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Abstract

Multilingual large language models (LLMs)
often have knowledge disparities across lan-
guages, with larger gaps in under-resourced lan-
guages. Teaching LLMs to abstain in the face
of knowledge gaps is thus a promising strat-
egy to mitigate hallucinations in multilingual
settings. However, previous studies on LLM
abstention primarily focus on English; we find
that directly applying these solutions beyond
English results in up to 20.5% performance
gaps between high and low-resource languages,
potentially due to LLMs’ drop in calibration
and reasoning beyond a few resource-rich lan-
guages. To this end, we propose strategies to
enhance LLM abstention by learning from mul-
tilingual feedback, where LLMs self-reflect on
proposed answers in one language by gener-
ating multiple feedback items in related lan-
guages: we show that this helps identify the
knowledge gaps across diverse languages, cul-
tures, and communities. Extensive experiments
demonstrate that our multilingual feedback ap-
proach outperforms various strong baselines,
achieving up to 9.2% improvement for low-
resource languages across three black-box and
open models on three datasets, featuring open-
book, closed-book, and commonsense QA. Fur-
ther analysis reveals that multilingual feedback
is both an effective and a more equitable abstain
strategy to serve diverse language speakers, and
cultural factors have great impact on language
selection and LLM abstention behavior, high-
lighting future directions for multilingual and
multi-cultural reliable language modeling.1

1 Introduction

Large language models (LLMs) encode extensive
information and aid knowledge-intensive tasks
(Petroni et al., 2019; Brown et al., 2020; Yu et al.,
2023). However, knowledge gaps and subsequent
model hallucinations pose an everlasting challenge

1Code and data are publicly available at
https://github.com/BunsenFeng/M-AbstainQA.

Figure 1: Average accuracy of abstention baselines in
low- and high-resource languages with AYA-13B. Ex-
isting abstain strategies drop by 8.4% on average
when applied to QA in low-resource languages.

that compromises LLM reliability (Lazaridou et al.,
2021; Ji et al., 2023; Kumar et al., 2023; Mishra
et al., 2024). A growing body of work seeks to en-
hance LLM reliability by teaching them to abstain,
i.e., avoiding wrong answers in low-confidence
scenarios to mitigate hallucinations and factual in-
accuracies. While these studies put forward vi-
able solutions, they are evaluated on English only
(Gu and Hopkins, 2023; Varshney and Baral, 2023;
Yang et al., 2023; Feng et al., 2024). However, the
factuality of multilingual LLMs in low-resource
languages is often worse (Zhang et al., 2023b; Lai
et al., 2023; Kang et al., 2024), underserving di-
verse language speakers and communities. As such,
there is an urgent need for robust abstaining strate-
gies that work with the long tail of languages.

Developed and evaluated in English, are exist-
ing abstain approaches viable for low-resource lan-
guages? Drawing from Feng et al. (2024), we first
evaluate seven existing abstain methods, spanning
calibration (Jiang et al., 2021; Tian et al., 2023),
prompting (Edunov et al., 2018; Kadavath et al.,
2022; Feng et al., 2023), and training (Ouyang
et al., 2022), on multilingual MMLU and Hel-
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laswag datasets (Lai et al., 2023) featuring 8 high-
resource and 7 low-resource languages. Figure 1
demonstrates that performance degrades by up to
12.8% and 20.5% for both datasets: while existing
approaches perform well in English, they are lim-
ited by LLMs’ diminishing utility and calibration
accuracy in low-resource languages, struggling to
identify knowledge gaps and abstain accordingly.
As a result, we ask: how to identify knowledge gaps
in LLMs and reliably abstain beyond English?

To this end, we present the first study on mul-
tilingual LLM abstention and propose to teach
LLMs to abstain by generating and learning from
multilingual feedback in related languages (Fig-
ure 2). While the concept of generated feedback
was previously demonstrated to improve reasoning
and alignment in English-only scenarios (Du et al.,
2023; Madaan et al., 2024), sampling diverse and
high-quality feedback in low-resource languages
is challenging due to LLMs’ diminishing utility in
long-tail languages (Lai et al., 2023). Multilingual
LLMs can leverage related languages to improve
performance via transfer learning (Lin et al., 2019a;
Pires et al., 2019; Asai et al., 2023; Tanwar et al.,
2023), so we expect that generating feedback from
related languages would help identify knowledge
gaps across diverse domains and cultures. There-
fore, we probe multilingual LLMs to provide feed-
back, on its proposed answer, in several related
languages, where language relatedness is defined
by linguistic typology, geography, or culture (Lit-
tell et al., 2017; Lin et al., 2019b; Sun et al., 2021).
Together with the proposed answer and generated
feedback from the most related languages, LLMs
reason and self-reflect to make abstain decisions.

We evaluate baselines and our multilingual feed-
back approach using three open-source and pro-
prietary LLMs (GPT-4, Aya-13B, and ChatGPT)
on three datasets in open-domain, closed-book,
and commonsense QA. Extensive experiments
demonstrate that multilingual feedback consistently
outperforms strong baselines across models and
datasets, achieving up to 9.2% improvements of ab-
stain accuracy for low-resource languages. Further
analysis reveals that multilingual feedback presents
a more equitable abstain strategy, highlighting cul-
ture as a driving factor in multilingual abstention.
It impacts the optimal languages for feedback and
LLMs’ performance gaps across diverse informa-
tion domains.

Figure 2: Overview of abstaining via multilingual feed-
back. LLMs generate feedback on its proposed answer
in four language settings to make abstain decisions.

2 Methodology

Background We focus on teaching LLMs to Ab-
stain in Question Answering (AbstainQA) (Feng
et al., 2024): given a query q and an LLM,
we aim to develop robust abstention strategies
f(q,LLM) → {true, false}. Ideally, the LLM ab-
stains (f = true) when it would provide an in-
correct answer and should not abstain (f = false)
when it is capable of generating a correct answer
(Feng et al., 2024). f should work for diverse lan-
guages of varying language families, resourceness
levels, and speaker communities.

Since existing approaches to LLM abstention are
limited by LLMs’ diminishing utility and calibra-
tion beyond English (Figure 1, §1), we propose to
teach LLMs to abstain via multilingual feedback,
hypothesizing that self-feedback about its proposed
answer from related languages could help identify
the blind spots across cultures, perspectives, and
contexts. We present an overview in Figure 2.

Abstain with Multilingual Feedback LLMs
take three steps to make an abstain decision:

• Given a question q, the LLM first generates a
proposed answer: a = LLM(q).

• We probe the LLM itself for multilingual feed-
back on its proposed answer, concretely f i =
LLM(q,a | ℓi) where feedback f i is generated
in language ℓi. We specifically use the prompt
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“Please review the proposed answer and provide a
paragraph of feedback on its correctness. Feed-
back should be in ℓi.” to elicit f i.

• Finally, the LLM employs the multilingual
feedback to reason and make an abstain decision:
LLM(q,a, {f1,f2, · · · ,fk}) → {true, false}.
We specifically use the prompt “Based on the
feedback, is the proposed answer True or False?”
and abstain if the answer a is deemed false.

Language Selection Contrary to English-only
scenarios, it is often challenging to sample diverse
and high-quality feedback in one low-resource lan-
guage. We hypothesize that by generating feedback
in related languages to the language of the question
ℓ, LLMs could better identify internal knowledge
gaps and patch the blind spots with information
across varying cultures, perspectives, and more.
We experiment with four modes of selecting feed-
back languages {ℓ1, · · · , ℓk}.

• monolingual, native (MONO-NATIVE): all feed-
back are sampled in the native language of the
question: ℓ1 = · · · = ℓk = ℓ. This resembles the
previous English-only setting where questions
and feedback are in the same language (English).

• monolingual, English (MONO-ENGLISH): re-
gardless of the language of the question, all feed-
back are sampled in English: ℓ1 = · · · = ℓk =
English. This is because English is the highest-
resource language and is often used as the source
language in cross-lingual transfer (Conneau et al.,
2018; Conneau and Lample, 2019; Hu et al.,
2020; Wang et al., 2020b).

• multilingual, random (MULTI-RANDOM): this
is a control setting where we employ multiple
languages for feedback generation, but the lan-
guages are randomly selected from a language
pool L: ℓi = random_choice(L).

• multilingual, related (MULTI-RELATED): we
propose to employ languages related to the lan-
guage of the question ℓ for feedback generation.
Concretely, we employ Lang2vec (Littell et al.,
2017) to obtain the vector representation of a lan-
guage va

ℓ in a linguistic attribute a ∈ A.2 We
define the distance between a pair of languages

2Six attributes are considered in Lang2vec: syntactic, geo-
graphic, phonological, genetic, inventory, and featural.

as an average of distances across attributes:

dist(ℓ, ℓ′) =
1

|A|
∑

a∈A

(va
ℓ)

Tva
ℓ′

∥va
ℓ∥∥va

ℓ′∥

The k languages with the least distance to
ℓ are then selected for feedback generation:
{ℓ1, · · · , ℓk} = argmin-kℓ′ dist(ℓ, ℓ

′). We em-
ploy k = 3 multilingual feedback by default.

3 Experiment Settings

Models We evaluate existing approaches and the
four proposed monolingual/multilingual feedback
strategies with three LLMs: Aya-13B, a specifically
multilingual instruction-tuned model, ChatGPT
and GPT-4, two general-purpose black-box LLMs.
We employ greedy decoding for QA and making an
abstain decision, and employ a temperature of 0.7
when sampling repeatedly (e.g., consistency-based
baselines and feedback generation).

Datasets We evaluate with the Multilingual
MMLU (M-MMLU) and Hellaswag (M-
Hellaswag) datasets (Lai et al., 2023), featuring
encyclopedic and commonsense knowledge.
Originally in English, these QA problems were
translated into 26 other languages through machine
translation. These languages are characterized
as 8 high-resource languages, 11 mid-resource
languages, and 7 low-resource languages based
on their proportion in pretraining data.3 We also
present evaluation with Belebele (Bandarkar et al.,
2023) in Appendix A, a multilingual reading
comprehension dataset. For the three datasets,
we create random splits with 200 instances for
validation and 800 for test, with minor variation
across languages due to data availability.

Baselines We compare with nine abstain base-
lines that could be adapted in multilingual set-
tings: calibration-based PROBS (token probabil-
ities), TEMP (Jiang et al., 2021), ASK CALI. (Tian
et al., 2023); training-based INSTRUCT (Ouyang
et al., 2022); prompting-based REFLECT (Ka-
davath et al., 2022), MOREINFO (Feng et al.,
2023), BACKTRANS (Edunov et al., 2018); and
consistency-based approaches SCTHRES. (Wang
et al., 2022), CONFLICT (Feng et al., 2024). More
details about the baselines are in Appendix B.

3Full language list in Appendix B.
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Method M-MMLU M-Hellaswag
Avg-H bn ta ne ml mr te kn Avg-L Avg-H bn ta ne ml mr te kn Avg-L

AYA-13B
PROBS .567 .551 .521 .519 .542 .564 .524 .574 .542 .626 .597 .567 .555 .547 .513 .560 .580 .560
TEMP .547 .515 .439 .485 .526 .547 .518 .432 .495 .614 .610 .556 .543 .489 .559 .527 .556 .549
ASK CALI. .613 .503 .494 .476 .474 .492 .490 .460 .486 .512 .510 .489 .508 .466 .496 .514 .490 .496
INSTRUCT .539 .441 .348 .412 .362 .417 .426 .419 .404 .559 .597 .421 .510 .333 .481 .442 .480 .466
REFLECT .410 .347 .300 .339 .336 .357 .335 .347 .337 .615 .489 .357 .448 .312 .437 .404 .426 .410
MOREINFO .409 .348 .299 .350 .357 .358 .337 .368 .345 .615 .497 .360 .444 .325 .441 .393 .413 .410
BACKTRANS. .450 .421 .333 .453 .346 .354 .411 .411 .390 .542 .571 .393 .484 .300 .487 .442 .474 .450
SCTHRES. .609 .618 .614 .609 .610 .600 .584 .610 .607 .532 .532 .443 .577 .543 .572 .589 .520 .539
CONFLICT .564 .567 .581 .568 .521 .568 .561 .582 .564 .536 .520 .546 .514 .559 .548 .553 .544 .540

MONO-NATIVE .512 .580 .515 .604 .529 .576 .533 .520 .551 .552 .578 .479 .452 .467 .481 .524 .526 .501
MONO-ENGLISH .611 .611 .607 .649 .460 .583 .594 .688 .599 .581 .513 .514 .503 .513 .506 .565 .572 .527
MULTI-RANDOM .540 .597 .615 .561 .524 .549 .628 .605 .583 .481 .403 .650 .497 .627 .565 .565 .553 .551
MULTI-RELATED .631 .621 .704 .595 .661 .590 .643 .628 .635 .603 .468 .636 .542 .693 .578 .558 .566 .577

GPT-4
ASK CALI. .432 .421 .404 .500 .598 .444 .450 .589 .487 .536 .342 .307 .461 .393 .452 .376 .304 .376
INSTRUCT .789 .566 .363 .493 .386 .556 .481 .465 .473 .656 .552 .186 .432 .160 .435 .272 .270 .330
REFLECT .686 .655 .585 .649 .528 .597 .519 .589 .589 .658 .545 .229 .561 .347 .571 .483 .408 .449
MOREINFO .694 .572 .711 .588 .677 .611 .558 .612 .619 .386 .461 .486 .555 .507 .584 .469 .543 .515
BACKTRANS. .764 .634 .563 .696 .535 .660 .620 .636 .621 .538 .522 .576 .564 .677 .558 .555 .582 .576
SCTHRES. .735 .541 .544 .596 .604 .650 .605 .598 .591 .759 .508 .679 .497 .673 .508 .528 .570 .566
CONFLICT .730 .555 .641 .589 .561 .629 .559 .590 .589 .639 .488 .593 .503 .673 .501 .535 .557 .550

MONO-NATIVE .728 .655 .548 .642 .567 .660 .589 .628 .613 .708 .558 .371 .665 .307 .597 .401 .447 .478
MONO-ENGLISH .789 .669 .541 .703 .543 .653 .550 .659 .617 .737 .584 .200 .613 .260 .526 .340 .421 .421
MULTI-RANDOM .698 .710 .570 .655 .567 .681 .581 .651 .631 .714 .532 .300 .606 .380 .532 .408 .441 .457
MULTI-RELATED .785 .752 .659 .730 .638 .674 .636 .659 .678 .722 .532 .543 .706 .647 .610 .531 .572 .592

Table 1: Performance of calibration, training, prompting, consistency, and our proposed feedback-based approaches
on two LLMs and two multilingual datasets. We employ the Abstain Accuracy metric, Avg-H and Avg-L denote
average performance for high and low-resource languages, while we additionally present performance for the seven
low-resource languages (Bengali, Tamil, Nepali, Malayalam, Marathi, Telugu, and Kannada). Best performance in
bold and second-best in underline. Baselines that rely on token probabilities (e.g., Probs) are not compatible with
GPT-4. MULTI-RELATED achieves the best average performance in low-resource languages across all models
and datasets, improving over baselines by up to 9.2%.

Evaluation Metrics We use the Abstain Ac-
curacy metric (A-Acc) proposed in Feng et al.
(2024): LLMs should abstain when it would pro-
vide an incorrect answer and should not abstain
when it would provide a correct answer, concretely
A-Acc = TP+TN

TP+TN+FP+FN and TP indicates the
LLM should abstain and did. We additionally re-
port other AbstainQA metrics (Reliable Accuracy,
Effective Reliability) in Appendix A.

4 Results

We present the abstain accuracy results with two
LLMs on two multilingual datasets in Table 1.

MULTI-RELATED achieves state-of-the-art per-
formance. MULTI-RELATED achieves the high-
est average performance on low-resource languages
(Avg-L) across all four model and dataset set-
tings, improving over the strongest baseline by
4.9% on average. Out of the 7 low-resource lan-

guages, MULTI-RELATED achieves the best and top-
2 performance in 3.25 and 4.75 languages on aver-
age. This improvement in low-resource languages
comes with on-par performance in high-resource
languages (Avg-H), outperforming baselines in
81% of the times across four (model, dataset) set-
tings. This indicates that by generating and re-
flecting on multilingual feedback from related lan-
guages, LLMs greatly improve in identifying inher-
ent knowledge gaps across languages.

Existing approaches greatly drop beyond high-
resource languages. Ask for Calibration (Tian
et al., 2023), an approach to solicit LLM confi-
dence scores verbally, witness a 12.7% drop from
high to low-resource languages (0.613 → 0.486) on
MMLU using AYA-13B. While it could generate
meaningful confidence scores between 0 and 1 for
high-resource languages, it collapses and repeat-
edly generate the same number (e.g., 0.8) for al-
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most all questions in low-resource languages. Sim-
ilar performance gaps and failure modes could be
observed for previously strong approaches in En-
glish such as Instruction Tuning (35.3% drop, on
average), Self-Reflect (33.3%), and SCthreshold
(12.2%). In comparison, MULT-RELATED has a
smaller drop of 8.5%: we further quantify the fair-
ness of abstain strategies in Section 5.

Abstaining is a language-specific problem. Out
of the seven low-resource languages, we observe
that Tamil (ta) and Malayalam (ml) are consistently
the most challenging languages across models,
datasets, and approaches: an average performance
of 0.484 and 0.492 is achieved on the two lan-
guages, while the global average for low-resource
languages is 0.520. This could be attributed to their
low representation in LLM pretraining data (Lai
et al., 2023) and thus lower utility, meaning that
there is no one-size-fits-all solution for abstaining
across multilingual contexts and robust strategies
should be language-specific. MULTI-RELATED

takes linguistic knowledge into account by employ-
ing related languages for feedback generation, suc-
cessfully achieving the best Avg-L performance
across all models and datasets. We further study
the utility of language relatedness in Section 5.

AYA-13B shows smaller gaps than GPT-4.
While the performance of MULTI-RELATED is
higher on GPT-4, the gap between low and high-
resource languages is smaller with AYA-13B (1.7%
vs. 16.9%). Since MULTI-RELATED specifically
relies on generating and reasoning in multilin-
gual contexts, the explicitly multilingual AYA-13B
would be better than the general-purpose GPT-4 to
this end. This motivates a potential collaboration
between models: using a stronger general-purpose
LLM for QA and a smaller but explicitly multi-
lingual LLM for feedback generation. We further
explore this in Section 5.

5 Analysis

MULTI-RELATED is more equitable. While we
primarily focused on the performance gaps be-
tween high and low-resource languages in Section
4, measuring the fairness of a multilingual system
goes beyond performance averages. Concretely, we
follow Song et al. (2023) to measure utility and eq-
uity, indicating how well multilingual approaches
serve diverse language speakers and performance

Method Demo. (M1, ↑) Ling. (M0, ↑) Equity (G, ↓)

PROBS 0.5613 0.5632 0.0319
ASK CALI. 0.5976 0.5784 0.0488
INSTRUCT 0.4514 0.4280 0.0477
REFLECT 0.3983 0.3877 0.0460
BACKTRANS. 0.4342 0.4261 0.0517
SCTHRES. 0.5974 0.5916 0.0340
CONFLICT 0.5698 0.5630 0.0369

MONO-NATIVE 0.5181 0.5318 0.0472
MONO-ENGLISH 0.6038 0.5651 0.0564
MULTI-RANDOM 0.5442 0.5528 0.0390
MULTI-RELATED 0.6149 0.6027 0.0278

Table 2: Utility and equity metrics of abstain strate-
gies, where ↑/↓ indicates that higher/lower values are
desirable. Best performance in bold and second-best in
underline. MULTI-RELATED offers a fairer abstain
strategy with higher utility and lower Gini coeffi-
cient.

disparity across languages. For utility:

Mτ =
∑

ℓ∈L
dℓ

τ · uℓ, dℓ =
nℓ∑
ℓ∈L nℓ

where uℓ denotes the utility/performance on lan-
guage ℓ, nℓ denotes the number of native speak-
ers, the exponential τ = 1 indicates demographic
weighted utility and τ = 0 indicates lingustic
weighted utility where all languages are treated
as equals. For equity, performance on various lan-
guages are sorted in non-decreasing order (ui ≤
ui+1) and the Gini coefficient is calculated:

G =
1

| L |
(
| L | +1− 2

∑|L|
i=1(| L | +1− i)ui∑|L|

i=1 ui

)

where | L | indicates the total number of languages.
The range of G is 0 to 1 and more equitable abstain
strategies should have lower G values.

We present the demographic utility, linguistic
utility, and equity metrics in Table 2. MULTI-
RELATED outperforms baselines on both utility
modes, while being more equitable across lan-
guages, evident in the 12.9% reduction in Gini Co-
efficient. On the contrary, MONO-ENGLISH have
on-par demographic utility but worse linguistic util-
ity and equity, indicating that generated feedback
in English is unevenly helpful to other languages,
whereas low-resource languages distant from En-
glish benefit much less.

MULTI-RELATED offers relevant, informative,
and conflicting pieces of feedback. To better
understand the quality and role of the generated
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Figure 3: GPT-4 evaluation of the role of the k pieces
of feedback to a given question: whether they are
similar, complementary, conflicting, or unrelated. We
also present the abstain accuracy in each feedback role
below the role name, showing that conflicting feedback
are best for LLM self-reflection while Multi-related has
the most conflicting feedback scenarios.

feedback, we employ GPT-4 evaluation for large-
scale automatic analysis. We compare the four
feedback modes by first translating all feedback
into English with GPT-4 to remove the confound-
ing factor of language difference, then using LLM-
as-a-judge methodology (Zheng et al., 2024) for
pairwise comparison. Given a question, proposed
answer, and a pair of two feedback from MULTI-
RELATED and a baseline, GPT-4 evaluates which
feedback is more relevant and informative. We
present the win rate in Figure 4: MULTI-RELATED

is consistently more relevant to the question across
languages. While MONO-ENGLISH offers more in-
formative feedback on high-resource languages, it
degrades into the worst on low-resource languages
while MULTI-RELATED becomes the best.

For feedback roles, we first conduct a manual
examination to identify four potential roles of the k
generated feedback: similar, complementary, con-
flicting, and unrelated. We then employ GPT-4 to
evaluate the roles of k feedback, translated into En-
glish, for the same question. Figure 3 demonstrates
that monolingual approaches result in 252.7% more
similar and thus redundant feedback compared to
multilingual settings, while MULTI-RANDOM re-
sult in greater unrelated feedback potentially due to
the random selection of distant languages. In com-
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Figure 4: GPT-4 evaluation of feedback pairs to the
same question, comparing MULTI-RELATED against
other feedback settings to evaluate which produces more
relevant and informative feedback.

parison, MULTI-RELATED produces 24.7% more
conflicting scenarios where feedback disagree in
content or conclusion: the abstain accuracy on con-
flicting scenarios are also the highest, indicating
that LLMs face more knowledge conflicts (Xie
et al., 2023; Wang et al., 2023b) by generating mul-
tiple feedback from related but different languages,
which in turn aids self-reflection and making better-
informed abstain decisions (Feng et al., 2024). We
further present a qualitative analysis in Appendix
A in addition to the automatic GPT-4 evaluation.

Culture is a driving factor in multilingual ab-
stention. For MULTI-RELATED, we by default
define language relatedness as the average of the
six linguistic attributes in Lang2vec (Littell et al.,
2017). (§2) We further investigate what aspects
of “language relatedness” are most helpful for ab-
staining across multilingual contexts. Specifically,
we additionally select related languages only by
one of the six categories (e.g., syntactic or phono-
logical relatedness). We introduce two additional
settings: 1) LLMs are prompted to propose three
related languages by themselves; 2) related lan-
guages in the same culture cluster according to the
World Value Survey.4 We present the performance
of various language relatedness settings in Table
3. We observe that geography and phonology are
the most helpful linguistic attributes, while culture-
informed language selection yields the best utility
and equity results. This indicates that multilingual
feedback from languages of related socio-cultural
backgrounds is most helpful for low-resource lan-
guages and overall fairness.

To further investigate the impact of culture, we

4https://www.worldvaluessurvey.org
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Setting Avg-H Avg-M Avg-L Equity (↓)

DEFAULT 0.6411 0.5861 0.4432 0.0943
SYNTACTIC 0.6452 0.5843 0.4395 0.0967
GEOGRAPHIC 0.6589 0.5892 0.4712 0.0880
PHONOLOGICAL 0.6499 0.5881 0.5017 0.0694
GENETIC 0.6476 0.6024 0.4944 0.0839
INVENTORY 0.6371 0.5827 0.4356 0.0950
FEATURAL 0.6412 0.6116 0.4417 0.0916
LLM-GENERATED 0.6316 0.5929 0.4362 0.0981
CULTURE 0.6425 0.6202 0.5322 0.0438

Table 3: Performance averages for high, mid, and low-
resource languages, as well as the equity metric G for
various language relatedness settings. Best performance
in bold and second-best in underline. Culturally in-
formed language selection is best for mid and low-
resource languages and also more equitable.

present the performance breakdown of various
MMLU domains in Figure 6. We illustrate the
10 domains with the largest gaps between low- and
high-resource languages and 10 domains with the
least gaps. The largest gaps often come from west-
centric topics such as “US history”, “European his-
tory”, and “US foreign policy”, while the smallest
gaps are often on STEM domains that transcend
socio-cultural contexts such as “logical fallacies”,
“high school physics”, and “electrical engineering”.
This again indicates that culture is a driving factor
in multilingual abstention: improving LLM abstain
capabilities is not only a technical problem but
also a social-oriented one, where the existing West-
centric LLMs (Naous et al., 2023) should better
incorporate other cultures and perspectives for eq-
uitable improvements in factuality and reliability.

Abstain decisions are less transferable across
unrelated and low-resource languages. One so-
lution to multilingual abstain is to take the highest-
resource language (e.g., English), make abstain de-
cisions, and use that decision to abstain/generate in
low-resource languages. However, to what extent
do abstain decisions overlap across languages and
thus transferable remains underexplored, which
could not be taken for granted given the factual-
ity variation across languages (Lai et al., 2023;
Kang et al., 2024). To this end, we visualize the
abstain overlap of parallel questions across various
three-language groups in Figure 5, where overlap-
ping parts indicate that MULTI-RELATED for 2 or
3 languages decided to abstain. For control group
#1, the group of three related languages sees much
greater overlap (74.5% 2+ overlap) than the three
unrelated languages (48.1%). For control group

Method High-Resource

ru de zh fr es it nl vi avg.

SELF .818 .852 .794 .838 .823 .769 .831 .555 .785
OTHER .733 .788 .762 .772 .815 .733 .808 .668 .760

Method Low-Resource

bn ta ne ml mr te kn / avg.

SELF .752 .659 .730 .638 .674 .636 .659 / .678
OTHER .788 .722 .735 .656 .669 .735 .697 / .715

Table 4: Performance when using GPT-4 itself or the
other AYA-13B multilingual LLM for feedback genera-
tion. The collaboration between a general-purpose LLM
for QA and a smaller but more multilingual model for
feedback generation benefits low-resource languages.

Figure 5: Overlap of abstain decisions made in differ-
ent languages, where the overlap indicates that LLMs
abstain in both/all three of the languages. We find that
abstain decisions are only somewhat transferrable
between relevant and high-resource language clus-
ters.

#2, a group of three high-resource languages sees
greater overlap (70.5%) than three low-resource
languages (48.4%). These two findings together
indicate that abstain decisions are only somewhat
transferable in the case of high-resource closely
related languages: however, many languages on
the long tail are neither close to English nor well-
represented in LLM training data, thus English-
only abstain methods are not one-size-fit-all solu-
tions and abstaining is a language-specific problem.

General-purpose LLMs could be supervised by
a smaller but more multilingual model. Moti-
vated by the finding that GPT-4 has higher absolute
performance but Aya-13B witnesses smaller gaps
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Figure 6: Abstain accuracy on various MMLU domains with high and low-resource languages: on the left we show
the 10 domains with the least performance gaps and on the right we show the 10 with the most gaps. “hs” indicates
high school. While domains with the least gaps often feature STEM topics that are more objective, domains
with the largest gaps are often driven by culture, especially West-centric social knowledge.

with MULTI-RELATED (§4), we explore the collab-
oration between the two models: using GPT-4 for
question answering and Aya-13B for multilingual
feedback generation. Table 4 demonstrates that
while for high-resource languages this might be
counterproductive, for low-resource languages it re-
sults in a 5.4% improvement on average. This indi-
cates that when user queries come in low-resource
and underrepresented languages, a smaller but ex-
plicitly multilingual model could be employed to
supervise general-purpose black-box LLMs to im-
prove abstaining and mitigate hallucinations.

6 Related Work

Teaching LLMs to Abstain Existing works fo-
cus on various types of approaches: Calibration-
based approaches focus on eliciting the confidence
levels of LLMs with token probabilities (Sun et al.,
2022; Zhou et al., 2023a; Liu et al., 2023a) or se-
mantic markers of uncertainty (Kuhn et al., 2022;
Zhou et al., 2023b, 2024), where previous research
evaluate (Radford et al., 2019; Ahuja et al., 2022;
Liang et al., 2023; Tao et al., 2023; He et al.,
2023) and improve (Kamath et al., 2020; Desai
and Durrett, 2020; Jagannatha and Yu, 2020; Kong
et al., 2020; Jiang et al., 2021; Lin et al., 2022a;
Mielke et al., 2022) calibration for various tasks
(Wang et al., 2020a; Stengel-Eskin and Van Durme,
2023; Kalai and Vempala, 2023; Zablotskaia et al.,
2023). Prompting-based approaches induce self-
reflection by including none-of-the-above options
(Kadavath et al., 2022), prompt to self-correct rea-
soning (Kim et al., 2024; Shinn et al., 2023; Huang
et al., 2023a; Chen et al., 2023), ask for addi-
tional information (Feng et al., 2023), and more
(Wang et al., 2023a; Si et al., 2023). Training-

based approaches aim to adapt LLMs for absten-
tion with linear probing (Slobodkin et al., 2023;
Azaria and Mitchell, 2023), training an extra mod-
ule (Cobbe et al., 2021), or alignment objectives
(Zhang et al., 2023a; Yang et al., 2023; Sun et al.,
2023; Bashlovkina et al., 2023; Huang et al., 2023b;
Liu et al., 2023b). Consistency-based (Wang et al.,
2022; Cole et al., 2023) and collaboration-based
approaches (Feng et al., 2024) are also explored
to gauge LLM confidence through output varia-
tion from a single model or knowledge variation
across multiple models. However, most existing ap-
proaches were proposed and evaluated with English
only, while Figure 1 shows that multilingual absten-
tion poses new challenges to existing solutions and
leads to performance gaps based on language re-
sourcesness. To mitigate this gap, we propose to
teach LLMs to abstain by learning from multilin-
gual feedback, where diverse feedback are gener-
ated in related languages to enhance reliability and
make trustworthy abstain decisions.

Multilingual Factuality While early factuality
studies were mostly conducted in English (Huang
et al., 2023b; Zhang et al., 2023c; Ji et al., 2023),
understanding and mitigating hallucinations be-
yond English is increasingly important for LLMs
to equitably serve diverse populations (Liu et al.,
2022; Lai et al., 2023; Xu et al., 2023a,b; Qi
et al., 2023; Schott et al., 2023; Kang et al., 2024;
Gao et al., 2024). In multilingual summarization,
metrics and evaluations are proposed to quantify
factual errors and utility (Aharoni et al., 2022;
Qiu et al., 2023; Clark et al., 2023). In machine
translation, faithfulness across diverse languages
is also a critical concern (Lee et al., 2018; Rau-
nak et al., 2021; Xu et al., 2023c; Dale et al.,
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2023a,b). A diverse range of models (Lin et al.,
2022b; Muennighoff et al., 2023; Lai et al., 2023;
Üstün et al., 2024), datasets (Artetxe et al., 2020;
Clark et al., 2020; Longpre et al., 2021; Chalkidis
et al., 2022; Gehrmann et al., 2022; Ebrahimi et al.,
2022; Li et al., 2022; Asai et al., 2023; Ogundepo
et al., 2023; Ahuja et al., 2023; Wang et al., 2024),
and studies on multilingual transfer (Lin et al.,
2019a; Pires et al., 2019; Wu and Dredze, 2019;
Karthikeyan et al., 2019; Wu et al., 2022; Fujinuma
et al., 2022; Üstün et al., 2022; Schmidt et al., 2022;
Asai et al., 2023; Philippy et al., 2023; Tanwar et al.,
2023; Reusens et al., 2023; Li et al., 2024b; Gao
et al., 2024) also contribute to the improvement of
LLM factuality and utility beyond English. In this
work, we present the first study on LLM abstain-
ing in multilingual contexts and make an important
step toward improving the reliability of multilin-
gual LLMs and mitigating hallucinations.

7 Conclusion

We propose to improve the reliability of multilin-
gual LLMs by abstaining via multilingual feedback,
where LLMs generate feedback to their proposed
answer in related languages for self-reflection. Ex-
tensive experiments demonstrate that multilingual
feedback achieves up to 9.2% improvement against
baselines across models and datasets, while pre-
senting a more equitable solution to multilingual
abstention. Further analysis reveals that abstention
is a language-specific problem, that multilingual
feedback in related languages both improves the
accuracy of abstention and calibrates the fairness
across higher- and lower-resource languages, and
that cultural relatedness is an important factor in
the utility and equity of abstention, highlighting
that multilingual modeling is not only a technical
problem but also a social-oriented one.

Limitations

Our study of teaching LLMs to abstain focuses
on the knowledge perspective, i.e., LLMs should
abstain when their parametric knowledge is insuffi-
cient to provide a correct answer. However, the ab-
stain problem also has implications from the safety
perspective (Huang et al., 2023b; Liu et al., 2023b).
We envision future methodologies and evaluations
that tackle both directions of the abstain problem
across diverse language contexts.

Our approach, teaching LLMs to abstain via
multilingual feedback, involves sampling multiple

feedback from related languages to promote self-
reflection. This sampling introduces minor random-
ness in LLMs’ abstain decisions (Appendix A). In
addition, it would incur greater inference costs than
the most simple prompting approaches, but is also
not the most expensive (Feng et al., 2024). When
a black-box LLM with hundreds of billions of pa-
rameters is served behind an API call, our approach
enables the incorporation of one extra multilingual
7B model for stronger reliability (Table 4) and does
not add much to the overall cost.

Ethics Statement

While abstaining in multilingual contexts is a tech-
nical problem, we discover the role of culture in
AbstainQA and that west-centric LLMs (Naous
et al., 2023; Li et al., 2024a; Rao et al., 2024) are
hindering progress on equitable LLM abstention
(§5). This encourages research at the intersection of
multilingualism and culture (Choenni et al., 2024).
We envision future work on not only proposing
technical solutions to the abstain problem, but also
improving the representation of diverse values, per-
spectives, and cultures in LLMs.
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A Analysis (cont.)

MULTI-RELATED helps abstaining in cross-
lingual retrieval. When retrieval corpora are not
readily available in low-resource languages, cross-
lingual retrieval (Asai et al., 2021; Shen et al., 2022;
Huang et al., 2023c; Wieting et al., 2023; Lin et al.,
2023; Thakur et al., 2024) is often necessary for
retrieval-augmented LLMs (Lewis et al., 2020; Shi
et al., 2024; Yasunaga et al., 2023; Xu et al., 2024),
where user queries are translated to high-resource
languages and retrieval is performed with that lan-
guage. We investigate whether our multilingual
feedback approach works in this setting: we use
English Wikipedia for retrieval 5 and prepend back-
translated paragraphs before the query from the
seven low-resource languages. We evaluate various
abstain approaches with CHATGPT and present
performance in Figure 7. Our proposed multilin-
gual feedback approach outperforms baselines for
six of the seven low-resource languages, by 6.9%
on average. This indicates that our Multi-related
approach could also improve multilingual LLM
reliability in retrieval-augmented settings.

FP and FN False positives refer to cases where
the LLM should be able to provide the correct an-
swer but abstained, while false negatives are cases
where the LLM did not abstain but generated an
incorrect answer. We present the false positive and
false negative rates of MULTI-RELATED in Figure
8: we find that on high-resource languages, LLMs
tend to be more “confident” and the FN is usually
higher; for low-resource languages, LLMs tend to
be more “conservative” and the FP is usually higher.
We argue that having a high FP for low-resource
languages is desirable since LLM has diminishing
factuality on the long tail of languages, thus LLMs
should be more cautious and abstain more.

Correlation between QA Performance and Ab-
stain Performance We present the question an-
swering accuracy as well as the abstain accuracy
across various languages in Figure 9. We find that
there is no lock-step synchronization between the
two metrics, indicating that abstaining is an inde-
pendent problem to question answering that needs
further studies.

Another Dataset: Belebele Belebele (Bandarkar
et al., 2023) is a multilingual reading compre-
hensive benchmark featuring parallel questions

5We retrieve Wikipedia with the WikiSearch API.

Method Avg-H Avg-M Avg-L

PROBS 0.8028 0.7550 0.3604
TEMP 0.5988 0.5583 0.4331
ASK CALI. 0.4370 0.4336 0.6163
INSTRUCT 0.8036 0.7534 0.3704
REFLECT 0.5814 0.5231 0.4429
MOREINFO 0.7888 0.7430 0.3814
BACKTRANS. 0.6711 0.6366 0.4396
SCTHRES. 0.8136 0.7688 0.4634
CONFLICT 0.7072 0.6926 0.5741

MONO-NATIVE 0.6955 0.6774 0.4784
MONO-ENGLISH 0.6048 0.5891 0.6009
MULTI-RANDOM 0.7161 0.6807 0.4804
MULTI-RELATED 0.7906 0.7445 0.6386

Table 5: Performance averages for high, mid, and low-
resource languages on Belebele (Avg-H, -M, and -L).

across 122 languages and variants. We evalu-
ate baselines and our feedback-based approaches
on Belebele and present the results in Table 5.
MULTI-RELATED achieves the best performance
on low-resource language, while falling behind the
strongest baselines in this reading comprehension
setting. This motivates using different methodolo-
gies for abstention in different language contexts.

Working Examples We conduct qualitative anal-
ysis to validate the generated feedback and abstain
decisions. We specifically present several working
examples in Tables 14, 15, and 16.

Standard Deviation Since MULTI-RELATED

samples feedback from multiple languages, this
sampling introduces randomness in the feedback
content and potentially different abstain decisions.
We re-run MULTI-RELATED three times with tem-
perature τ = 0.7, and we find that the standard
deviation across runs is 0.0227, 0.0198, and 0.0086
for high, mid, and low-resource languages, indicat-
ing that the abstain performance is largely stable.

AbstainECE Aside from a binary decision of
abstaining or answering, the probabilities of the
abstain decision token (True/False) could be em-
ployed as an indicator for probabilistic abstention.
We present the AbstainECE metric (Feng et al.,
2024) in Table 6, which demonstrates that MONO-
ENGLISH and MULTI-RELATED are stronger while
the latter is best for low-resource languages. We
envision improving LLM calibration with multilin-
gual contexts could also help.

Number of feedback We employ from one to
five pieces of feedback in MULTI-RANDOM and
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Figure 7: Abstain accuracy in the cross-lingual retrieval setting, where English Wikipedia is employed for retrieval
to aid QA in low-resource languages. Multilingual feedback consistently produces more accurate abstain decisions
in six of the seven low-resource languages.

Figure 8: False positives and false negatives for MULTI-
RELATED across low- and high-resource languages.
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Figure 9: QA accuracy and abstain accuracy on the M-
MMLU dataset with two LLMs. There is no lockstep
synchronization between the two performance metrics,
indicating that abstention is an independent research
question. High-, mid-, and low-resource languages are
labeled in red, orange, and blue colors, respectively.

Method Avg-H Avg-M Avg-L

MONO-NATIVE 0.4594 0.4630 0.4276
MONO-ENGLISH 0.4410 0.4314 0.4114
MULTI-RANDOM 0.4713 0.4829 0.4475
MULTI-RELATED 0.4426 0.4476 0.3990

Table 6: AbstainECE averages for high, mid, and low-
resource languages on Belebele (Avg-H, -M, and -L),
the lower the better.

1 2 3 4 5

Avg-H 0.5768 0.5878 0.5397 0.5856 0.5703
Avg-M 0.5484 0.5528 0.5435 0.5556 0.5501
Avg-L 0.4688 0.4959 0.5825 0.5003 0.5004

Table 7: Abstain accuracy with one to five feedback(s)
with MULTI-RANDOM, AYA-13B, and M-MMLU.

high mid low equity (↓)

default 0.6411 0.5861 0.4432 0.0943
reverse 0.6285 0.5297 0.4184 0.1294
self-included 0.6055 0.5638 0.4429 0.0743
lang var. 0.5790 0.4488 0.3726 0.0964

Table 8: Ablation settings of MULTI-RELATED, with
ChatGPT and M-MMLU.

report performance in Table 7. We find that per-
formance saturates with three pieces of feedback,
while it also fluctuates across language resource-
ness levels.

Other Metrics In addition to abstain accuracy,
we additionally report two more AbstainQA met-
rics, reliable accuracy (Feng et al., 2024) and ef-
fective reliability (Whitehead et al., 2022; Si et al.,
2023) in Table 9. MULTI-RELATED achieves the
best performance in four of the six settings.

Ablation Settings We present several ablation
setting of MULTI-RELATED: 1) reverse, where the
most distant languages are selected for feedback
generation; 2) self-included, where the language of
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Reliable Accuracy Effective Reliability

Avg-H Avg-M Avg-L Avg-H Avg-M Avg-L

PROBS 0.4772 0.4800 0.3868 -0.0269 -0.0232 -0.1220
TEMP 0.4635 0.4651 0.3694 -0.0472 -0.0442 -0.1705
ASK CAL. 0.5297 0.5207 0.4012 0.0209 0.0143 -0.1069
INSTRUCT 0.4255 0.4256 0.3477 -0.1412 -0.1404 -0.2538
REFLECT 0.4069 0.4019 0.3364 -0.1843 -0.1944 -0.3260
BACKTRANS. 0.4277 0.4198 0.3517 -0.1292 -0.1445 -0.2648
SCTHRES. 0.5389 0.5254 0.3878 0.0260 0.0172 -0.0547
CONFLICT 0.4585 0.4559 0.3636 -0.0316 -0.0338 -0.1004

MONO-NATIVE 0.4333 0.4437 0.3973 -0.0705 -0.0604 -0.0821
MONO-ENGLISH 0.4796 0.4594 0.3884 -0.0242 -0.0406 -0.0695
MULTI-RANDOM 0.4565 0.4376 0.3640 -0.0344 -0.0416 -0.0656
MULTI-RELATED 0.5402 0.4973 0.4474 0.0279 -0.0077 -0.0289

Table 9: Other AbstainQA metrics with AYA-13B and MMLU.

the question is also employed to generate feedback;
3) lang var., where the feedback content stays the
same but translated to different related languages.
Table 8 demonstrates that the default setting often
works best, while including the original language
for feedback generation could be beneficial for cer-
tain cases.

Another Interpretation of Abstain Overlap
For Figure 5, another way is to compare the propor-
tion of consensus, where LLMs abstain for zero or
all three of languages. In this definition, the same
conclusion still holds: the first control group has
23.1% vs. 20.9%, while the second control group
has 32.1% vs. 16.2%.

Randomness in Sampling Feedback We ran-
domly sample feedback sets with temperature of 1
and repeat for 3 runs. If the LLM abstains/answers
in all 3 runs, then it is deemed consistent; 1:2 and
2:1 scenarios are then deemed as inconsistent. We
present results in Table 10, showing that learning
to abstain from multilingual feedback is largely
consistent.

bn ml mr ne ta te

MMLU, consistent 103 101 99 117 114 95
MMLU, inconsistent 42 26 35 31 21 34
consistent rate % 71.03 79.53 73.88 79.05 84.44 73.64
Hellaswag, consistent 115 136 115 131 122 122
Hellaswag, inconsistent 39 14 39 24 18 25
consistent rate % 74.68 90.67 74.68 84.52 87.14 82.99

Table 10: Consistency when repeating the feedback
sampling for three times.

B Experiment Details

Dataset Details We employ M-MMLU, M-
Hellaswag (Lai et al., 2023), and Belebele (Ban-
darkar et al., 2023) as evaluations of multilingual
AbstainQA. Specifically, we adopt 26 languages
beyond English: 8 high-resource (Russian, ru; Ger-
man, de; Chinese, zh; French, fr; Spanish, es; Ital-
ian, it; Dutch, nl; Vietnamese, vi), 11 mid-resource
languages (Indonesian, id; Arabic, ar; Hungar-
ian, hu; Romanian, ro; Danish, da; Slovak, sk;
Ukrainian, uk; Catalan, ca; Serbian, sr; Croatian,
hr; Hindi, hi), and 7 low-resource languages (Ben-
gali, bn; Tamil, ta; Nepali, ne; Malayalam, ml;
Marathi, Mr; Telugu, te; Kannada, kn). We follow
the definition of language resourceness based on
pretraining data frequency in Lai et al. (2023). We
randomly sample 200 questions for validation and
800 questions for test from each language, with
minor variation across languages based on data
availability.

Model Details We employ the
“CohereForAI/aya-101” model checkpoint
on Huggingface for AYA-13B, and the Azure
OpenAI API checkpoint of “gpt4” for GPT-4,
and the “GPT-3.5-TURBO-INSTRUCT” model
checkpoint on OpenAI API for CHATGPT.

Baseline Details We refer readers to Feng et al.
(2024) for a complete description of baselines. For
the additional BACKTRANSLATION baseline, we
translate the question to English and make an ab-
stain decision in English, then use that abstain de-
cision for other languages.
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GPT-4 Evaluation Details For quality evalua-
tion, we employ “Question: <question> Proposed
Answer: <answer> Feedback 1: <feedback> Feed-
back 2: <feedback> Which feedback is more rele-
vant to the question?” and “Question: <question>
Proposed Answer: <answer> Feedback 1: <feed-
back> Feedback 2: <feedback> Which feedback
is more informative?”. For role evaluation, we
employ “Question: <question> Proposed Answer:
<answer> Feedback 1: <feedback> Feedback 2:
<feedback> Feedback 3: <feedback >What is the
relationship among the three feedbacks? A. simi-
lar B. complementary C. conflicting D. unrelated
Relationship:”.

Implementation Details We present the related
languages employed for feedback generation in the
Language Relatedness study (§5) in Tables 11, 12,
and 13.
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default:{ "en": ["German", "Dutch", "French"], "ru": ["Ukrainian", "Romanian", "Catalan"], "de":
["Dutch", "English", "French"], "zh": ["Arabic", "Slovak", "Danish"], "fr": ["Catalan", "German",
"Spanish"], "es": ["Catalan", "Romanian", "French"], "it": ["Catalan", "Romanian", "Ukrainian"], "nl":
["German", "Italian", "Ukrainian"], "vi": ["Indonesian", "English", "Bengali"], "id": ["Vietnamese",
"Catalan", "Russian"], "ar": ["Chinese", "Slovak", "Danish"], "hu": ["Romanian", "German", "French"],
"ro": ["Catalan", "Italian", "Spanish"], "da": ["Slovak", "Dutch", "Ukrainian"], "sk": ["Chinese", "Ara-
bic", "Danish"], "uk": ["Russian", "Italian", "Croatian"], "ca": ["Romanian", "Spanish", "Italian"], "sr":
["Slovak", "Danish", "Croatian"], "hr": ["Ukrainian", "Italian", "Dutch"], "hi": ["Bengali", "Talugu",
"Marathi"], "bn": ["Hindi", "Telugu", "Nepali"], "ta": ["Malayalam", "Marathi", "Kannada"], "ne":
["Kanaada", "Telugu", "Hindi"], "ml": ["Tamil", "Marathi", "Kannada"], "mr": ["Tamil", "Malayalam",
"Hindi"], "te": ["Kannada", "Tamil", "Nepali"], "kn": ["Telugu", "Malaayalam", "Tamil"] }

syntactic: "en": ["Spanish", "German", "French"], "ru": ["Ukrainian", "German", "Spanish"], "de":
["Dutch", "English", "Russian"], "zh": ["Arabic", "Slovak", "Hungarian"], "fr": ["Spanish", "English",
"German"], "es": ["English", "French", "Russian"], "it": ["Catalan", "Romanian", "Dutch"], "nl": ["Ger-
man", "Italian", "Danish"], "vi": ["Indonesian", "English", "French"], "id": ["Vietnamese", "English",
"Italian"], "ar": ["Chinese", "Slovak", "Hungarian"], "hu": ["Russian", "Italian", "Romanian"], "ro":
["Italian", "Ukrainian", "Spanish"], "da": ["Dutch", "German", "French"], "sk": ["Chinese", "Arabic",
"Hungarian"], "uk": ["Russian", "Italian", "Romanian"], "ca": ["Italian", "Dutch", "Romanian"], "sr":
["Catalan", "Ukrainian", "German"], "hr": ["Serbian", "Vietnamese", "Danish"], "hi": ["Kannada",
"Russian", "Ukrainian"], "bn": ["Marathi", "Hindi", "Tamil"], "ta": ["Telugu", "Kannada", "Marathi"],
"ne": ["Kannada", "Telugu", "Hindi"], "ml": ["Telugu", "Kannada", "Tamil"], "mr": ["Tamil", "Ben-
gali", "Telugu"], "te": ["Tamil", "Nepali", "Kannada"], "kn": ["Tamil", "Nepali", "Hindi"],

featural: "en": ["German", "Russian", "French"], "ru": ["Romanian", "Ukrainian", "English"], "de":
["English", "French", "Dutch"], "zh": ["Arabic", "Slovak", "English"], "fr": ["German", "English",
"Russian"], "es": ["English", "Russian", "French"], "it": ["Dutch", "Romanian", "Ukrainian"], "nl":
["German", "Italian", "English"], "vi": ["Indonesian", "English", "French"], "id": ["Vietnamese",
"Catalan", "English"], "ar": ["Chinese", "Slovak", "English"], "hu": ["Rominian", "English", "Russian"],
"ro": ["Russian", "Italian", "Hungarian"], "da": ["Serbian", "English", "Russian"], "sk": ["Chinese",
"Arabic", "English"], "uk": ["Russian", "Italian", "Romanian"], "ca": ["Italian", "Dutch", "Romanian"],
"sr": ["Danish", "Russian", "Spanish"], "hr": ["Catalan", "English", "Russian"], "hi": ["Bengali",
"Nepali", "Telugu"], "bn": ["Hindi", "Nepali", "Telugu"], "ta": ["Malayalam", "Marathi", "Telugu"],
"ne": ["Hindi", "Bengali", "Marathi"], "ml": ["Tamil", "Marathi", "Kannada"], "mr": ["Tamil", "Nepali",
"Malayalam"], "te": ["Hindi", "Bengali", "Tamil"], "kn": ["Hindi", "Tamil", "Nepali"],

genetic: "en": ["German", "Dutch", "Danish"], "ru": ["Ukrainian", "Slovak", "Serbian"], "de": ["Dutch",
"English", "Danish"], "zh": ["English", "Russian", "German"], "fr": ["Spanish", "Catalan", "Italian"],
"es": ["Catalan", "Romanian", "French"], "it": ["Romanian", "Catalan", "Spanish"], "nl": ["German",
"English", "Danish"], "vi": ["English", "Russian", "German"], "id": ["English", "Russian", "German"],
"ar": ["English", "Russian", "German"], "hu": ["English", "Russian", "German"], "ro": ["Spanish", "Ital-
ian", "Catalan"], "da": ["German", "English", "Dutch"], "sk": ["Russian", "Ukrainian", "Serbian"], "uk":
["Russian", "Slovak", "Serbian"], "ca": ["Spanish", "Romanian", "Italian"], "sr": ["Croatian", "Rus-
sian", "Ukrainian"], "hr": ["Serbian", "Russian", "Slovak"], "hi": ["Bengali", "Marathi", "German"],
"bn": ["Hindi", "Marathi", "English"], "ta": ["Malayalam", "Kannada", "Telugu"], "ne": ["English",
"Russian", "German"], "ml": ["Tamil", "Kannada", "Telugu"], "mr": ["Hindi", "Bengali", "Russian"],
"te": ["Tamil", "Malayalam", "Kannada"], "kn": ["Malayalam", "Tamil", "Telugu"],

Table 11: Related languages across different method settings, part 1.
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geographic: "en": ["French", "Dutch", "Danish"], "ru": ["English", "German", "French"], "de":
["French", "Italian", "Dutch"], "zh": ["English", "Russian", "German"], "fr": ["English", "German",
"Spanish"], "es": ["French", "Catalan", "English"], "it": ["German", "French", "Hungarian"], "nl":
["English", "German", "French"], "vi": ["Indonesian", "Bengali", "Nepali"], "id": ["Vietnamese",
"Bengali", "Tamil"], "ar": ["English", "Russian", "German"], "hu": ["German", "Italian", "Roma-
nian"], "ro": ["German", "Italian", "Hungarian"], "da": ["English", "German", "French"], "sk": ["Ger-
man", "Italian", "Hungarian"], "uk": ["German", "Hungarian", "Romanian"], "ca": ["French", "Span-
ish", "Italian"], "sr": ["German", "Italian", "Hungarian"], "hr": ["German", "Italian", "Hungarian"],
"hi": ["Nepali", "Marathi", "Telugu"], "bn": ["Nepali", "Vietnamese", "Hindi"], "ta": ["Malayalam",
"Marathi", "Telugu"], "ne": ["Hindi", "Bengali", "Vietnamese"], "ml": ["Tamil", "Marathi", "Tel-
ugu"], "mr": ["Hindi", "Tamil", "Malayalam"], "te": ["Hindi", "Tamil", "Malayalam"], "kn": ["Tamil",
"Malayalam", "Marathi"],

inventory: "en": ["German", "Marathi", "Telugu"], "ru": ["Ukrainian", "Croatian", "Romanian"], "de":
["Dutch", "French", "English"], "zh": ["Arabic", "Danish", "Slovak"], "fr": ["Hungarian", "Dutch",
"German"], "es": ["Hungarian", "German", "Indonesian"], "it": ["Catalan", "Romanian", "Ukrainian"],
"nl": ["German", "French", "Hungarian"], "vi": ["English", "Dutch", "German"], "id": ["Catalan",
"Croatian", "Romanian"], "ar": ["Chinese", "Danish", "Slovak"], "hu": ["French", "Romanian", "Ital-
ian"], "ro": ["Ukranian", "Catalan", "Italian"], "da": ["Chinese", "Arabic", "Slovak"], "sk": ["Chinese",
"Arabic", "Danish"], "uk": ["Romanian", "Russian", "Italian"], "ca": ["Indonesian", "Italian", "Ro-
manian"], "sr": ["Chinese", "Arabic", "Danish"], "hr": ["Catalan", "Indonesian", "Hungarian"], "hi":
["Telugu", "Bengali", "Nepali"], "bn": ["Telugu", "Nepali", "Hindi"], "ta": ["Kannada", "Malay-
alam", "Marathi"], "ne": ["Marathi", "Bengali", "Kannada"], "ml": ["Kannada", "Marathi", "Tamil"],
"mr": ["Kannada", "Malayalam", "Nepali"], "te": ["Hindi", "Bengali", "Nepali"], "kn": ["Malayalam",
"Marathi", "Tamil"],

phonological: "en": ["Indonesian", "Russian", "Catalan"], "ru": ["Catalan", "Hungarian", "Hindi"], "de":
["French", "Hungarian", "English"], "zh": ["Italian", "Dutch", "Arabic"], "fr": ["German", "Hungarian",
"Hindi"], "es": ["English", "Russian", "Catalan"], "it": ["Chinese", "Dutch", "Arabic"], "nl": ["Chinese",
"Italian", "Arabic"], "vi": ["Indonesian", "English", "Russian"], "id": ["English", "Russian", "Catalan"],
"ar": ["Chinese", "Italian", "Dutch"], "hu": ["Russian", "Catalan", "German"], "ro": ["Russian",
"Catalan", "German"], "da": ["Chinese", "Italian", "Dutch"], "sk": ["Chinese", "Italian", "Dutch"],
"uk": ["Chinese", "Italian", "Dutch"], "ca": ["Russian", "Hungarian", "Hindi"], "sr": ["Spanish",
"Chinese", "Italian"], "hr": ["Chinese", "Italian", "Dutch"], "hi": ["Russian", "Catalan", "French"],
"bn": ["Telugu", "Kannada", "Russian"], "ta": ["Chinese", "Italian", "Dutch"], "ne": ["Romanian",
"Telugu", "Kannada"], "ml": ["Chinese", "Italian", "Dutch"], "mr": ["Chinese", "Italian", "Dutch"],
"te": ["Kannada", "Russian", "Catalan"], "kn": ["Kannada", "Russian", "Catalan"],

Table 12: Related languages across different method settings, part 2.
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WVS: "en": ["English", "English", "English"], "ru": ["Ukrainian", "Romanian", "Russian"], "de":
["German", "Dutch", "Danish"], "zh": ["Chinese", "Chinese", "Chinese"], "fr": ["French", "Slovak",
"Hungarian"], "es": ["French", "Slovak", "Hungarian"], "it": ["French", "Slovak", "Hungarian"], "nl":
["German", "Dutch", "Danish"], "vi": ["Vietnamese", "Vietnamese", "Vietnamese"], "id": ["Indone-
sian", "Indonesian", "Indonesian"], "ar": ["Arabic", "Hindi", "Bengali"], "hu": ["French", "Slovak",
"Hungarian"], "ro": ["Ukrainian", "Romanian", "Russian"], "da": ["German", "Dutch", "Danish"], "sk":
["French", "Slovak", "Hungarian"], "uk": ["Ukrainian", "Romanian", "Russian"], "ca": ["Catalan",
"Catalan", "Catalan"], "sr": ["Serbian", "Serbian", "Serbian"], "hr": ["French", "Slovak", "Hungarian"],
"hi": ["Arabic", "Hindi", "Bengali"], "bn": ["Arabic", "Hindi", "Bengali"], "ta": ["Arabic", "Hindi",
"Bengali"], "ne": ["Arabic", "Hindi", "Bengali"], "ml": ["Arabic", "Hindi", "Bengali"], "mr": ["Arabic",
"Hindi", "Bengali"], "te": ["Arabic", "Hindi", "Bengali"], "kn": ["Arabic", "Hindi", "Bengali"],

LLM-generated: "en": ["Frisian", "Dutch", "German"], "ru": ["Belarusian", "Ukrainian", "Rusyn"],
"de": ["Dutch", "Luxembourgish", "Yiddish"], "zh": ["Cantonese", "Shanghainese", "Hokkien"], "fr":
["Italian", "Spanish", "Catalan"], "es": ["Portuguese", "Catalan", "Italian"], "it": ["Sicilian", "Neapoli-
tan", "Tuscan"], "nl": ["Afrikaans", "Frisian", "German"], "vi": ["Muong", "Khmer", "Mon"], "id":
["Malay", "Minangkabau", "Javanese"], "ar": ["Hebrew", "Aramaic", "Amharic"], "hu": ["Finnish", "Es-
tonian", "Udmurt"], "ro": ["Italian", "Spanish", "French"], "da": ["Swedish", "Norwegian", "Icelandic"],
"sk": ["Czech", "Polish", "Slovene"], "uk": ["Russian", "Belarusian", "Rusyn"], "ca": ["Occitan",
"Spanish", "French"], "sr": ["Croatian", "Bosnian", "Montenegrin"], "hr": ["Serbian", "Bosnian",
"Montenegrin"], "hi": ["Urdu", "Punjabi", "Bengali"], "bn": ["Assamese", "Odia", "Maithili"], "ta":
["Kannada", "Telugu", "Malayalam"], "ne": ["Maithili", "Bhojpuri", "Awadhi"], "ml": ["Tamil", "Tulu",
"Kannada"], "mr": ["Konkani", "Sanskrit", "Gujarati"], "te": ["Kannada", "Tamil", "Malayalam"], "kn":
["Telugu", "Tamil", "Tulu"],

Table 13: Related languages across different method settings, part 3.
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Question: 非营利组织活动报告表的主要目的是提供相关信息给其 A:资源提供者 B:管理者 C:
受益人 D:州监管机构
(translated: The main purpose of the non-profit organization activity report form is to provide relevant
information to its A: resource providers. B: managers. C: beneficiaries. D: state regulatory agencies.)

Proposed Answer: C

Feedback 1:

(translated: While providing information to beneficiaries is a key goal of a non-profit organization’s
activity report, it is not the sole purpose. The report also aims to enhance transparency, attract donors
and partners, and evaluate performance for continuous improvement. Specifying the beneficiaries, who
may include members, donors, partners, and the general community, is essential as each group has
different informational needs.)

Feedback 2:
Okrem informovania prijímatel’ov správa často slúži aj na preukázanie transparentnosti organizácie voči
donorom, regulačným orgánom, dobrovol’níkom a verejnosti. Pomáha tiež pri hodnotení efektívnosti
a dosiahnutých výsledkov, čo môže podporit’ d’alší rozvoj organizácie a jej projektov. Celkovo
je teda ciel’om správy nielen informovat’, ale aj budovat’ dôveru a zodpovednost’ voči všetkým
zainteresovaným stranám.
(translated: In addition to informing beneficiaries, the report often serves to demonstrate the orga-
nization’s transparency to donors, regulatory bodies, volunteers, and the public. It also helps in
evaluating the effectiveness and outcomes achieved, which can support the further development of the
organization and its projects. Overall, the report’s purpose is not only to inform but also to build trust
and accountability towards all stakeholders involved.)

Feedback 3:
非营利组织的主要目的之一是,向其受益人提供有关组织活动的反馈信息,主要依据组织的运作
特征.受益人包括项目组织的利益相关者,如基金管理人,或组织会员,如捐赠者。非营利组织的
负责人应该遵守对组织的监管规定。
(translated: One of the main purposes of non-profit organizations is to provide feedback to their
beneficiaries about the organization’s activities, based primarily on the operational characteristics of
the organization. Beneficiaries include stakeholders of project organizations, such as fund managers, or
organizational members, such as donors. The leaders of non-profit organizations should comply with
regulatory requirements for the organization.)

Abstain: Yes (correct answer is A)

Table 14: Working example one, where the three pieces of feedback unanimously point out the error in the answer.
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Question: 以下哪个提供了有关地球核心、地幔和下地壳结构的大部分信息？A:测量地球磁
场的强度和波动B:潜流岩的检测C:从深部钻孔中收集样本D:研究通过地球的地震波传播的
速度和路径
(translated: Which of the following provides most of the information about the structure of the Earth’s
core, mantle, and lower crust? A: Measuring the strength and fluctuations of the Earth’s magnetic field
B: Detecting plumes of molten rock C: Collecting samples from deep drilling D: Studying the speed
and paths of seismic waves passing through the Earth)

Proposed Answer: C

Feedback 1:

(translated: Geological exploration is considered one of the main ways to significantly increase our
knowledge about how the layers of the Earth’s exterior and interior interact with each other, using
geological exploration techniques, especially exploring the outer shell of the Earth’s crust (as in deep
drilling) and maintaining the familiar geological model for the human eye.)

Feedback 2:
Materiály z inžinierskej činnosti sa dokážu zaujímat’ o štruktúru zeme vd’aka spôsobu, akým tvoria
základne zemského plášt’a, tiež o spôsobe používania jadrovej energie, uvol’ňovania energie z dopadu
gravitačných silov. Predpokladáme pôsobenie gravitácie na štruktúru centrálneho a periférneho plášt’a,
rovnako ako aj gravitačné účinky uvol’nenej energie medzi nimi. Na základe výsledkov dokážeme
predpokladat’, ako sa skladá zloženie povrchovej vrstvy, ako ovplyvňujú polárnu tepelnú uhl’ovodíkovú
vrstvu, ako ovplyvňuje povrchovú vlhkost’, a ako ovplyvňuje teplotnú pozíciu rôznych vrstiev.
(translated: Materials from engineering activities can be interested in the structure of the earth due to
the way they form the foundations of the earth’s mantle, as well as the methods of using nuclear energy
and releasing energy from the impact of gravitational forces. We assume the influence of gravity on the
structure of the central and peripheral mantle, as well as the gravitational effects of the released energy
between them. Based on the results, we can predict how the composition of the surface layer is formed,
how it affects the polar thermal hydrocarbon layer, how it affects surface moisture, and how it affects
the temperature position of different layers.)

Feedback 3:
Undersøgelse af jordens magnetfelt og dens bevægelser, samt måling af jordoverfladens temperatur
og fugtighed er de mest anvendte metoder. Undersøgelsen af jordens magnetfelt og dens bevægelser
er ikke alene vigtigt for forståelsen af jordens magnetfelt, men også påvirker andre områder, såsom
jordskælv og vulkaner, hvor man kan studere jordens magnetfelt, mens man i samme tid observere
andre systemer, såsom atmosfære og havanlæg.
(translated: The investigation of the Earth’s magnetic field and its movements, as well as the measure-
ment of surface temperature and humidity, are the most commonly used methods. The study of the
Earth’s magnetic field and its movements is not only important for understanding the Earth’s magnetic
field, but also affects other areas, such as earthquakes and volcanoes, where one can study the Earth’s
magnetic field while observing other systems, such as the atmosphere and oceanic structures, at the
same time.)

Abstain: Yes (correct answer is D)

Table 15: Working example two, where there is a conflict among the three feedback.

4149



Question: 关于总统提名大会代表，以下哪个陈述是正确的？A:代表通常更有可能在某个时
候注册为第三方投票者。B:大多数普通人比代表更有教育背景。C:代表通常对政治没有太大
兴趣。D:通常，普通人的意识形态比代表更少。
(translated: Which statement is correct about delegates to the presidential nominating convention? A:
Delegates are more likely to register as third-party voters at some point. B: Most ordinary people have
a higher level of education than delegates. C: Delegates generally have less interest in politics. D:
Typically, ordinary people have less ideology than delegates.)

Proposed Answer: C

Feedback 1:

(translated: Ordinary people are complex and differ in their feelings and moods. They also have a lot
of negative thinking and are less politically motivated. In contrast, this type of people resort to voting
personally and endorse candidates to hold some seats as a minority in the presidential candidate. The
study shows that the majority of individuals participating in the electoral process find this situation
interesting in terms of empathy and embrace. It differs in terms of negative thinking. People usually
believe that this situation was not due to their feelings towards politics, but due to their lack of
participation.)

Feedback 2:
Zvyčajne je obyčajný človek, ktorý podporuje kandidátov z celého štátu, zvyčajne l’ud’om plne
neznámym. Umožňujú voličom hlasovat’ za svojho kandidáta a predstavujú ho podl’a svojho názoru.
Ked’že na zvolenie kandidáta je potrebný nejaký druh spoločného zvolenia, získali d’alší hlas členovia
zvolitel’skej delegácie a títo sú usilujúci o účast’ na zvolovaní. O takéto pôsobenie sa postará delegát
zvolitel’skej delegácie, ktorý je l’udom plne neznámy.
(translated: Usually, an ordinary person who supports candidates from all over the state, usually to
people completely unknown. They allow voters to vote for their candidate and represent him according
to their opinion. Since some kind of common election is needed to elect a candidate, additional votes
were obtained by members of the elector’s delegation, who are seeking to participate in the election. A
delegate of the elector’s delegation, who is completely unknown to people, will take care of this action.)

Feedback 3:
Delegaterne fra staten har ofte mere viden om politik end de fleste almindelige mennesker.
(translated: The state’s delegates often have more knowledge about politics than most ordinary people.)

Abstain: Yes (correct answer is D)

Table 16: Working example three, where there is a conflict among the three feedback.
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