.5 Ablation Study

We perform two sets of ablation experiments com-
pared with the two most effective parameter edit-
ing methods PMET (Li et al., 2023) and MEMIT
(Meng et al., 2022b) on the COUNTERFACT
dataset. The result is in Figure 2 and it illustrates
that: In this scenario, the emphasis on knowledge
rephrasing significantly enhances the metrics of Ef-
ficacy and Generalization, signifying improved re-
tention of corresponding knowledge by the model.
Meanwhile, the contribution of the targeted layer
primarily enhances the Specificity metric, effec-
tively mitigating the impact of over-editing asso-
ciated with parameter editing methods. What is
more, the employment of knowledge with diverse
structures significantly boosts the model’s perfor-
mance in the Portability metric, which indicates the
improvement of the model’s ability for knowledge
transfer and its reasoning capability on correspond-
ing knowledge.

5 Conclusion

Our work draws from prior research on feed-
forward MLPs in decoder-only models, providing
a tailored approach that uses the information flow
of each sample to achieve a higher editing perfor-
mance and prevent over-editing. We also simulate
the training process with varied structures during
knowledge editing to improve performance and
strengthen knowledge retention.
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Editor Probability

GPT-J ZsRE COUNTERFACT

ROME 50.85 46.48
MEMIT 52.70 47.44
SERAC 5.51 9.51
MEND 0.10 0.00
TailoredKE 67.91 55.11
TailoredKERephrase 67.93 55.20
TailoredKETargeted 52.74 47.12

Table 6: Results on the ZsRE and COUNTERFACT datasets considering the Portability problems. In this context,
TailoredKERephrase represents the method with only the addition of the rephrase sentence operation, excluding the
targeted layer operation, and vice versa.

6 Limitations

Through our experimental validation, we found
that both parameter-modifying knowledge editing
methods and non-parameter-modifying knowledge
editing methods can lead to some degree of hallu-
cinations. The model tends to overly extrapolate
new knowledge, involving content that still requires
further refinement and improvement.

Concurrently, when the entity to be edited is un-
familiar to the model (Cohen et al., 2023), due to
the lack of a stable representation, it will not ex-
hibit satisfactory performance. In our future work,
we will attempt to rapidly create a stable repre-
sentation for entities unfamiliar to these models
by establishing connections with known entities
that share semantic similarities, aiming to assist the
model in quickly memorizing the new entity.

Currently, in most knowledge editing papers, re-
searchers often evaluate the performance of knowl-
edge editing techniques using idealized datasets
like COUNTERFACT (Meng et al., 2022a) and
ZsRE (Levy et al., 2017). Moreover, the sentences
in these datasets that represent facts often follow a
simple format of (subject, relation, object), which
cannot encompass all real-world knowledge scenar-
ios, which remains for future exploration.
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A Metric Explainations

We tested these three crucial metrics of Knowledge
Editing: Efficacy, Generalization and Specificity
on two popular model editing datasets COUNTER-
FACT (Meng et al., 2022a) and ZsRE (Levy et al.,
2017), along with an additional dataset proposed
by the work (Yao et al., 2023) that assesses the
metric of Portability. The definitions of these four
metrics are provided below:

• Efficacy Efficacy is the most direct indica-
tor of the success of knowledge editing. The
prompts encountered during model evaluation
after editing are the same as those encountered
during the editing process. In the formulas

below, si, ri, and oi respectively represent to-
kens of the subject, relation, and object, while
o∗i denotes the new object to be edited. fθ∗

represents the post-edit model.

Ei

[
o∗i = argmax

oi
fθ∗ (oi | p(si, ri))

]
, (7)

• Generalization The effect of knowledge edit-
ing should not be limited to the original
queries; when presented with different expres-
sions but asking the same question, the post-
edit model fθ∗ should also output the newly
edited answer o∗i :

Ei

[
Ep∈neighbour(si,ri)

[
o∗i

= argmax
oi

fθ∗ (oi | p)
]]
,

(8)

• Specificity After knowledge editing, other ir-
relevant knowledge contained within the new
model should not be affected. Therefore, the
Specificity metric is computed as the extent to
which the predictions of the post-edit model
fθ∗ remain unchanged compared to those of
the pre-edit model fθ:

Ei

[
Ep∈irrelevant(si,ri)

[
argmax

o′i

fθ (o
′
i | p)

= argmax
oi

fθ∗ (oi | p)
]]
,

(9)

• Portability Portability is a metric used to as-
sess the effectiveness of model editing in trans-
ferring knowledge to related content. The
post-edit model should be capable of solv-
ing the one-hop or even multi-hop problems,
which require additional reasoning to be re-
solved.

Ei

[
Ep∈portability(si,ri)

[
o∗i

= argmax
oi

fθ∗ (oi | p)
]]
,

(10)

In Table 1, we follow Meng et al. (2022a) to also
provide the metric of Fluency and Consistency for
the main results. Fluency is computed by measur-
ing the weighted average of bi-gram and tri-gram
entropies (Zhang et al., 2018) while Consistency
is computed as the cosine similarity between the
unigram TF-IDF vectors of the new generated texts
which start with the target subjects, and the refer-
ence texts used in editing which share the same
new objects.
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B Implementation Time Cost

For TailoredKE, the primary time expenditure is
mainly on the calculation of the new target weights.
In this aspect, we are essentially similar to the
original method, ROME (Meng et al., 2022a)
and MEMIT (Meng et al., 2022b), both utilizing
the backpropagation approach to help calculate it.
Therefore, the time cost is fundamentally similar.
For 10,000 edits, ROME and MEMIT take about
11.10 hr and 6.56 hr on one 80GB A100, and Tai-
loredKE takes about 7.63 hr at the same setting.
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