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Abstract

Autoformalization is the task of automatically
translating mathematical content written in nat-
ural language to a formal language expression.
The growing language interpretation capabil-
ities of Large Language Models (LLMs), in-
cluding in formal languages, are lowering the
barriers for autoformalization. However, LLMs
alone are not capable of consistently and reli-
ably delivering autoformalization, in particular
as the complexity and specialization of the tar-
get domain grows. As the field evolves into
the direction of systematically applying auto-
formalization towards large mathematical li-
braries, the need to improve syntactic, termino-
logical and semantic control increases. This pa-
per proposes the coordinated use of three mech-
anisms, most-similar retrieval augmented gen-
eration (MS-RAG), denoising steps, and auto-
correction with syntax error feedback (Auto-
SEF) to improve autoformalization quality. The
empirical analysis, across different models,
demonstrates that these mechanisms can de-
liver autoformalizaton results which are syn-
tactically, terminologically and semantically
more consistent. These mechanisms can be ap-
plied across different LLMs and have shown to
deliver improve results across different model
types.1

1 Introduction

Mathematical reasoning constitutes an essential as-
pect of human intelligence (Saxton et al., 2019;
Lu et al., 2023). It centers on symbolic-level rea-
soning, as manifested through systematic, abstract
and and step-wise logical inference. Mathemati-
cal reasoning models has been clustered under two
types: deep learning models (Hendrycks et al.,
2021; Wei et al., 2022; Meadows and Freitas, 2023;
Liu et al., 2023) and formal models (Polu and

1Code and datasets are available at https:
//github.com/lanzhang128/retrieval_augmented_
autoformalization

Sutskever, 2020; Wang and Deng, 2020; Han et al.,
2022; Jiang et al., 2022, 2023b). Mathematical
reasoning in Large Language Models (LLMs) pre-
dominantly uses statements expressed in informal
mathematical statements. More recent models have
aimed towards bridging both informal and formal
mathematical reasoning (Wu et al., 2022; First
et al., 2023; Azerbayev et al., 2023; Quan et al.,
2024a), where the material (content-based) infer-
ence strengths of LLMs are complemented by ex-
ternal formal/symbolic reasoning methods such as
automated theorem provers (e.g. Isabelle (Paulson,
2000) and Lean (de Moura et al., 2015)), which can
systematically assess the logical validity of the rea-
soning process (Wu et al., 2022), facilitating LLMs
to perform controlled and consistent inference.

However, formal and verifiable mathematical
reasoning with theorem provers requires the man-
ual formalization of logical formulae from informal
statements, in order to build the supporting math-
ematical libraries, knowledge bases (KBs) which
express previous axioms, definitions, theorems and
proofs, a process that demands considerable ef-
fort and domain-specific knowledge. A prototyp-
ical case in point is the liquid tensor experiment
(Scholze, 2022), an initiative aimed at formaliz-
ing analytical geometry results from Scholze &
Clausen, requiring a community coordinated effort
of experts.

Contemporary LLMs have demonstrated consid-
erable efficacy (Wu et al., 2022; Xin et al., 2023;
First et al., 2023) for supporting autoformalization
efforts within an in-context learning paradigm, be-
ing largely evaluated in less specialized domains
and tasks. Existing methods are still limited in
delivering a method for systematically and consis-
tently building large formal and specialized mathe-
matical libraries. The essence of the challenge is
twofold: (i) specialization and out-of-distribution
(OOD) drifts: as one moves towards more spe-
cialized and newer domains to be autoformalized,
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Figure 1: The overall framework consists of three stages: Stage 1 contains one round for retrieval augmented
autoformalization; Stage 2 contains one round for denoising; Stage 3 is composed of several iterative rounds
to refine the code based on syntax errors. For better illustration, we change \<in>, \<nat>, \<lsq>, $+$ to their
LaTeX version ∈, N, ≤, +. The ground truth code is lemma (in int0) Int_ZF_1_5_L7A: assumes "a\<in>\<int>"
"b \<in>\<int>\<ˆsub>+"shows "a \<lsq>a\<ra>b" "a \<noteq>a\<ra>b" "a\<ra>b \<in>\<int>" (assumes
"a ∈ Z" "b ∈ Z+" shows "a ≤ a+ b" "a ̸= a+ b" "a+ b ∈ Z").

models are progressively exposed to more chal-
lenging OOD cases, and (ii) library consistency
and coherence: new formalized need to be consis-
tently built-up on previously statements, cohering
terminologically, syntactically and semantically.

This work targets the overarching research ques-
tion: ‘how to systematically support the creation
of consistent and coherent formal mathematical li-
braries from informal mathematical statements?’.
In order to address this task, we decompose this
broader aim into the following research questions:
RQ1: ‘To what extent contemporary LLMs are
capable of formalizing specialized mathematical
statements into formal representations for mathe-
matical libraries?’; RQ2: ‘Which metrics can be
used to assess the quality of the formalized out-
puts?’; RQ3: ‘Which mechanisms can be used to
extend the autoformalization properties of LLMs
to achieve better generative control and enhance
terminological, syntactic and semantic consistency
and coherence?’. To address these research ques-
tions, we propose a novel framework (See Figure
1) that leverages LLMs with most-similar retrieval
augmented generation (MS-RAG), denoising steps
and iterative feedback-guided syntax error refine-
ment cycles (Auto-SEF) to deliver a syntactically
consistent and semantically coherent autoformal-
ization.

To assess the effectiveness of our proposed
framework, we construct a supporting dataset for
the task of mathematical library autoformalization
(MathLibForm) and build a supporting empirical

analysis methodology guided by a critical selection
of a set of automated metrics. We conduct a sys-
tematic empirical analysis with a diverse sample
of state-of-the-art LLMs, in order to compare and
contrast their autoformalization properties and the
impact of the proposed library autoformalization
mechanisms. Our results demonstrate that leverag-
ing LLMs with MS-RAG and Auto-SEF, combined
with denoising strategies, can significantly enhance
the syntactic correctness of formalization results,
reaching improvements from 5.47% to 33.58%. In
summary, the contributions of the paper are:

1. Proposal of a novel neuro-symbolic frame-
work targeting the autoformalization of math-
ematical libraries, which employs LLMs with
MS-RAG, denoising and Auto-SEF to consis-
tently and iteratively enhance and refine the
formalization results;

2. Definition of a new task (formalization of
mathematical libraries) and creation of a sup-
porting dataset (MathLibForm);

3. Proposal of an evaluation methodology.

2 Proposed Approach

In this section, we start by defining the target task
and then describe the proposed mechanisms for
improving autoformalization.
Autoformalization: An autoformalization is a
transformation function which maps an informal
mathematical statement s in the domain of natural
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language and LaTeX symbols S into a formal math-
ematical statement ϕ, under a formal language F ,
f : S → F , such that for every s ∈ S , there exists
a ϕ ∈ F where f(s) = ϕ.
Semantic correctness: A transformation f(s) =
ϕ is semantically correct if there exists a model M
such that:

∃M : M |= s and M |= ϕ,

where |= denotes that the former item satisfies or
correctly interprets the latter.
Library-based autoformalization: Given a
Knowledge Base (KB) of formalised mathematical
statements under a formal language F , a library-
based autoformalization transformation function
fΦ is defined such that the generated statement ϕ is
semantically consistent with the set of statements
Φ ∈ KB.
Semantic consistency: A statement ϕ is seman-
tically consistent with respect to KB if all terms
in ϕ that have references in KB are used consis-
tently with the terms in KB. Formally, let ϕ be
a statement and KB be a knowledge base. ϕ is
semantically consistent with respect to KB if:

∀t ∈ terms(ϕ) ∩ references(KB), tϕ = tKB,

where terms(ϕ) denotes the set of terms in ϕ and
references(KB) denotes the set of referenced terms
in KB.

2.1 Most-Similar Retrieval Augmented
Generation (MS-RAG)

Under the aforementioned formal notations, auto-
formalization via LLMs defines the transformation
function as:

f(s) = LLM(pauto, {(si, ϕi)}, s),

where pauto is a prompt for autoformalization and
{(si, ϕi)} is a set of exemplars. The initial at-
tempt (Wu et al., 2022) defined subcategories SCj

in math and chose fixed examples {(si, ϕi)}j ∈
SCj for each subcategory, where the transforma-
tion function becomes:

f(s) = LLM(pauto, {(si, ϕi)}j , s), if s ∈ SCj .

However, fixed examples cannot reflect the us-
age of various novel definitions and notions in each
subcategory. Therefore, with the assumption of the
existence of KB, we propose to first retrieve a set
of samples based on a similarity relevance function

MS(s) ∈ KB and then define the transformation
function as:

fϕ(s) = LLM(pauto, {(si, ϕi)}s, s),

where (si, ϕi) ∈ MS(s).

2.2 Denoising Formalization Results

Bias inherited from instruction fine-tuning (Ouyang
et al., 2022) causes LLMs during autoformaliza-
tion to occasionally generate redundant texts not
integral to the formal statement, thereby infusing
the final output with noisy information. Conse-
quently, the direct output of LLMs frequently fails
to meet the criteria for a valid formal code. Please
note that despite the fact that output conditions can
be communicated on the initial prompt, typically
the output behaviour of the models cannot be fully
controlled, nor fully enforceable. To alleviate this
issue, we propose two types of denoising:
Code-Based Denoising (CBD). Definition of a set
of post-processing rules R to remove irrelevant
outputs such as extra explanations and unsolicited
proofs , where a new formal statement is obtained:
d(s) = R(fϕ(s)).
Prompt-Based Denoising (PBD). The rigidity
of a CBD method can be contrasted to a post-
hoc prompt-based approach for the same purpose.
Hence, we propose the design of a prompt pden
which performs the denoising of the autoformal-
ization results. Denoising with only a prompt
raises the risk of losing semantic consistency be-
cause of the bias in the training data of LLMs.
Therefore, the set of retrieved items MS(s) from
MS-RAG could be used to maintain semantic
consistency. The denoising becomes: d(s) =
LLM(pden, {(si, ϕi)}s, fϕ(s)).

Using reported syntax errors as a feedback have
been established as a systematic mechanism for
guiding the correction of formal models (Quan
et al., 2024a,b) for LLMs potentially automatically
correct the formalization results. In contrast, PBD
and CBD provides a template-based/prescribed
mechanism for output control.

2.3 Auto-correction with Syntax Error
Feedback (Auto-SEF)

The validity of a formal code ϕ can be checked
by a theorem prover T P that supports its written
formal language F . If the formal code is not valid,
the theorem prover can output a set of syntax er-
rors {ek} = T P(ϕ). Using reported syntax errors
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as feedback has been established as a systematic
mechanism for guiding the correction of formal
models (Quan et al., 2024a,b), potentially allow-
ing LLMs to automatically correcting the results
of formalization. Hence, we design a prompt perr
to add an auto-correction component to let LLMs
recognize previously produced errors and correct
mistakes. To maintain semantic consistency, re-
trieved examples are also used and the generation
becomes:

g(s) = LLM(perr, {(si, ϕi)}s, {ek}, d(s)).

where {ek} = T P(d(s)). Within this setting we
propose an iterative process:

gk+1(s) = LLM(perr, {(si, ϕi)}s, ek,1, gk(s))

with initial state g0(s) = d(s) and ek,1 is the first
item in T P(gk(s)).

3 Evaluation Benchmark

3.1 MathLibForm

Formal mathematical datasets, such as miniF2F
(Zheng et al., 2022), predominantly concentrate on
distinct mathematical problems representing sim-
pler mathematical solving tasks. In contrast, the
creation of mathematical libraries demands the aut-
oformalization of statements which can be more
specialized, conceptually more complex and poten-
tially out-of-distribution. In this work we use Isar-
MathLib2, as a reference setting within the environ-
ment of the Isabelle/ZF theorem prover framework.
Formal statements in IsarMathLib are frequently
accompanied by textual comments, which serve as
the corresponding natural language statements of
the formal expressions. Mathematical items, such
as lemma, definition, corollary, theorem, along with
textual comments and proofs, were first systemat-
ically extracted via a script. This led to a total of
2,744 items, which were then randomly divided
into training and test sets in a 90% to 10% split,
resulting in 2,470 training samples and 274 test
samples for constructing the MathLibForm dataset.
To enrich the information contained in MathLib-
Form, we also informalize formal statements with
Mistral and add the generated textual descriptions.
The training and testing sets are used to define the
knowledge base KB and the evaluation.

2https://github.com/SKolodynski/IsarMathLib

3.2 Evaluation Metrics

Assessing the overall correctness of autoformal-
ized code outputs requires resource intensive
specialized/expert-level human feedback. In ad-
dition, human evaluations can become largely sub-
jective in situations where the assessment criteria
is too complex to be elicited (i.e., the validation
process cannot be systematized into a protocol),
which, we argue, is the case for autoformalization.
The dependency on multiple human validators with
skills in both theorem provers and the underlying
multi-domain mathematics makes this problem par-
ticularly severe.

We mentioned semantic correctness and consis-
tency in Section 2 as the final desirable proper-
ties as an outcome of an autoformalization process,
which can become too strict for evaluating auto-
formalization tasks with current LLMs. Therefore,
in this work, we propose two distinct proxies to
assess code correctness: semantic similarity and
syntactic correctness. Utilizing the ground truth as
a reference, we measure semantic similarity using
pairwise metrics, including BLEU (Papineni et al.,
2002), ChrF (Popović, 2015), RUBY (Tran et al.,
2019), and CodeBERTScore (CBS) (Zhou et al.,
2023). The description of these metrics are pro-
vided in the Appendix. For syntactic correctness,
we use the Isabelle theorem prover to detect syntax
errors in formal statements and use the Pass metric
which represents the success rate at which the gen-
erated formal statement does not exhibit any syntax
errors, as verified by the theorem prover. The in-
tegration between the transformer and Isabelle is
done on a ToolFormer setting with the support of
an Isabelle client3 (Shminke, 2022).

4 Experiments and Analysis

4.1 Retrieval Augmented Autoformalization

We establish baselines in zero-shot and 3-shot
settings on several state-of-the-art LLMs: Mis-
tral (Jiang et al., 2023a), Llemma 7B (Azerbayev
et al., 2024), Mixtral (Jiang et al., 2024a), GPT-
3.5-Turbo (descriptions of the models can be found
in the Appendix). The inclusion criteria for the se-
lected foundation models prioritized: (i) sample
diversity across the three modalities (model size,
type, and specialization level), leading to 4 base-
line foundation models; and (ii) a priority on open
models, where the underlying modeling strategies

3https://github.com/inpefess/isabelle-client
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LLM Method BLEU-2 ChrF RUBY CBS Pass
Baselines
Mistral Zero-Shot 0.30 17.14 16.13 51.13 0.0
Mistral 3-Shot 1.77 27.30 24.02 62.73 5.47
Llemma 7B Zero-Shot 0.91 16.67 14.77 47.74 9.12
Llemma 7B 3-Shot 2.43 28.81 21.93 66.68 8.76
Mixtral Zero-Shot 0.65 16.33 17.97 51.07 0.36
Mixtral 3-Shot 5.37 30.53 28.51 62.86 1.09
GPT-3.5-Turbo Zero-Shot 2.15 17.81 21.93 51.69 40.51
GPT-3.5-Turbo 3-Shot 14.23 37.95 39.13 67.26 38.69
Retrieval Augmented Autoformalization
Mistral Query: T Index: T 10.05 51.38 44.82 76.93 21.53
Mistral Query: T Index: T+S 9.96 50.79 43.92 76.21 19.71
Mistral Query: T Index: I+S 5.65 36.92 32.23 67.47 8.76
Mistral Query: T Index: T+I+S 10.53 49.61 43.28 75.17 22.26
Mistral Query: T+ZS Index: T 10.14 46.89 40.76 73.69 12.77
Mistral Query: T+ZS Index: T+S 8.40 46.26 39.91 73.40 14.96
Mistral Query: T+ZS Index: I+S 5.51 36.71 31.94 66.91 10.95
Mistral Query: T+ZS Index: T+I+S 8.85 45.14 39.27 72.47 16.06
Llemma 7B Query: T Index: T 4.18 36.93 28.68 69.93 12.77
Llemma 7B Query: T Index: T+S 4.61 37.48 29.39 69.56 14.23
GPT-3.5-Turbo Query: T Index: T 36.32 59.63 58.51 79.14 64.60
GPT-3.5-Turbo Query: T Index: T+S 37.11 58.56 57.71 78.89 62.77

Table 1: Autoformalization results for different settings. BM25 retriever is used to retrieve Top-3 most similar
samples for retrieval augmented autoformalization. Greedy decoding is used in generation for reproducibility.
Code-based denoising is applied to all outputs. The query used to retrieve relevant exemplars includes: (T): natural
language textual description; (ZS): zero-shot autoformalization result from Mistral. The index used for knowledge
base has the following options: (T): natural language textual description; (I): informalization of formal statement
generated from Mistral; (S): formal statement. The setting with highest scores is highlighted in bold.

are more transparent.
For MS-RAG, BM25 (Robertson et al., 1994)

is used as the primary ranking function to retrieve
Top-k (k=3) most similar samples for exemplars
(BM25 will concentrate a terminological similar-
ity function). Different settings are contrasted for
querying and indexing the reference KB. There are
two choices for query: 1. natural language textual
description; 2. description along with zero-shot
autoformalization result from Mistral. The choices
for indexing KB elements combine three content
sources: 1. natural language textual description;
2. informalization of formal statements; 3. formal
statements. For this specific analysis, we constrain
the foundation model to Mistral. All results are
reported in Table 1.
MS-RAG can improve autoformalization in
mathematical libraries settings. As shown in
Table 1, for the same type of LLMs, using retrieved
examples rather than fixed examples leads to an

improvement in both semantic similarity and syn-
tactic correctness of the generated formal state-
ments. This mechanism can lift the performance
of smaller models: e.g. as a smaller model, Mis-
tral (7B) with MS-RAG can outperform Mixtral
(8×7B) with standard prompting across all metrics
and is comparable to GPT-3.5 (175B) without MS-
RAG according to some metrics such as RUBY.
Similarity-based few-shot outperforms zero-
shot learning. For all LLMs, autoformalization
results with 3-shot exemplars are generally better
than those from the zero-shot setting in terms of
semantic similarity metrics. For syntactic correct-
ness, Llemma 7B and GPT-3.5 in the zero-shot
setting have slightly higher pass rates compared to
the 3-shot setting.
MS-RAG levels the playing field across models
of different scales. As the largest LLM in this
experimental setting, GPT-3.5 with MS-RAG sig-
nificantly outperforms all other models. However,
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Metric MS-RAG PBD 1A PBD 1B PBD 1C PBD 1D
BLEU-2 6.33 (+3.72) 8.88 (+1.61) 11.30 (+1.99) 15.21 (+1.49) 14.90 (+2.42)
ChrF 48.45 (+2.93) 38.27 (-0.35) 43.25 (-0.06) 44.52 (-0.23) 48.51 (+0.11)
RUBY 28.99 (+15.83) 38.23 (+2.12) 42.08 (+1.91) 44.59 (+0.79) 46.43 (+0.98)
CBS 76.40 (+0.53) 68.04 (-0.03) 70.51 (-0.07) 71.92 (+0.01) 74.07 (+0.03)
Pass 17.15 (+4.38) 6.57 (+0.00) 9.12 (+0.00) 13.50 (+0.37) 28.10 (+0.00)

Table 2: The effect of denoising on Mistral. The change of scores after applying CBD is recorded in round brackets.
The setting with highest final scores is marked in bold.

comparing its best performance with MS-RAG
to its performance in the 3-shot setting, its rela-
tive change in syntactic correctness (67%) is much
lower than that with Mistral (307%). The relative
change for Llemma 7B is the smallest (62%). We
attribute this to the fact that Llemma was not fine-
tuned with instructions. These differences suggest
that smaller LLM with instruction tuning benefits
more from RAG.
Augmenting the index with auto-informalization
or the query with zero-shot auto-formalization
does not lead to better retrieval. Among all re-
sults in Table 1, GPT-3.5 with textual description
query and textual description index achieves high-
est scores in four metrics except BLEU-2. This
query and index combination setting is also an op-
timal choice for Mistral, as this setting leads to
highest scores in ChrF, RUBY and CBS and sec-
ond highest scores in Pass. Incorporating zero-shot
results from Mistral as queries generally yields
worse results compared to its counterpart. This is
probably caused by the low quality of zero-shot for-
malization results. The application of informalized
descriptions during indexing also does not lead to
a performance improvement.

4.2 Output Denoising

In this section, we investigate the impact of denois-
ing. We select the result of MS-RAG (Query: T,
Index: T) to apply PBD with four prompts: (1A)
The prompt only contains instructions to remove ex-
planations and proofs; (1B) 1A adds an additional
instruction for stylistic alignment to declare that the
final output after refinement should maintain the
same syntactic style; (1C) Includes some fixed for-
mal statement examples for the stylistic alignment
instruction in 1B; (1D) Changes the fixed examples
in 1C to retrieved examples from MS-RAG. We
record the results of Mistral in Table 2.
Denoising significantly impacts the quality of the
formal statements. Compared to results without

denoising, using either denoising method can sig-
nificantly improve BLEU and RUBY scores. Ap-
plying CBD to the original MS-RAG results can
lead to an improvement across metrics. However,
the effect of CBD decreases after we apply PBD to
the results. For the Pass metric, performing CBD
after PBD had no observable impact. This demon-
strates the impact of PBD as a syntactic control
mechanism. Our results suggest that a composition
of PBD and CBD can yield the best performance in
syntactic correctness while maintaining semantic
similarity at the same or higher level.
Denoising can reduce the performance gap be-
tween smaller and larger LLMs. We also con-
ducted similar experiments on GPT-3.5 (results in
Appendix). Denoising methods have a compara-
tively lower effect on the results of GPT-3.5, serv-
ing more as a function of control for smaller mod-
els, approaching their performance to larger mod-
els.
Stylistic alignment is necessary when applying
PBD. Without the explicit declaration of stylistic
alignment (1A), the syntactic correctness drops
10.58% compared to the results of MS-RAG. The
reason is that when only prompted to remove re-
dundant strings, some models tend to neglect the
original syntactic style of the formal statements
and rewrite them in the style that it was trained
on. However, merely specifying that the model
should maintain such a style without explicit ex-
amples (1B) does not effectively communicate the
intent to preserve the style. This is demonstrated
by the higher performance of 1C compared to 1B.
In addition, using retrieved examples (1D) rather
than fixed examples (1C) can further improve the
results.

Case Study The example in Table 3 communi-
cates the necessity of denoising. As shown in Ta-
ble 3, both 3-shot and MS-RAG results include
an additional textual description in the final output
which does not form a formal statement. PBD 1A
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NL Statement The next lemma shows that open sets are members of (what we will prove later
to be) the natural neighborhood system on X =

⋃
T .

Ground Truth lemma open_are_neighs: assumes "U\<in>T" "x\<in>U"
shows "x \<in> \<Union>T" and "U \<in> {V\<in>Pow(\<Union>T)
.\<exists>U\<in>T. (x\<in>U \<and> U\<subseteq>V)}"

3-shot lemma open_set_in_nhs: assumes "X = \<bigcup> T" "T \<in>
Covers(X)" "U \<in> Open(X)"shows "U \<in> NHS(X)"

where NHS(X) is a predicate representing the natural
neighborhood system on X. Note: The definition of NHS(X)
should be provided before using this lemma.

MS-RAG lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood system of} T)`(x)"

(* Note: This lemma assumes that T is a topology, but it is
not explicitly stated in the natural language version.*)

PBD 1A lemma open_is_neighbors: assumes "U :: set T" and "x :: T"
shows "U :: ({neighborhood system of} T) x"

PBD 1B lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood\_system} T)`(x)"

PBD 1C lemma open_is_neighbors: assumes "U \<in> T" "x \<in> U"
shows "U \<in> ({neighborhood system of} T) x"

PBD 1D lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood system of} T)`(x)"

Table 3: An example using Mistral shows that only MS-RAG and PBD 1D have no syntax errors of formalization.

changes “\<in>” into “::” which is another way of
expressing “∈” but this expression is not provided
in its prompt, so this behaviour is highly likely to
be an inherited bias. PBD 1B and 1C mitigate this
behaviour but they also introduce other syntactic
errors, such as the missing word “of” or the spe-
cial character “`”. Only PBD 1D maintains the
validity of the formal statement because the sim-
ilarity of the retrieved examples and are thus
emphasized during generation.

4.3 Iterative Symbolic Refinement

In this section, we mainly focus on answering the
question on whether syntactic errors can be cor-
rected by LLMs in coordination with symbolic
solvers. This process is iteratively run for up to
nine cycles. To better illustrate the changes, we
plot the scores of each iteration on the Pass metric
in Figure 2.
Iterative Auto-SEF improves syntactic correct-
ness of the formalization results. As shown in
Figure 2, both GPT-3.5 and Mistral can receive im-
provements from the iterative Auto-SEF method.
This result demonstrates that Auto-SEF can indeed
enable LLMs to fix some syntactic errors. The
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Figure 2: Pass rate of each iteration with Auto-SEF.
Iteration 0 is the start point before applying Auto-SEF.
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Figure 3: BLEU-2 scores of each Auto-SEF iteration.

first iteration brings the largest increase (2.56% for
Mistral, 4.38% for GPT-3.5) in pass rate. After
that, the change becomes smoother and iterative
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improvements are limited to a small number of
cycles.
Smaller LLM tends to trade-off semantic sim-
ilarity for syntactic correctness when applying
Auto-SEF. We focus on BLEU-2 as a proxy for
semantic similarity and illustrate the scores of each
iteration in Figure 3. The BLEU-2 scores for
GPT-3.5 remain steady across different iterations,
whereas for Mistral, the scores decrease in the first
few iterations. Combining this result with the im-
provement in pass rate, we hypothesize that a trade-
off occurs due to the comparatively lower capacity
of the model to perform syntactic correction while
controlling for semantic drifting during the Auto-
SEF prompting.

4.4 A Critique of the Metrics

Evaluation metrics for autoformalization can dis-
agree with each other (Evtikhiev et al., 2023). We
use all the results under CBD to calculate the Pear-
son product-moment correlation coefficients across
the metrics, illustrating these coefficients with a
heatmap in Figure 4.
RUBY can serve as an initial metric when eval-
uating formalization results. All correlation co-
efficients are larger than 0.6. This suggests that all
metrics are positively related to each other and that
any one of them is a reasonable indicator for evalu-
ating formalization results. Among these metrics,
RUBY has the strongest correlation (> 0.85) with
the other metrics.
Pass and BLEU metrics should be jointly used
to prevent evaluation bias. Some zero-shot results
in Table 1 lead to a high score on the Pass metric
but lower scores on other metrics due to internal
LLM style biases. According to Figure 4, among
metrics for semantic similarity, BLEU-2 has the
strongest correlation with the Pass metric and hence
can indicate syntactic correctness to some extent.
We suggest considering both BLEU scores and Pass
rate when comparing results.

5 Related Work

Autoformalization Autoformalization bridges
the gap between natural language and formal lan-
guage. Cunningham et al. (2022) trained a stan-
dard transformer for proof autoformalization in
Coq. Lu et al. (2024) proposed a process-driven
framework for autoformalization in Lean4. With
the increased inference capabilities of LLMs in re-
cent years, Wu et al. (2022); Jiang et al. (2023b)
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Figure 4: Correlation coefficients between metrics.

employ LLMs to autoformalize mathematical con-
tents to Isabelle/HOL. Building on this foundation,
our work also focuses on the improvement of auto-
formalization capabilities over LLMs.

Retrieval Augmented Generation (Lewis et al.,
2020) RAG has demonstrated improvements for
code generation (Lu et al., 2022; Zhang et al., 2023)
and in formal settings, Yang et al. (2023) trained
a retrieval-augmented language model for formal
premise selection and theorem proving. Mean-
while, our work focuses on utilizing RAG for the
task of improving autoformalization performance
and coherence with respect to mathematical li-
braries.

LLMs Refinement Through feedback-guided
refinement strategies LLMs can perform self-
correction (Pan et al., 2024). Recent stud-
ies (Madaan et al., 2023; Quan et al., 2024a) eval-
uate strategies using iterative feedback to refine
LLM-generated answers for downstream tasks. Pre-
vious work has used error messages generated by
theorem provers as a mechanism to support the
interface between LLMs and formal models (Pan
et al., 2023; Quan et al., 2024a; Jiang et al., 2024b;
Quan et al., 2024b) and also repair models (First
et al., 2023) to address syntactic or proof errors.
Similarly, our work applies prompt-based refine-
ment from external feedback error messages gen-
erated by Isabelle/ZF to iteratively refine the for-
malized logical forms with specific error code lo-
cations.

4027



6 Conclusion

This paper examined the effects of using RAG
for autoformalization with LLMs and explored
methods to refine formalization results. Our ex-
periments demonstrated the effectiveness of incor-
porating a retrieval process for autoformalization.
Further experiments indicated that denoising and
iteratively refining syntax errors can enhance aut-
oformalization quality. We evaluated results on
different LLMs and found that smaller LLMs with
instruction fine-tuning benefited more from the pro-
posed methods, pointing in the direction of serving
as a mechanism for reducing the formal perfor-
mance gaps between larger and smaller models.
We also built a dataset and assessed metrics for
evaluating autoformalization, which could serve as
resources/methodological contributions for formal
mathematical reasoning tasks. We believe combin-
ing the semantic similarity metrics with the syn-
tactic correctness metric is a reasonable proxy for
semantic correctness.
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Limitations

Some natural language statements in our dataset
are too general or informal, failing to provide a sub-
stantial content for autoformalization. Although
our proposed framework, Auto-SEF, enhances syn-
tactic control in autoformalization, increasing itera-
tions do not yield significant improvements in the
Pass metric. This limitation is due to the inability
of LLMs to generate syntactically correct complex
formal representations.
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Mił oś, Yuhuai Wu, and Mateja Jamnik. 2022. Thor:
Wielding hammers to integrate language models and
automated theorem provers. In Advances in Neural
Information Processing Systems, volume 35, pages
8360–8373. Curran Associates, Inc.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023b.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In The Eleventh Inter-
national Conference on Learning Representations.

Dongwei Jiang, Marcio Fonseca, and Shay B. Cohen.
2024b. Leanreasoner: Boosting complex logical rea-
soning with lean. Preprint, arXiv:2403.13312.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Jiayu Liu, Zhenya Huang, ChengXiang Zhai, and Qi Liu.
2023. Learning by applying: A general framework
for mathematical reasoning via enhancing explicit
knowledge learning. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 37(4):4497–4506.

Jianqiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang,
Haiming Wang, Zhicheng Yang, Jing Tang, and Zhi-
jiang Guo. 2024. Process-driven autoformalization
in lean 4. arXiv preprint arXiv:2406.01940.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2023. A survey of deep learning for
mathematical reasoning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14605–
14631, Toronto, Canada. Association for Computa-
tional Linguistics.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won
Hwang, and Alexey Svyatkovskiy. 2022. ReACC:

A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6227–6240, Dublin, Ireland.
Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Jordan Meadows and André Freitas. 2023. Introduc-
tion to mathematical language processing: Informal
proofs, word problems, and supporting tasks. Trans-
actions of the Association for Computational Linguis-
tics, 11:1162–1184.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-LM: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
3806–3824, Singapore. Association for Computa-
tional Linguistics.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correction
strategies. Transactions of the Association for Com-
putational Linguistics, 11:484–506.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Lawrence C. Paulson. 2000. Isabelle: The next 700
theorem provers. Preprint, arXiv:cs/9301106.

Stanislas Polu and Ilya Sutskever. 2020. Generative
language modeling for automated theorem proving.
Preprint, arXiv:2009.03393.
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A Large Language Models

We describe the large language models used in our
experiments in this section.
Mistral (Jiang et al., 2023a) Mistral is a large lan-
guage model with 7 billion parameters which is
fine-tuned on instruction datasets. It leverages sev-
eral techniques such as Sliding Window Attention
to boost model efficiency. To the best of our knowl-
edge, it is also the strongest model in the domain
of code and mathematics at this size.
Llemma (Azerbayev et al., 2024) Llemma is an
open large language model trained specifically for
mathematics. It is pre-trained on Proof-Pile-2
which is a diverse mixture of math-related textual
and code content. However, it has not been trained
to follow instructions. Llemma has two scales in
7B and 34B. We only use the 7B model in our
experiments.
Mixtral (Jiang et al., 2024a) Mixtral is a large lan-
guage model with sparse mixture of experts method
and instruction fine-tuning. It has the same architec-
ture as Mistral 7B but each layer of it consists of 8
feed-forward blocks, making it a 8×7B size model.
However, during inference, only 13B parameters
are activated.
GPT-3.5-Turbo GPT-3.5-Turbo is a large language
models of OpenAI GPT-3.5 series. It shares the
same architecture as GPT-3 (Brown et al., 2020)
and is instruction fine-tuned. The number of pa-
rameters in GPT-3.5-Turbo is 175 billion.
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B Evaluation Metrics

We describe the implementation of metrics to mea-
sure semantic similarity in this section.
BLEU (Papineni et al., 2002) The autoformal-
ization task is a type of translation task so the
most common metric in translation tasks, BLEU,
is used as one evaluation metric for autoformaliza-
tion. This metric is also used in (Wu et al., 2022)
within the same context. An implementation from
NLTK (Bird and Loper, 2004) is used.
ChrF (Popović, 2015) ChrF is another n-gram met-
ric in translation task that focuses on characters
instead of words in BLEU. We leverage this char-
acter level metric in NLTK to take character-level
granularity into account.
RUBY (Tran et al., 2019) The autoformalization
task is also a code generation task. RUBY is a met-
ric designed specifically for code generation evalu-
ation and uses edit distance to calculate the similar-
ity score. If program dependence graph (PDG) or
abstract syntax tree (AST) is provided, it calculates
graph similarity based on graph edit distance or tree
similarity based on tree edit distance. Otherwise,
it calculates string edit distance to determine the
string similarity between the reference code and
candidate code as the score. In our experiments, be-
cause of the difficulty of obtaining PDG or AST of
formal statements, we use string edit distance from
NLTK to calculate string similarity as the score.
This implementation focuses on characters rather
than tokens as in the original paper but it still makes
the score a reasonable indicator of performance.
CodeBERTScore (Zhou et al., 2023) Code-
BERTScore is a model-based metric to evaluate
performance on code generation. It uses token
representations of reference code and candidate
code to determine a final score. The original pa-
per trained different models for different program-
ming languages to get representations: however
Isabelle is not within this scope. Therefore, we use
a mathematical specific model, Llemma 7B (Azer-
bayev et al., 2024), as the supporting representation
model. Although this model is not a BERT-based
model, it can still generate meaningful representa-
tions for score calculation.

C Prompts

We provide prompts for informalization, autofor-
malization, denoising, and Auto-SEF in Table 4, 5,
6, 7, respectively.

Translate the following Isabelle/ZF code:
{statement}
into a natural language version statement as
brief as possible:

Table 4: Prompt for informalization.

Natural language version: {Natural Language
Text}
Translate the natural language version to an Is-
abelle/ZF version without any additional text
and do not give any proof: {Formal Statement}

Table 5: Prompt for autoformalization.

D Detailed Results

We provide the exact number of scores of denoising
in Table 8 and Auto-SEF in Table 9.
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Prompt
PBD 1A You are an expert in Isabelle theorem prover. You will be provided with an Isabelle/ZF code generated

by a language model. Your task is to clean the provided Isabelle/ZF code with following instructions.
Instructions:
1. The provided code might contain several lemmas or definitions or theorems. The cleaned code must
only keep the best one lemma or definition or theorem.
2. Do not write any proof and if there is a proof in the provided code, remove it from the cleaned code.
3. You should only output tokens that compose the cleaned code. Anything else, including but not limited
to note, description, explanation and comment, must be removed from the final answer. Giving any
additional text is prohibited.
Strictly follow the instructions that I have claimed.
Provided Isabelle/ZF Code: {isabelle code}
Cleaned Code:

PBD 1B 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”.

PBD 1C 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code
examples which have the same style as the original provided code:
{fixed 3-shot formal statements}

PBD 1D 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code
examples which have the same style as the original provided code:
{retrieved 3-shot formal statements}

Table 6: Prompts for informalization.

You are an expert in Isabelle theorem prover. You will be provided with an Isabelle/ZF code generated by a language
model. The provided code has some Isabelle/ZF syntax errors according to the Isabelle prover. You will also be
provided with the error details and where the error code is located in the code. Your task is to fix related errors in the
provided Isabelle/ZF code with following instructions. Instructions:
1. Only refine the code part which is related to provided error details. You must keep other code parts unchanged.
2. The syntax errors might cause by the mismatch of brackets, incorrect using of operators or invalid representation
of Isabelle/ZF code. You should only refine the error codes based on the error details by rewriting, fixing or removing
error codes.
3. You should only output tokens that compose the cleaned code. Anything else, including but not limited to
note, description, explanation and comment, must be removed from the final answer. Giving any additional text is
prohibited.
4. The cleaned code must have the same style and usage of operators as the original provided code. Operators
usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code examples which have
the same style as the original provided code:
{retrieved 3-shot formal statements}
Strictly follow the instructions that I have claimed.
Provided Isabelle/ZF Code:
{isabelle code}
{first syntax error details}
Refined Code:

Table 7: Auto-SEF prompt.
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LLM Method BLEU-2 ChrF RUBY CBS Pass
Mistral Retrieval 3-shot 6.33 48.45 28.99 76.40 17.15
Mistral Retrieval 3-shot+CBD 10.05 51.38 44.82 76.93 21.53
Mistral PBD 1A 8.88 38.27 38.23 68.04 6.57
Mistral PBD 1A+CBD 10.49 37.92 40.35 68.01 6.57
Mistral PBD 1B 11.30 43.25 42.08 70.51 9.12
Mistral PBD 1B+CBD 13.29 43.19 43.99 70.44 9.12
Mistral PBD 1C 15.21 44.52 44.59 71.92 13.50
Mistral PBD 1C+CBD 16.70 44.29 45.38 71.93 13.87
Mistral PBD 1D 14.90 48.51 46.43 74.07 28.10
Mistral PBD 1D+CBD 17.32 48.62 47.41 74.10 28.10
GPT-3.5-Turbo Retrieval 3-shot 36.06 59.70 58.56 79.34 64.96
GPT-3.5-Turbo Retrieval 3-shot+CBD 36.32 59.63 58.51 79.14 64.60
GPT-3.5-Turbo PBD 1A 38.60 57.90 58.16 78.79 63.87
GPT-3.5-Turbo PBD 1A+CBD 38.59 57.86 58.12 78.63 63.87
GPT-3.5-Turbo PBD 1B 36.49 57.08 57.79 78.27 62.04
GPT-3.5-Turbo PBD 1B+CBD 36.49 57.08 57.79 78.27 62.04
GPT-3.5-Turbo PBD 1C 37.10 57.28 57.83 78.62 63.50
GPT-3.5-Turbo PBD 1C+CBD 37.10 57.28 57.83 78.62 63.50
GPT-3.5-Turbo PBD 1D 38.50 58.09 58.17 78.99 64.60
GPT-3.5-Turbo PBD 1D+CBD 38.50 58.09 58.17 78.99 64.60

Table 8: The effect of denoising.

LLM Method BLEU-2 ChrF RUBY CBS Pass
Mistral Iteration1 14.91 45.69 44.16 72.22 30.66
Mistral Iteration2 13.23 44.84 43.72 72.04 32.12
Mistral Iteration3 12.69 44.10 42.19 71.63 32.48
Mistral Iteration4 11.29 44.18 42.30 71.53 32.85
Mistral Iteration5 11.91 43.57 41.72 71.06 33.58
Mistral Iteration6 11.87 43.48 41.69 71.09 33.58
Mistral Iteration7 11.72 43.64 41.26 70.91 33.58
Mistral Iteration8 11.10 43.24 41.55 71.00 33.58
Mistral Iteration9 11.17 43.09 40.85 70.80 33.58
GPT-3.5-Turbo Iteration1 38.11 57.66 57.45 78.71 68.98
GPT-3.5-Turbo Iteration2 38.10 57.55 57.55 78.47 69.71
GPT-3.5-Turbo Iteration3 38.09 57.55 57.57 78.48 70.07
GPT-3.5-Turbo Iteration4 37.99 57.54 57.50 78.45 70.44
GPT-3.5-Turbo Iteration5 38.08 57.58 57.62 78.51 70.44
GPT-3.5-Turbo Iteration6 38.05 57.57 57.46 78.47 70.44
GPT-3.5-Turbo Iteration7 38.00 57.53 57.39 78.49 70.44
GPT-3.5-Turbo Iteration8 37.99 57.57 57.37 78.50 70.80
GPT-3.5-Turbo Iteration9 38.01 57.55 57.42 78.48 70.80

Table 9: Auto-SEF results with applied CBD.
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