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Abstract

Fine-tuning-based unlearning methods prevail
for preventing targeted harmful, sensitive, or
copyrighted information within large language
models while preserving overall capabilities.
However, the true effectiveness of these meth-
ods is unclear. In this work, we delve into
the limitations of fine-tuning-based unlearn-
ing through activation patching and parameter
restoration experiments. Our findings reveal
that these methods alter the model’s knowledge
retrieval process, providing further evidence
that they do not genuinely erase the problem-
atic knowledge embedded in the model param-
eters. Instead, the coefficients generated by
the MLP components in the model’s final layer
are the primary contributors to these seemingly
positive unlearning effects, playing a crucial
role in controlling the model’s behaviors. Fur-
thermore, behavioral tests demonstrate that this
unlearning mechanism inevitably impacts the
global behavior of the models, affecting unre-
lated knowledge or capabilities. The code is re-
leased at https://github.com/yihuaihong/
Dissecting-FT-Unlearning.

1 Introduction

Large language models (LLMs), due to their exten-
sive pre-training corpora, often inadvertently learn
harmful, sensitive, or copyright-protected knowl-
edge (Chang et al., 2023a; Mozes et al., 2023; El-
dan and Russinovich, 2023; Ye et al., 2022). Con-
sequently, recent research has focused on develop-
ing efficient unlearning methods as a post-training
technique to selectively unlearn the specific knowl-
edge (Blanco-Justicia et al., 2024; Liu et al., 2024).
Currently, the core mechanism of these unlearn-
ing methods involves finetuning (Eldan and Russi-
novich, 2023; Jang et al., 2023; Yao et al., 2024;
Rafailov et al., 2023), with corresponding adjust-
ments and designs in the loss function to facilitate

*Work done during an internship at IDEA.
†Corresponding authors.

the unlearning process. Although earlier investi-
gations (Hong et al., 2024; Lee et al., 2024a) have
proven that these methods are ineffective at com-
pletely erasing model-embedded knowledge, the
factors contributing to the misleading success of
these techniques remain unclear.

Therefore, in this paper, we try to unveil why
existing finetuning-based unlearning methods per-
form well in behavioral tests by analyzing the mech-
anisms of internal knowledge recall and flow within
models (Meng et al., 2022; Pochinkov and Schoots,
2024; Geva et al., 2021a). Specifically, we investi-
gate which components or parameters carry these
unlearning effects. We design activations patching
and parameters restoration experiments in three set-
tings, aiming to independently study the impact of
unlearning methods on the coefficients and value
vectors in the MLPs, as well as on the attention
components’ states. Our findings further confirm
that the methods do not truly alter the knowledge
embedded in the value vectors of MLPs, and re-
veal that they will change how they extract and
transfer this knowledge through modifications in
the coefficients of MLPs and attention components
during unlearning. Notably, the coefficients pro-
duced by the MLP in the final layers are primarily
responsible for achieving the unlearning effects of
finetuning-based methods.

We further test the global behavior impact
of these fine-tuning-based unlearning methods
on LLaMA2-7B-chat (Touvron et al., 2023) and
OLMo-7B (Groeneveld et al., 2024) by implement-
ing them on the respective pretraining datasets of
both models, aiming to more closely simulate the
erasure of knowledge acquired during the pretrain-
ing process. We discover that while these methods
appear to effectively unlearn target knowledge, they
also inevitably affect the output and behavior re-
lated to unrelated knowledge. This unintended con-
sequence stems from the fact that these approaches
are based on altering the model’s internal knowl-
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edge retrieval mechanisms, thereby impacting its
global behavior and overall performance.

Ultimately, we conclude once again that cur-
rent fine-tuning-based unlearning methods cannot
completely erase sensitive knowledge embedded
in models, particularly within the MLPs, instead
adjusting the mechanisms by which the model re-
trieves knowledge. These methods are vulnera-
ble to recovery attacks in components’ activations
and unsuitable for true unlearning. We advocate
for future unlearning evaluations to concentrate on
precise measurement of both the actual storage of
targeted knowledge within the model’s entire pa-
rameter set and the specific dynamics of how this
knowledge is retrieved and utilized.

2 Background and Related Work

Unlearning in Large Language Models Since
large language models learn knowledge from dif-
ferent domains and corpora during the pre-training
process, it is often found that they contain harm-
ful, sensitive or private knowledge, leading to the
possibility that language models produce output
behaviors containing corresponding sensitive or
harmful information (Liu et al., 2024; Chang et al.,
2023a; Mozes et al., 2023). Therefore, unlearning
emerges as a timely and important post-pretraining
processing method for LLM safety. Currently, the
vast majority of LLM unlearning methods use fine-
tuning as the primary operational approach. In
terms of classifying them by different training ob-
jectives, they include gradient direction control
(Jang et al., 2023; Yao et al., 2024, 2023) and pref-
erence optimization methods (Rafailov et al., 2023;
Zhao et al., 2024; Lee et al., 2024b). In terms of
classifying them by the parameters covered during
training, they include full parameters fine-tuning
(Eldan and Russinovich, 2023; Jang et al., 2023;
Yao et al., 2024; Rafailov et al., 2023), sparse fine-
tuning (Chang et al., 2023b; Stoehr et al., 2024),
and parameter-efficient fine-tuning (Lu et al., 2024;
Chen and Yang, 2023). Additionally, there are
also a few knowledge editing methods (Patil et al.,
2024). We present the specific logic details of each
method in §A.

Knowledge Storation in Large Language Mod-
els Studying how knowledge is stored, trans-
ferred, and extracted in LLMs has always been
an important direction in the research of LLM’s in-
terpretability (Meng et al., 2022; Geva et al., 2021b;
Sukhbaatar et al., 2015; Geva et al., 2023). It is

known that in transformer-based language mod-
els, the MLP is a crucial component for storing
the model’s factual knowledge, and its sub-layers
can be viewed as key-value memories (Geva et al.,
2021b). To be specific, the first layer* of MLP sub-
layers can be viewed as a matrix WK formed by
key vectors {k1,k2, . . . ,kn}, used to capture a set
of patterns in the input sequence, and ultimately
outputting the coefficient scores. The second layer
can be viewed as a matrix WV formed by value
vectors {v1,v2, . . . ,vn}, with each value vector
containing the corresponding factual knowledge
(represented through token distributions). Finally,
the MLP’s output can be defined as the sum of value
vectors weighted by their memory coefficients:

Mℓ = f
(
W ℓ

Kxℓ
)
W ℓ

V = mℓW ℓ
V , (1)

where Mℓ represents the output of the MLP in
the transformer’s ℓ-th layer for an input hidden
state xℓ at that layer with the parameters, W ℓ

K

and W ℓ
V ∈ Rn×d. f is a non-linearity function†.

mℓ ∈ Rn represents the coefficient scores. The
dimension size of hidden states is d and it is n for
the intermediate MLP.

In addition to the MLP, primarily responsible for
knowledge storage, the attention component is cur-
rently considered the main component responsible
for knowledge transfer and extraction in language
models (Geva et al., 2023). Here, we will not go
into detail about its specific structure but only study
the impact it has on knowledge extraction. The fi-
nal computation formula for the hidden states in
the language model is defined as:

Xℓ+1 = Xℓ +Mℓ +Aℓ, (2)

where Xℓ, Mℓ and Aℓ represent the hidden states,
MLP’s output, and the attention component’s out-
put in the transformer’s ℓ-th layer, respectively.

3 Patching Investigation

Hypothesis and Experimental Design Based
on Eq. (1) and Eq. (2), we hypothesize that there
are three main reasons why the current fine-tuning-
based unlearning methods appear successful in be-
havioral tests and seem to suggest that true unlearn-
ing has been achieved:

*Currently, in most decoder-only models such as GPT-
2 (Radford et al., 2019) and GPT-J(Chen et al., 2021), the
MLP component has two layers, while in LLaMA (Touvron
et al., 2023) it has three layers. However, we can still consider
LLaMA’s first two layers together as the key matrices, with
their output serving as the coefficient scores.

†Here, the bias term is omitted for brevity.

3934



1. The coefficients mℓ are changed after fine-
tuning, leading to a change in the activations
of the MLPs;

2. The value vectors W ℓ
V in MLPs are changed,

causing a change in the knowledge they con-
tain;

3. The change that happens in attention compo-
nents caused the model’s focus and the corre-
sponding information extracted by these atten-
tion components Aℓ to change, thus reducing
the target knowledge-related information in
the output.

Here, for the sake of simplicity and better un-
derstanding, we continue to use the definitions of
mℓ, W ℓ

V , and Aℓ as given in Eq. (1) and Eq. (2) in
the following. We ignore the minor effects caused
by other components or parameters, such as the
language model’s unembedding matrix and the nor-
malization layers. Based on the possible reasons
described above, on the unlearned model, we con-
duct three different sets of activation patching or
components’ parameter restoration experiments,
trying to recover the output of the target knowledge
in the unlearned model. The specific operation
process is as follows:

1. In the first set of experiments, we restore the
coefficient scores mℓ corresponding to each
MLP component, layer by layer, in the lan-
guage model, without making any intentional
changes to the value vector parameters W ℓ

V of
the MLPs or the attention components’ states
Aℓ in any layer.

2. In the second set of experiments, we restore
the parameters of value vectors W ℓ

V in MLPs
layer by layer, recovering the knowledge they
originally contained. In this process, we avoid
making intentional changes to the unlearned
model’s original coefficients mℓ and the atten-
tion components’ states Aℓ.

3. In the third set of experiments, we restore the
original attention components’ states Aℓ, but
without intentionally altering the MLPs’ coef-
ficient scores mℓ or the value vectors’ parame-
ters W ℓ

V , only studying the impact brought by
the attention components which are responsi-
ble for extracting and transferring knowledge.

To evaluate the extent of knowledge restoration,
we propose the metric of Knowledge Recovery
Score (KRS):

KRS = 1− loss∗o/loss∗, (3)

where the losses are the average of MSE(·) on

L∗
i,n and Li,n and on L∗o

i,n and Li,n, respectively.
MSE(·) represents the mean squared error (MSE)
loss function. L, L∗, and L∗o are the logit distri-
bution of the subsequent token produced by the
vanilla model, unlearned model, and unlearned-
then-recover model, respectively. The average loss
is computed on the next I generated tokens on N
knowledge-related questions.

Finally, if KRS approaches 1, it indicates L∗o
i,n

and Li,n that are nearly consistent, representing a
higher degree of knowledge recovery. Conversely,
a lower KRS suggests a lower degree of that.

Activation Patching and Parameters Restora-
tion Experiments We conduct the experiments
on two recent LLMs, LLaMA2-7B-chat (Touvron
et al., 2023) and OLMo-7B (Groeneveld et al.,
2024). We apply two example finetuning-based un-
learning methods, DPO (Rafailov et al., 2023) and
Gradient Difference (Yao et al., 2024), to perform
unlearning on the large language models and cal-
culate the average KRS scores. Inspired by (Eldan
and Russinovich, 2023), which tries to unlearn the
concept knowledge of “Harry Potter” in language
models, we extend this experiment by selecting
10 well-known concepts per model from the Con-
ceptVectors Benchmark (Hong et al., 2024), which
is a collection of concepts that language models are
well-acquainted with and have substantial knowl-
edge about. Examples of them are provided in Ta-
ble 2 of §B. For the unlearning training, we use the
texts containing the corresponding concepts from
Redpjama‡ and Dolma (Soldaini et al., 2024). Red-
pjama is a replication of the pretraining corpus for
the LLaMA model, while Dolma is the open-source
pre-training dataset for the OLMo model. Detailed
information is provided in §B. So here we can en-
sure that the knowledge to be unlearned was at
least seen by the model during the pre-training pro-
cess, and that the training data used more broadly
covers the textual sources from which the model ac-
quired the corresponding knowledge about certain
concepts.

After obtaining the unlearned model, we follow
the steps mentioned in the hypothesis to perform
activation patching and parameter restoration ex-
periments on the unlearned models. To calculate
the Knowledge Recover Scores, we set I to 30 and
N to 10, indicating the generation of the next 30
tokens and the selection of 10 questions related to
each concept. To make the recovery effects more

‡https://www.together.ai/blog/redpajama
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pronounced and the whole process easier to ob-
serve, we adopt techniques from (Meng et al., 2022,
2023) which implemented causal mediation, set-
ting the size of the recovery window to five. This
allows us to observe the average effects of recov-
ering five consecutive layers at a time. Details can
be found in §B.

The specific results are shown in Fig. 1. From
our analysis, surprisingly, we observe that when
we solely recover the parameters contained in the
value vectors of each layer in the unlearned model
without interfering with the coefficients or atten-
tion components’ states, the recovery of the target
knowledge is negligible (The KRS scores are all
below 0.001). This holds regardless of which layer
is recovered, and regardless of the specific model
being considered.

However, when recovering the attention compo-
nents’ states in the intermediate layers (from the
15th layer onward) or deeper layers (from the 27th
layer onward), we can observe that the average
KRS for both models has increased to exceed 0.3
and 0.4, respectively, indicating that a significant
portion of the corresponding knowledge has been
recovered. What’s more, restoring the coefficients
of the MLPs in the intermediate layers (from the
20th layer onward) and deeper layers (from the
29th layer) also yields impressive knowledge re-
covery effects.

The layers at which the scores start to increase
under the two settings generally align closely with
the observation by Geva et al. (2023) that the MLP
modules recall knowledge in intermediate layers,
and the attention components mostly start to extract
and transfer information in the deeper layers. or af-
ter the model has completed the relevant knowledge
recall. We also tried simultaneously recovering the
coefficients and attention states and found that the
model can achieve much greater knowledge recov-
ery, with the peak KRS score exceeding 0.9 on both
models.

Additionally, it is noteworthy that, simply restor-
ing the coefficient scores of the MLP outputs from
the last two or three layers can significantly ele-
vate the KRS of the unlearned LLaMA and OLMo
models to 0.8 or above. This suggests that the coef-
ficient scores of the MLPs in the last layers might
play a crucial role in the final behavior results of the
LLM. To better isolate the effects of restoring mℓ,
W ℓ

V , and Aℓ individually and support the above
argument, we present a more rigorous patching and
restoration experiment in §C, with the correspond-
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Figure 1: Results of KRS on LLaMA and OLMo un-
der three activations patching or parameters restoration
settings. We also included another setting that restores
both attention and coefficients to compare the final out-
comes.

ing results shown in Figure 3. Ultimately, we found
that the restoration of the attention states also con-
tributed to the coefficients of the MLP in the final
layers, further confirming that these coefficients
carry the primary role of achieving the effects of
finetuning-based unlearning. It also indicates that
fine-tuning largely adjusts the model’s behavior by
modifying the coefficients of the deep MLP layers,
likely because this enables faster adaptation com-
pared to other knowledge adjustment mechanisms,
such as altering knowledge encoded in the MLP it-
self. This phenomenon and the potential defensive
strategy have not been discussed in the previous
literature, warranting further investigation in future
studies.

Overall, these results all further confirm that the
finetuning-based unlearning methods essentially
do not modify the model knowledge contained in
the value vectors, but adjust the way knowledge
is called during the fine-tuning process, either by
adjusting the coefficients to modulate the MLP ac-
tivation or by adjusting the attention to extract and
transfer knowledge.
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4 Global Negative Effect of Fine-Tuning
Unlearning

In the previous section, we demonstrated that these
finetuning-based methods alter the model’s final be-
havior by adjusting the MLP output coefficients in
the final layers. Therefore, we hypothesize that this
behavioral change will has a global effect, poten-
tially impacting the output of unrelated knowledge
as well. In this section, we verify this hypothesis
through the following experiments.

We apply four fine-tuning-based unlearning
methods to the concepts used in §3 on their pretrain-
ing text sources (from RedPajama and Dolma) with
the goal of erasing the learned knowledge during
pretraining through a reverse process. These meth-
ods are as follows: DPO (Rafailov et al., 2023),
NPO (Zhao et al., 2024), NPO+KL (Zhao et al.,
2024) and Gradient Difference (Yao et al., 2024).
The details of these baselines and data statistics
are shown in §A and §B. We evaluate the unlearn-
ing effectiveness of these methods on the concepts’
related QA pairs and the unlearning impact on un-
related QA pairs, reporting the average scores of
BLEU (Papineni et al., 2002) by comparing the
model’s response before and after unlearning. In
Figure 2, we report their performance at the end of
each training epoch respectively.

We can observe that for finetuning-based meth-
ods, as the number of training epochs increases,
aiming to achieve a lower target QA BLEU score,
the corresponding unrelated QA BLEU score also
decreases accordingly, exhibiting a positive corre-
lation. This suggests that the impact of finetuning-
based methods on the model’s output behavior is
global. While unlearning the target knowledge,
they inadvertently alter the output behavior or man-
ner for unrelated knowledge to a certain degree.

5 Discussion and Conclusion

We have deeply investigated the reasons why fine-
tuning-based unlearning methods seemingly suc-
ceeded in behavior-based testing for large language
model unlearning: Through activation patching and
parameter restoration experiments, we find that
these methods alter the way knowledge is extracted
by changing MLP activations or model’s attention,
ultimately affecting the output. This is evidenced
by the fact that the model’s output regarding the
target knowledge is largely restored after patch-
ing the activations and the attention components’
states. Furthermore, we conduct experiments on
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Figure 2: Unlearning testing results on LLaMA and
OLMo for each training epoch.

the pretraining datasets of two models, to test the
models’ capabilities after unlearning, verifying that
in addition to unlearning the corresponding knowl-
edge, fine-tuning-based methods that by altering
the way the model accesses knowledge, will sig-
nificantly impair the model’s other unrelated ca-
pabilities, causing a certain degree of capability
degradation.

6 Limitations

In the experiments detailed in §3, we have disre-
garded the potential unlearning impact caused by
parameter changes in other model components dur-
ing the fine-tuning process. This decision is based
on the observation that the impact of such changes
appears to be minimal. For instance, during our
parameter comparison analysis, we found that the
changes in the unembedding matrix and normaliza-
tion layer parameters resulted in cosine similarity
values above 0.999. This suggests that the mod-
ifications to these components are quite small in
magnitude.

However, it remains unclear whether even such
minimal parameter changes can still have any mean-
ingful effect on the model’s overall behavior and
knowledge. Further verification and analysis would
be needed to conclusively determine the extent to
which these ancillary parameter updates might in-
fluence the unlearning outcome.
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A Details in Existing Unlearning Methods

In this section, we provide a more detailed intro-
duction to the LLM unlearning methods we used
in §3 and §4.

• Gradient Difference (Yao et al., 2024), based
on Gradient Ascent, it adds a regularization
term to minimize the KL divergence between
the unlearned and the original LLM on a ref-
erence text dataset, thus preventing the model
from catastrophic deterioration of its general
capability.

• Direct Preference Optimization
(DPO) (Rafailov et al., 2023), which
maximizes the log-likelihood ratio between
generating the preferred and the unfavored
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responses, while retaining a small shift from
the original LLM predictive distribution,

• Negative Preference Optimization
(NPO) (Zhao et al., 2024), which discards
the favored responses and only minimizes
the prediction probability of the unfavored
answers.

• NPO+KL which adds to NPO a KL diver-
gence loss between the model’s outputs before
and after unlearning.

B Unlearning Experiment’s Corpus

Here, we present detailed information about the
data used for activation patching experiments and
the unlearning experiments conducted in §3 and
§4. We select 10 well-known concepts from Con-
ceptVectors Benchmark (Hong et al., 2024) and
extract 6,000 corresponding training data segments
containing knowledge about the respective con-
cepts per model from the pre-training datasets of
Redpjama and Dolma. These extracted data seg-
ments are used for unlearn training of the two
models respectively. For each concept, we also
include ten related questions from the ConceptVec-
tors Benchmark, along with 50 unrelated questions
sampled from other unrelated concepts. These are
used in §4 to evaluate the unlearning effectiveness
from the behavior perspective on the specific con-
cepts, as well as to assess whether the model’s
unrelated capabilities were affected. We have man-
ually checked and verified that the vanilla LLaMA
and OLMo models can accurately answer these se-
lected questions, indicating that the models possess
the knowledge. All the statistics and examples are
shown in Table 1 and Table 2, respectively.

C More Rigorous Patching Investigation

In §3, during our activation patching and parame-
ters restoration experiments, we restore mℓ, W ℓ

V ,
or Aℓ layer by layer respectively, while avoiding
intentional changes to the other two states in the un-
learned model. However, for instance, restoring Aℓ

in ℓ-th layer may aid in the recovery of mℓ in subse-
quent layers, ultimately leading to an improvement
in KRS. Therefore, in this part of the experiment,
when restoring each element layer by layer, we pur-
posefully keep the other two elements unchanged
(e.g., when restoring Aℓ, we maintain the original
states of mℓ and W ℓ

V for both the current and sub-
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Figure 3: Results of KRS on LLaMA and OLMo un-
der three activations patching or parameters restoration
settings, isolating the effects of the two others when
investigating each factor individually.

sequent layers). This approach thoroughly isolates
the effects of these three different elements.

Figure 3 presents the results in this setting. We
can observe the following: (1) When W ℓ

V is re-
stored layer by layer, its effect on improving KRS
remains very small, which is consistent with prior
experiments. (2) When restoring Aℓ layer by layer
and isolating its effects from the other two factors,
its contribution to KRS remains insignificant, stay-
ing at a low level and only increasing to around 0.08
on LLaMA and 0.2 on OLMO in the final layers.
(3) When mℓ is restored layer by layer, isolating its
influence from the other elements, we observe a no-
table rise in KRS in the last three layers, reaching
values as high as 0.8 or above. This supports the
idea that neurons responsible for mℓ in the MLP
components of the final layers primarily carry the
unlearning effects of these finetuning-based meth-
ods.
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Data Sources # selected concepts # of paragraphs per concept # of words per paragraph # of QA pairs # of unrelated QA pairs

Redpjama 10 6000 1514.65 20 50
Dolma 10 6000 2261.25 20 50

Table 1: Statistics of the training data for the unlearning experiments on LLaMA and OLMo

Concept Training Data Snippets Example QA Example Unrelated QA

Harry Potter(LLaMA) Harry Potter is a series of seven fantasy
novels written by British author J. K. Rowl-
ing. The novels chronicle the lives of a
young wizard, Harry Potter, and his friends
Hermione Granger and Ron Weasley, all of
whom are students at Hogwarts School of
Witchcraft and Wizardry..

Who is the author of the Harry
Potter book series?
What is the name of the first book
in the Harry Potter series?..

In which century did William
Shakespeare live and write?
What town is traditionally consid-
ered Shakespeare’s birthplace?..

Star Wars(LLaMA) Star Wars is an American epic space opera
media franchise created by George Lucas,
which began with the eponymous 1977 film
and quickly became a worldwide pop cul-
ture phenomenon..

Who is Darth Vader’s son?
What is the weapon used by Jedi
Knights?..

What are the twelve zodiac
signs?
Which astrological sign is repre-
sented by the lion?..

Amazon Alexa(LLaMA) Amazon Alexa or Alexa is a virtual assis-
tant technology largely based on a Polish
speech synthesizer named Ivona, bought
by Amazon in 2013. It was first used in
the Amazon Echo smart speaker and the
Echo Dot, Echo Studio and Amazon Tap
speakers developed by Amazon Lab126..

What year was the Amazon
Alexa Voice Assistant first intro-
duced to the public?
What are some of the pri-
mary functions of Amazon Alexa
Voice Assistant?..

Who betrayed Jesus to the author-
ities in the Bible?
What is the longest book in the
Bible in terms of chapters?..

Ebay(OLMo) eBay Inc. ( EE-bay, often stylized as ebay)
is an American multinational e-commerce
company based in San Jose, California, that
brokers customer to customer and retail
sales through online marketplaces in 190
markets worldwide..

What is the name of Japan’s most
popular boy band?
Who is Japan’s most famous
anime creator? ..

What does IRC stand for?
When was IRC first developed?..

Olympic Games(OLMo) The modern Olympic Games or Olympics
(French: Jeux olympiques) are the lead-
ing international sporting events featuring
summer and winter sports competitions in
which thousands of athletes from around
the world participate in a variety of compe-
titions..

When were the first modern
Olympic Games held?, How of-
ten are the Summer Olympics
held?..

What is virtual reality?
How does virtual reality technol-
ogy work?..

Diabetes(OLMo) Diabetes mellitus, often known simply as
diabetes, is a group of common endocrine
diseases characterized by sustained high
blood sugar levels. Diabetes is due to either
the pancreas not producing enough insulin,
or the cells of the body becoming unrespon-
sive to the hormone’s effects..

What is diabetes?
What are the main types of dia-
betes?..

What is the capital city of Pak-
istan?
What is the currency of Pak-
istan?..

Table 2: Example extracted data from the Redpjama and Dolma pre-training datasets.
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