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Abstract

In recent years, the rapid increase in online
video content has underscored the limitations
of static Video Question Answering (VideoQA)
models trained on fixed datasets, as they strug-
gle to adapt to new questions or tasks posed by
newly available content. In this paper, we ex-
plore the novel challenge of VideoQA within a
continual learning framework, and empirically
identify a critical issue: fine-tuning a large lan-
guage model (LLM) for a sequence of tasks
often results in catastrophic forgetting. To ad-
dress this, we propose Collaborative Prompt-
ing (ColPro), which integrates specific ques-
tion constraint prompting, knowledge acquisi-
tion prompting, and visual temporal awareness
prompting. These prompts aim to capture tex-
tual question context, visual content, and video
temporal dynamics in VideoQA, a perspective
underexplored in prior research. Experimen-
tal results on the NExT-QA and DramaQA
datasets show that ColPro achieves superior
performance compared to existing approaches,
achieving 55.14% accuracy on NExT-QA and
71.24% accuracy on DramaQA, highlighting
its practical relevance and effectiveness.

1 Introduction

Video Question Answering (VideoQA) is critical
for video understanding, involving training ma-
chine learning models to accurately respond to
questions across various tasks (e.g., finding spe-
cific information Choi et al., 2021, counting ob-
jects Xiao et al., 2021, recalling actions Zhang
et al., 2022) based on given video content. How-
ever, existing VideoQA models are typically
trained on fixed datasets in static environments.
With a continual increase in the number of videos
on the internet every day, these static models may
face challenges in answering new questions posed

∗Equal contributions.
†Corresponding author.

Inference Task 1

why did the boy in 

yellow spread out his 

hands when he ski?

Ans: showing his joy ×

FT Task 1

Videos

Questions

FT Task N

Videos

Questions

…

CL Task 1

Videos

Questions

CL Task N

Videos

Questions

…

Inference Task 1

𝑃
1

𝑃
𝑁

𝑃
1

𝑃
𝑁

ColPro

…

Task-specific 

Prompts

1

2
3

4

5

…

Task Space

Task N Feature Space

Task 1 Feature Space

P
re-train

ed
 L

L
M

P
re-train

ed
 L

L
M

Task N Feature Space

why did the boy in 

yellow spread out his 

hands when he ski?

Ans: to balance himself √

(a) The issue of catastrophic forgetting in VideoQA

(b) The proposed Collaborative Prompting with continual learning

Figure 1: (a) Existing fine-tuning techniques train for
different VideoQA tasks, which could lead to catas-
trophic forgetting, and generate inferior results. (b) We
introduce the Collaborative Prompting (ColPro) within
a continual learning framework, which retains task-
specific knowledge to generate accurate answers, where
PN denotes a projection layer.

by the newly available content. One straightfor-
ward solution to overcome this challenge is to fine-
tune the models when new data is introduced. How-
ever, this approach can lead to higher computa-
tional costs when retraining on all the data. Alter-
natively, fine-tuning only on newly available video
question-and-answer pairs may lead to the catas-
trophic forgetting issue (McCloskey and Cohen,
1989), as shown in Figure 1(a).

This motivates us to explore continual learning
techniques (Rebuffi et al., 2017; Rolnick et al.,
2019; Wang et al., 2022b) for VideoQA, facilitating
ongoing fine-tuning of models across a sequence
of data while mitigating catastrophic forgetting of
previous tasks (e.g., finding information, or count-
ing objects mentioned earlier), thereby addressing
the needs of real-world dynamic environments. Re-
cent continual learning techniques (Wang et al.,
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2022b,a) have achieved good performance by em-
ploying rehearsal-free methods, such as learnable
prompting (Jia et al., 2022) and prefix-tuning (Li
and Liang, 2021). These approaches eliminate the
need for memory-intensive stored experiences from
previous tasks (Rolnick et al., 2019; Cha et al.,
2021), reduce computation costs, and minimize
forgetting. Specifically, L2P (Wang et al., 2022b),
DualPrompt (Wang et al., 2022a), DBI (Qian et al.,
2023), and ProgPrompt (Razdaibiedina et al., 2023)
employ task-aware prompting techniques to fine-
tune pre-trained models for downstream tasks using
fewer learnable parameters. While these methods
have improved performance in vision and language
continual learning tasks, they often transfer either
single-modal (text only) or multimodal (text and
images) information from task to task. In terms of
VideoQA, it is crucial to incorporate textual ques-
tion context (A1), visual content (A2), and video
temporal dynamics (A3) in the continual training
setting. In this paper, we introduce Collaborative
Prompting (ColPro), which explores these aspects
for the VideoQA problem, and represents an area
that has not been fully explored in prior research,
as shown in Figure 1(b).

The core idea of ColPro is to empower a base
model to achieve enhanced performance when
transferring across a sequence of tasks. Inspired
by the robust reasoning abilities of recent Large
Language Models (LLMs), we instantiate the base
model as a LLM (e.g., LLaMA Touvron et al.,
2023) to generate accurate answers from textual
questions and video inputs. Specifically, ColPro in-
tegrates three types of prompting techniques: task-
specific question constraint prompting (TQCP),
knowledge acquisition prompting (KAP), and vi-
sual temporal awareness prompting (VTAP), aimed
at enhancing accuracy in answer prediction while
minimizing forgetting. TQCP enables the model to
gain awareness of the task type and select the cor-
rect prompt representation using a negative guiding
approach (Jiang et al., 2024; Li et al., 2024). This
method allows the prompt representation to posi-
tively correlate with the current task-specific ques-
tion and negatively correlate with negative ques-
tion samples. Additionally, KAP acquires task-
specific question and video information to enhance
accurate answer prediction (for A1). Furthermore,
VTAP integrates visual information with the LLM
by continuously incorporating video dynamics into
prompts through autoregressive temporal dynamics

and video distillation loss (for A2 and A3). With
these prompting strategies, ColPro encapsulates
multimodal information to enhance task-specific
question answering and mitigate catastrophic for-
getting during inference.

Our main contributions to this paper are as fol-
lows: (1) We explore the novel problem of video
question answering (VideoQA) in a continual learn-
ing context, and demonstrate a critical issue: effi-
ciently fine-tuning a LLM for a sequence of tasks
leads to catastrophic forgetting. This motivates
us to conduct empirical studies to mitigate this is-
sue. (2) We propose Collaborative Prompting (Col-
Pro), which utilizes three distinct aspects: textual
question context, visual content, and video tem-
poral dynamics, in VideoQA to facilitate knowl-
edge transfer to future tasks. (3) We conduct ex-
tensive experiments on the split VideoQA dataset
(NExT-QA (Xiao et al., 2021) and DramaQA (Choi
et al., 2021)) for continual task-specific answer pre-
diction. Our findings show that ColPro achieves
state-of-the-art results, with 55.14% accuracy on
NExT-QA and 71.24% accuracy on DramaQA.

2 Related Works

2.1 Video Question Answering

VideoQA is a fundamental task in video under-
standing, aiming to answer questions based on
video content (Xiao et al., 2023; Gao et al., 2023a;
Choi et al., 2021). Many recent works have ex-
plored LLM-based VideoQA (Yu et al., 2024; Luo
et al., 2023; Ko et al., 2023), which requires a LLM
to predict the correct answer given a video and
question pair. Flipped-VQA (Ko et al., 2023) uses
the prompting technique to fine-tune a LLM to
learn the specific VideoQA task. SeViLA (Yu et al.,
2024) is built based on a pre-trained large image-
language model (Li et al., 2023), extending its capa-
bilities to perform reasoning on video inputs. How-
ever, most existing methods are trained on fixed
datasets to handle reasoning in static environments,
which struggle to answer new questions or tasks
posed by newly available content. In contrast, we
study a continual video question answering prob-
lem, and address its inherent challenges caused by
catastrophic forgetting.

2.2 Continual Learning for Visual Question
Answering

Over the past few years, various continual learning
approaches have been proposed to address the is-
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Figure 2: Illustration of the Collaborative Prompting (ColPro) framework. Left: The training process incorporates
ColPro into the first j ColPro Guided Pre-trained Layers to enhance answer prediction accuracy while minimizing
forgetting. Right: Three detailed prompting techniques within ColPro are demonstrated: task-specific question
constraint prompting (TQCP), knowledge acquisition prompting (KAP), and visual temporal awareness prompting
(VTAP). Together, these techniques encapsulate the textual question context, visual content, and video temporal
dynamics for each VideoQA task.

sue of catastrophic forgetting (Li and Hoiem, 2017;
Rebuffi et al., 2017; Rolnick et al., 2019). Existing
methods can be summarized into three categories:
rehearsal-based (Buzzega et al., 2020; Rolnick
et al., 2019), architecture-based (Li et al., 2019;
Ke et al., 2020), and regularization-based (Aljundi
et al., 2018; Paik et al., 2020). Rehearsal-based ap-
proaches involve constructing a subset of learned
samples in a memory buffer and replaying them
when learning a new task. Architecture-based ap-
proaches allocate separate sets of dedicated param-
eters for each different task. Regularization-based
approaches preserve changes to weights associated
with older tasks and selectively stabilize parameter
changes. Recent studies (Wang et al., 2022b,a;
Gao et al., 2023b) draw inspiration from learn-
able prompting (Lester et al., 2021; Zhang et al.,
2023a) in natural language processing to address
catastrophic forgetting by learning a small number
parameter that is attached to a pre-trained model.
Specifically, L2P (Wang et al., 2022b) utilizes a
set of task-specific learnable prompts to dynam-
ically instruct a pre-trained model for continual
learning. ProgPrompt (Razdaibiedina et al., 2023)
adopts progressive networks with a pre-trained lan-
guage model to learn prompts for different tasks
and sequentially concatenates the task-specific
learned prompts for text classification. Learning-
Accumulation-Ensemble (LAE) (Gao et al., 2023b)
utilizes different Parameter-Efficient Fine-Tuning
(PEFT) methods such as adaptor (Houlsby et al.,

2019), Lora (Hu et al., 2021), and prompt-
ing (Lester et al., 2021) for image classification.

Recent visual question answering models (Lei
et al., 2023; Qian et al., 2023) have been ex-
ploring the continual learning techniques to an-
swer new questions with given images without
experiencing catastrophic forgetting. Zhang et al.,
2023b and Lei et al., 2023 introduce replay-based
method to address image-based question answer-
ing tasks. Qian et al., 2023 use multimodal decou-
pled prompts to interact with a pre-trained vision-
language model, capturing the intricate relation-
ships between modalities. Similar to adapter-based
LAE (Gao et al., 2023b), Dynamic Adapter Merg-
ing (DAM) (Cheng et al., 2024) utilizes an adaptor-
based framework (Houlsby et al., 2019) for video
question answering. Unlike DAM, which addresses
domain shift in datasets using an adaptor, our work
aims to guide a LLM to comprehend multimodal
information, including question context, visual
content, and temporal dynamics, through a novel
prompting technique called ColPro. To the best of
our knowledge, this approach is the first of its kind.

3 Methodology

3.1 Motivation and Objective

In this section, we provide an overview of our ap-
proach. First, we discuss continual learning sce-
narios and their applications for VideoQA. Next,
we explain our motivation for utilizing prompting
strategies with LLM to achieve our goals. Finally,
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we present the overall architecture of the proposed
method and its training objective.

Continual Learning Scenarios. In continual
learning scenarios, a model is trained sequen-
tially through various stages using a dataset D =
<d1, d2, ..., dT>, where dt (1 ≤ t ≤ T ) denotes
the t-th training task, and data from previous tasks
is not accessible during the training of stage t. In
this paper, we study the problem of rehearsal-free
continual learning on video question answering
tasks, where the data dt = <V t, Qt, At> consists
of video V t, question Qt, and answer At pairs. For
our experiments, we segment the types of ques-
tions into T tasks followed by (Zhang et al., 2023b;
Lei et al., 2023) to benchmark our proposed ap-
proach on the NExT-QA (Xiao et al., 2021) and
DramaQA (Choi et al., 2021) datasets. Following
the settings in existing rehearsal-free works (Wang
et al., 2022b; Razdaibiedina et al., 2023), we as-
sume a pre-trained LLM model (e.g., LLaMA (Tou-
vron et al., 2023)) is available for our experiments.

Prompting for LLM-based Video Question An-
swering. Prompting, a learnable prompt-based
learning technique (Zhang et al., 2023a) has
been introduced as a streamlined fine-tuning ap-
proach, transforming large language models (e.g.,
LLaMA (Touvron et al., 2023)) into highly efficient
instruction-following models. The core concept of
prompting is to incorporate additional instructions
into pre-trained LLMs, enabling them to perform
downstream tasks in both NLP and multimodal rea-
soning contexts (Liu et al., 2024; Zhu et al., 2023).
In this work, we leverage the efficient instruction-
following capabilities and outstanding reasoning
abilities of LLMs to achieve accurate multimodal
question answering in a continual learning scenario.
We illustrate the prompting for LLM-based contin-
ual VideoQA as follows.

Our primary focus is on leveraging LLMs for
continual learning in VideoQA tasks, with LLaMA-
Adapter (Zhang et al., 2023a) serving as our base-
line. We adopt their prompt tuning adaptation ap-
proach to incorporate task-specific information by
learning through LLaMA layers, given the input
of task-specific questions, videos, and answers. In
the inference stage, the frozen model employs the
learned task-specific prompt knowledge to predict
task-specific answers. In our framework, given the
N -layers LLaMA, we inject prompts for the first
j-layers LLaMA transformer layers, named Col-
Pro Guided Pre-trained Layers θ(.). We maintain

the pre-trained model frozen while tuning a select
few additional learnable prompts. Rather than ap-
pending prompts directly to the input tokens, our
approach involves adding prompts to the keys and
values within the Multihead Self-Attention (MSA)
layer, following the structure described in Trans-
former architectures (Vaswani et al., 2017). With
the split sets of learnable prompts denoted as Pk

and Pv ∈ Rl×d, integrated into the key Hk and val-
ues Hv within the LLaMA model, where Hq rep-
resents the query, the attention module is adapted
as follows:

Hi = Attention(Hq, [Pk;Hk], [Pv;Hv]) (1)

MSA = Concat(H1, ...,Hm)Wo (2)

where [; ] denotes concatenation, Wo is projection
matrices, Hi denotes i-th head and m is the number
of total heads. In this paper, we adopt the comple-
mentary learning principle (Wang et al., 2022a),
incorporating learnable General prompts Pg (G-
Prompt) and Expert prompts Pe (E-Prompt) into
the first j layers of the LLaMA model, where the
G-Prompt is applied to the first i layers to capture
task-invariant knowledge, whereas the E-Prompt is
applied to the subsequent layers from i+ 1 to j for
task-specific knowledge adaptation. Through this
prompting approach, we effectively train a small
number of parameters while retaining the knowl-
edge of existing tasks, all without the need for ex-
ternal memory.
Overall Architecture. Our proposed method,
termed collaborative prompting (ColPro) for con-
tinual VideoQA, is illustrated in Figure 2. Leverag-
ing LLM-based VideoQA models as a foundation,
our goal is to establish a cohesive set of collab-
orative and interactive prompts. This approach
aims to mitigate the issue of catastrophic forgetting
often associated with straightforward sequential
fine-tuning methods.

Each training task set consists of video V t, ques-
tion Qt, and answers At in pairs. We extract a
sequence of visual tokens V = {v1, . . . ,vNv} ∈
RNv×D from the raw video using a frozen visual
encoder (Radford et al., 2021), and utilize a to-
kenizer to process the raw question and answer
into tokens, i.e., Q = {q1, . . . ,qNq} ∈ RNq×D

and A = {a1, . . . ,aNa} ∈ RNa×D, where Nv,
Nq and Na denote the number of video frames,
lengths of question and answer tokens, respec-
tively. During the training stage, the task-specific
token sequences qt, vt, and at are concatenated
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and inputted into LLaMA along with an addi-
tional prompts P = <Pe,Pg> = {p1, . . . ,pNp} ∈
RNp×D, where Np denotes length of prompts. This
setup allows the output feature to be calculated as
follows:

Xt,P = θ(< Qt,Vt,At >,P), (3)

where Xt = <Xt
q,X

t
v,X

t
a> denotes the sequence

of output features for question, video and an-
swer for task t. In our framework, Pg is trained
alone using the global cross-entropy loss simi-
lar to existing methods (Wang et al., 2022a,b),
while we focus on optimizing the E-Prompt Pe

to effectively capture and preserve task-specific
knowledge, thereby reducing catastrophic forget-
ting. During the inference stage, LLaMA takes
Vt, Qt, and the learned prompts P to predict task-
specific answers.

3.2 Collaborative Prompting

We systematically explore continual learning, fo-
cusing on integrating multimodal distributions into
a unified set of prompts. This approach provides a
comprehensive framework for continuous improve-
ment in LLM-based VideoQA. Our methodology
includes collaboratively incorporating prompts de-
signed for task-specific question constraints, visual
temporal awareness, and knowledge acquisition.

Task-specific Question Constraint Prompting
(TQCP). TQCP extracts question-specific knowl-
edge from learned prompt representations, enhanc-
ing task awareness during the inference stage. Dif-
ferent from existing methods (Wang et al., 2022a,b)
that rely on a known task identity to select and
train specific sets of prompts alongside the classi-
fier, we directly utilize the question type to guide
the learning of a single set of prompts for question
awareness. Drawing inspiration from a recent neg-
ative label guided algorithm (Jiang et al., 2024; Li
et al., 2024), we enable Pe to be positively corre-
lated with the current task-specific question type
(e.g., how many) and negatively correlated with
negative question samples (e.g., negative question
types: what, where, etc). This facilitates task-type
awareness and links input features to E-prompts
during the inference stage. To achieve this, we opti-
mize Xt

q and Pe with question generation loss and
negative questions (Q−) guided loss, which allows
the given prompt to learn question-specific repre-
sentation for the current task. It can be formulated

as follows:

Lq = −(Lgen
q + Lneg

q ) (4)

Lgen
q =

Nq−1∑

n=0

logP (q∗
n+1|V,A,P,q+ ≤ n,Q−),

(5)

Lneg
q =

1

B
∑

i∈B




esim(Pe,Q
+
i

)/τ

∑
j∈B(e

sim(Pe,Q
+
j

)/τ
+ e

sim(Pe,Q
−
j

)/τ
)


 ,

(6)

where P (q∗
n+1) = Softmax(Linear([Xq;Pe])) for

task t, and [; ] denotes concatenation. P =
<Pe,Pg> and τ is a temperature parameter. We
employ cross-entropy loss Lgen

q locally to generate
task-specific questions based on learned Xq and
Pe. Lneg

q to correlate the given question Q+ with
Pe, where sim(·, ·) computes the cosine similari-
ties between the Pe and the i-th positive question
Q+

i (resp. j-th negative question Q−
j ) samples in

the batch B.
Visual Temporal Awareness Prompting (VTAP).
VTAP aims to bridge the gap between video fea-
tures and the LLM, allowing E-prompts to incor-
porate visual information with temporal dynamics.
This improves the video understanding abilities of
the LLM and enhances its answer prediction capa-
bilities with given questions and videos. However,
modeling both the visual content of videos and
their temporal dynamics simultaneously presents
a challenge. To overcome this, we guide the E-
prompt in learning video with temporal dynamics
by using the question and answer choices as prior
knowledge and leverage the autoregressive sequen-
tial abilities of the LLM to model and predict the
order of video frames based on preceding frames.
Furthermore, we distill video information extracted
from an image encoder (Radford et al., 2021) into
an E-prompt (Zhong et al., 2024; Li et al., 2023),
enabling the LLM to understand visual features. In
this work, we use contrastive loss (Lcon

q ) to facili-
tate this process, which is formulated as follows:

Lv = −(Ldyn
v + Lcon

v ) (7)

Ldyn
v =

Nv−1∑

n=0

logP (v∗
n+1|Q,A,P,v ≤ n), (8)

Lcon
v =

1

B
∑

i∈B
log

(
esim(Pe,Vi)/τ∑
j∈B esim(Pe,Vj)/τ

)
,

(9)

where P (v∗
n+1) = Softmax(Linear([Xv;Pe])) for

task t, Ldyn
v is the optimization function for video
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temporal dynamic modelling, and sim(·, ·) com-
putes the cosine similarities between the Pe and
the i-th video Vi (resp. j-th video Vj) in the batch
B for current task.
Knowledge Acquisition Prompting (KAP). KAP
injects task-specific multimodal information from
the question and video into the E-prompts to ac-
curately predict answers for the current task. To
achieve this, at the training stage, Pe leverages the
autoregressive abilities of the LLM to encapsulate
the task-specific context information of V, Q, and
all answer choices A as prior knowledge to pre-
dict the specific answer. The objective function is
formulated as:

La =−
Na−1∑

n=0

logP (a∗n+1|Q,V,P,a ≤ n), (10)

where P (a∗n+1) = Softmax(Linear([Xa;Pe])). At
the inference phase, the continual VideoQA model
predicts the task-specific answer with V, Q, P as:

ā = argmax
a∈At

P (a|V,Q,P), (11)

where At is a set of answer choice for task t.

4 Experiments

4.1 Datasets
We use the multi-choice NExT-QA dataset (Xiao
et al., 2021), which includes various types of ques-
tions. These include causal questions, such as why
(CW) and how (CH), that ask for the intentions
or reasons behind earlier actions; temporal ques-
tions, which determine the relationships between
actions like what are (TC), what did (TN), and
what was (TP); and descriptive questions, like how
many (DC), where (DL) and other types of ques-
tion (DO), which focus on visible contents such
as places and attributes. We split (Lei et al., 2023;
Zhang et al., 2023b) the NExT-QA dataset into
eight distinct tasks based on question types in the
NExT-QA dataset. In CL, the order of task learn-
ing impacts the learning outcome. Therefore, we
conducted experiments and set our tests in the se-
quence that resulted in the highest forgetting rate
(suffers more in catastrophic forgetting) using the
baseline method. The sequence of the training or-
der follows this sequence: <TP, CW, DC, TC, DL,
DO, TN, CH>. DramaQA dataset (Choi et al.,
2021) features a video story understanding with
hierarchical difficulty levels. We split it into 5 dis-
tinct tasks according to the question types, and

Table 1: The results on the NExT-QA dataset which are
divided into 8 tasks, where the Avg. Acc denotes aver-
age accuracy across tasks and Avg. Fog is the average
forgetting rate. The symbols ↑ and ↓ indicate whether
a higher or lower value is preferable for a given metric,
respectively.

Method Avg. Acc (↑) Avg. Fog (↓)
LLaMA 46.58 13.83
L2p 48.82 12.25
DualPrompt 50.62 11.74
LAE 49.38 11.47
L2p+ 52.26 11.61
DualPrompt+ 53.97 10.26
LAE+ 53.75 9.74
DAM 53.88 9.99
ProgPrompt 53.95 10.69
ColPro 55.14 7.43

experimentally chose the order that has the worst
forgetting result to be our learning order for the CL
VideoQA task. The order of CL learning follows
<what, who, where, how, why>. Similar to the
existing VideoQA methods (Yu et al., 2024), we
report the performance of the validation set.

4.2 Evaluation Metrics
We evaluate methods using two metrics: the aver-
age final accuracy (Avg. Acc), where higher values
are better and represent the final accuracy averaged
over N tasks for all previous classes, and the av-
erage forgetting (Avg. Fog) that is widely used in
existing works (Wang et al., 2022b,a; Qian et al.,
2023), where the lower the better which indicates
the tasks experienced less forgetting averaged over
N tasks.

4.3 Implementation Details
We train CL VideoQA for five epochs on both
datasets with a batch size of 8 for the NExT-QA
dataset (4 for DramaQA) with the gradient accu-
mulation technique. We fine-tuned the LLaMA-7B
model in this paper. AdamW optimizer is used with
β = (0.9, 0.95). We search learning rate and weight
decay in [0.05, 0.1] and [0.15, 0.25], respectively.
The number of video frames V is set to 10. Each
frame is resized by 224 × 224 and fed into CLIP
VIT-L/14 to extract frame features. The total se-
quence length of the concatenated visual, question,
and answer tokens is 128 for NExT-QA and 280
for DramaQA. Temperature parameter τ is set to 1.
The prompt tokens are empirically set to 10 for pk,
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Table 2: The results on the DramaQA dataset which are
divided into 5 tasks.

Method Avg. Acc (↑) Avg. Fog (↓)
LLaMA 60.99 24.39
L2p 62.50 20.67
DualPrompt 65.89 17.93
LAE 65.82 17.35
L2p+ 66.75 16.73
DualPrompt+ 67.44 15.09
LAE+ 67.03 14.82
DAM 67.37 15.19
ProgPrompt 67.92 14.95
ColPro 71.24 12.64

pv. The positing of G-prompt and E-prompt are
set to 0-6 and 7-18 LLaMA layers, respectively, for
the best performance. The prompts are not attached
to the remaining LLaMA layers.

4.4 Comparison with Continual Learning
Methods

Table 1 compares the performance of the Collabo-
rative Prompting (ColPro) on the split NExT-QA
benchmark with existing CL approaches, includ-
ing the fine-tuned LLaMA (Touvron et al., 2023)
with addtional projection layer, L2P (Wang et al.,
2022b), DualPrompt (Wang et al., 2022a), Pro-
Prompt (Razdaibiedina et al., 2023), DAM (Cheng
et al., 2024), and LAE (Gao et al., 2023b). Addi-
tionally, we report deep CL implementations of the
L2P+, DualPrompt+, and LAE+ methods, which
activate more layers of LLaMA for CL tasks by
applying prompts to 18 layers. In the comparisons,
our proposed ColPro achieved better average pre-
diction accuracy and significantly lower average
forgetting compared to existing methods. This im-
provement in average forgetting can be attributed
to the fact that the ColPro method experiences less
forgetting and allows better forward transfer of dif-
ferent tasks, which is beneficial in CL VideoQA.
Similarly, we compare the performance of the Col-
Pro on the split DramaQA benchmark with existing
CL approaches in Table 2, further validating the
effectiveness of our proposed method in addressing
catastrophic forgetting issues. These tables indicate
that the models experience catastrophic forgetting,
with the Avg. Fog score up to 24%. This under-
scores the need to address catastrophic forgetting
in video QA, and we have minimized the forgetting
with ColPro.

Table 3: The results on both NExT-QA and DramaQA
datasets with PEFT and our methods.

Methods Dataset Avg. Acc (↑) Avg. Fog (↓)
Prefix

NExT-QA

47.76 13.21
Lora 52.00 11.07
L-Adaptor 51.83 12.42
Ours 55.14 7.43
Prefix

DramaQA

60.93 21.18
Lora 62.11 19.73
L-Adaptor 61.50 19.77
ColPro 71.24 12.64
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Figure 3: The results of the average accuracy for each
task, which following the training order within the CL
setting.

4.5 Comparison with Parameter-Efficient
Fine Tuning Methods

Table 3 demonstrates the performance of ColPro
with other Parameter-Efficient Fine-Tuning (PEFT)
methods that can be used to address catastrophic
forgetting in CL settings, such as LLaMA-Adapter
(L-Adapter) (Zhang et al., 2023a), Lora (Hu et al.,
2021), and Prefix (Li and Liang, 2021). Our pro-
posed method shows a significant improvement in
minimizing forgetting compared to our baseline
LLaMA-Adapter method, as evidenced by a lower
Avg. Fog and a higher Avg. ACC when evaluated
with the NExT-QA and DramaQA datasets. ColPro
also outperforms Lora and Prefix, demonstrating
the effectiveness of our specially designed strategy
for LLM-based CL VideoQA settings.

4.6 Task-by-Task Average Accuracy
Continuous learning (CL) in real-world scenarios
is an ongoing process, making the performance of
each learning phase critical for the VideoQA model.
Consequently, we plotted the task-by-task contin-
ual learning average accuracy in Figures 3 for the
NeXT-QA dataset with respect to the order of train-
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Table 4: The ablation results for the three proposed
multimodal interaction prompting strategies.

La Lq Lv Avg. Acc (↑) Avg. Fog (↓)
✓ ✗ ✗ 52.60 10.62
✓ ✓ ✗ 53.09 9.09
✓ ✗ ✓ 54.38 10.27
✓ ✓ ✓ 55.14 7.43

Table 5: The ablation results for different prompting
optimization functions.

Lneg
q Ldyn

v Lcon
v Avg. Acc (↑) Avg. Fog (↓)

✗ ✗ ✗ 52.87 10.15
✓ ✗ ✗ 53.09 9.09
✓ ✓ ✗ 52.80 9.95
✓ ✗ ✓ 54.20 8.71
✓ ✓ ✓ 55.14 7.43

ing. We accumulated with the previous tasks, and
tested on the current task to report the average accu-
racy. Our results show that ColPro achieves better
performance in most of the perdition accuracy than
existing methods in the learning phase.

4.7 Ablation Study

The Effectiveness of Multimodal Prompting.
Our proposed method includes three primary mul-
timodal interaction prompting strategies: ques-
tion constraint (TQCP), visual temporal alignment
(VTAP), and knowledge acquisition (KAP). Each
strategy is optimized with its respective optimiza-
tion function, Lq, Lv, and La. We performed ab-
lation studies on these strategies and reported the
results in Table 4. A tick indicates that the respec-
tive prompting strategies was used during model
training, while a cross means not included. No-
tably, La is always included to optimize the model
with the ground truth answer. We can observe that
the inclusion of each optimization function signif-
icantly impacts the model’s performance. Specif-
ically, models trained with all three optimization
functions consistently achieve higher accuracy and
lower forgetting. The ablation results demonstrated
show that incorporating VTAP enhances the ac-
curacy of the LLM, while utilizing TQCP helps
the model suffer less from forgetting. This under-
scores the importance of question constraint and
visual temporal alignment prompting, which help
the LLM gain awareness of the task type to re-
duce catastrophic forgetting and understand the

Table 6: The ablation results for prompt positioning in
LLaMA layers.

pend
g pend

e Avg. Acc (↑) Avg. Fog (↓)
18 0 52.53 10.45
0 18 53.66 8.81
6 18 53.74 9.01
10 18 54.78 8.11
8 16 54.45 8.59
8 18 55.14 7.43
8 20 54.75 9.02

Table 7: The ablation results for using different lengths
of the prompt in the model.

Lenght of p Avg. Acc (↑) Avg. Fog (↓)
5 53.91 8.91

10 55.14 7.43
15 54.55 8.35
20 53.77 9.63

visual information with temporal dynamics for bet-
ter answer reasoning. The combination of three
strategies is crucial for optimizing multimodal in-
teraction in CL VideoQA scenarios.

Furthermore, in Table 5, we break down each
prompting optimization to evaluate the effective-
ness of using negative contrast (Lneg

q ), visual dis-
tillation (Lcon

v ), and temporal dynamic understand-
ing (Ldyn

v ) techniques. The optimization functions
La and Lgen

q are always included to optimize the
model with the ground truth answer and question
during training. We can observe that Lneg

q tends to
reduce forgetting in large margin, indicating that
the negative contrast technique allows question con-
straint prompts to gain task-specific knowledge,
making the model better aware of the task type.
Furthermore, we can see that the stand along tem-
poral dynamic (Ldyn

v ) does not benefit the model,
but the visual distillation (Lcon

v ) is able to improve
the average accuracy. The method achieves excel-
lent performance when the model the combination
of Ldyn

v and Lcon
v . This emphasis the importance of

the proposed temporal dynamic understanding that
bridges LLM with video information for VideoQA
to achieve better performance.

Number of layers for G-Prompts and E-
Prompts. In our method, we utilize both E-prompt
and G-prompt. In Table 6, we empirically evalu-
ate the effectiveness of placing the G-prompt and
E-prompt within the LLaMA layers, following ex-
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isting methods, to achieve the best performance. pg

and pe denote the last layer attached to LLaMA-
7B, the pre-trained network with 32 layers. The
table shows that performance drops when either the
pend
g = 0 or E-prompt pend

e = 0 is excluded. We
found that the optimal performance was achieved
by attaching the G-Prompt from layers 0 to 8 and
the E-Prompt from layers 9 to 18.

Number of prompt. For prompt-based learning,
the length of the prompt is a crucial parameter
that can significantly affect learning performance
(Gao et al., 2023b; Wang et al., 2022b). Table 7
illustrates the impact of varying prompt lengths
on model accuracy and forgetting rates. Our re-
sults indicate that shorter prompts may not provide
sufficient context for the model, leading to lower
accuracy and higher forgetting. Conversely, ex-
cessively long prompts can introduce noise and
unnecessary information, which also negatively im-
pacts performance in our experiment. We found an
optimal prompt length of 10 to balance the amount
of information provided to the model and maintain
high performance.

5 Conclusion

In this work, we explore the novel problem of
VideoQA, which efficiently fine-tunes the LLM
to answer new questions with video in a contin-
ual learning context. We propose Collaborative
Prompting (ColPro) to integrate textual question
context, visual content, and video temporal dynam-
ics in each learning phase, facilitating knowledge
transfer to future tasks while minimizing catas-
trophic forgetting. We achieves state-of-the-art
results on split NExT-QA and DramaQA datasets.

6 Limitations

We propose the efficient Collaborative Prompt-
ing (ColPro), which integrates task-specific ques-
tion constraint prompting, knowledge acquisition
prompting, and visual temporal awareness prompt-
ing with a large language model (LLM) to enhance
the performance of continual VideoQA. However,
catastrophic forgetting remains high for the Dra-
maQA dataset using our method, indicating a sub-
stantial decline in performance for VideoQA pre-
diction when using LLaMA-7B. Furthermore, we
did not experiment with larger models (e.g., 33B
LLM) due to memory constraints, which limits
our ability to explore catastrophic forgetting that

may arise when fine-tuning other LLMs for CL
VideoQA.
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A Appendix

A.1 Critical Continual Learning Order

In Table 8, we outline the sequence of continual
learning tasks in VideoQA, enabling us to identify
and select the most critical tasks that are particu-
larly susceptible to catastrophic forgetting. By un-
derstanding which learning order is most affected
by this phenomenon, we can prioritize and im-
plement targeted strategies to mitigate forgetting,
thereby enhancing the overall robustness and effec-
tiveness of the continual learning system. We use
baseline model (Touvron et al., 2023) with addi-
tional linear layer for this experiment. We can see
that the learning sequences <TP, CW, DC, TC, DL,
DO, TN, CH> have higher Avg. Fog for NExT-QA
dataset.

Table 8: The results of the task learning sequences for
continual learning for the NExT-QA datasets.

Orders Avg. Fog (↓)
CH, DL, TP, TC, DC, DO, TN, CW 7.26
TP, TN, CH, TC, DL, DO, CW, DC 8.41
DO, CW, DC, CH, TP, TC, TN, DL 9.83
CW, DO, TN, DL, TC, TP, DC, CH 11.86
TP, CW, DC, TC, DL, DO, TN, CH 13.83

A.2 Learning Parameter Analysis with Full
Model Fine-tuning

Since most parameters are fixed at the inference
stage, the performance of a fine-tuned prompt-
based model may be worse than that of a fully
fine-tuned model for each specific task. However,
during the training stage, fine-tuning the entire
LLM incurs high computational costs. Here, we
provided an analysis of this aspect to better under-
stand the trade-offs between the effectiveness and
computation cost of these two approaches using
the score we get from the DramaQA dataset as an
example. According to the training parameters in-
dicated in LLaMa (Touvron et al., 2023) and Lora
(Hu et al., 2021), we can assume that to fully fine-
tune an LLM requires more than 500M parameters,
whereas our prompt-based method only requires
around 33.5M parameters. Although the Avg. Acc
(assumed to be >71.24) of full LLaMA fine-turning
may be higher than our score, but it requires a
much higher computation cost. Our method can
efficiently and effectively fine-tune LLaMA-7B
model for CL in VideoQA using a single 24GB
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Figure 4: The video examples with their corresponding questions and answers for each task.

Table 9: Analysis of Model Parameters and Average
Accuracy

Model Parameters Avg. Acc

LLaMA fine-tuning > 500M > 71.24
Prompt-tuning 33.5M 71.24

GPU. Furthermore, ColPro achieved better perfor-
mance compared to existing prompt-based meth-
ods, as illustrated in Tables 1 and 2. It’s worth
noting that due to limited computational power, we
were unable to provide the results for full LLaMA
fine-tuning.

A.3 Continual Learning Setting and
Examples

In this paper, we split the dataset towards the
function-incremental setting of continuous learn-
ing, similar to existing CL ImageQA works (Lei
et al., 2023; Qian et al., 2023), to better evaluate
the CL VideoQA task. We split the dataset accord-
ing to different functions. For instance, we split
NExT-QA into causal reasoning function, which
includes logic understanding of asking why (CW)
and how (CH), temporal reasoning function that
involves the relationship understanding of objects
or attributes recognition in what are (TC), what did
(TN), and what was (TP), and descriptive reasoning
function encompasses knowledge understanding of
how many (DC), where (DL), and other types of

questions (DO), as illustrated in Section 4.1. Sim-
ilar for DramaQA, we split the dataset according
to the function of each question type. The raw
video examples for CL VideoQA with their corre-
sponding question type and answer are illustrated
in Figure 4. The figure showing the differences
between them for NExT-QA (Xiao et al., 2021)
dataset.
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