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Abstract

The powerful generative abilities of large lan-
guage models (LLMs) show potential in gener-
ating relevance labels for search applications.
Previous work has found that directly asking
about relevancy, such as “How relevant is doc-
ument A to query Q?", results in sub-optimal
ranking. Instead, the pairwise-ranking prompt-
ing (PRP) approach produces promising rank-
ing performance through asking about pair-
wise comparisons, e.g., “Is document A more
relevant than document B to query Q?". Thus,
while LLMs are effective at their ranking abil-
ity, this is not reflected in their relevance label
generation.

In this work, we propose a post-processing
method to consolidate the relevance labels gen-
erated by an LLM with its powerful ranking
abilities. Our method takes both LLM gen-
erated relevance labels and pairwise prefer-
ences. The labels are then altered to satisfy
the pairwise preferences of the LLM, while
staying as close to the original values as pos-
sible. Our experimental results indicate that
our approach effectively balances label accu-
racy and ranking performance. Thereby, our
work shows it is possible to combine both the
ranking and labeling abilities of LLMs through
post-processing.

1 Introduction

Generative large language models (LLMs) have
shown significant potential on question answer-
ing and other conversation-based tasks (OpenAI,
2023; Google et al., 2023) owing to their extraordi-
nary generative abilities and natural language un-
derstanding capabilities. Naturally, previous work
has further investigated the application of LLMs to
other areas, including search and recommendation
tasks (Zhu et al., 2023; Wu et al., 2023). The goal
here is to rank items according to their relevance
to a certain query. Generally, existing approaches
have applied LLMs to this task in two different

ways: First, as pseudo-raters, LLMs are asked to
simulate human raters by generating a relevance
label for each query-document pair (Liang et al.,
2022), for example, through prompts such as “How
relevant is document A to query Q?" Secondly, an
LLM can also be asked directly about the order-
ing of documents for a query. For example, the
pairwise-ranking-prompting (PRP) method (Qin
et al., 2023) uses a prompt like “Is document A
more relevant than document B to query Q?" Al-
ternatively, LLMs can be asked to generate the
entire ranking through a prompt like “Rank the fol-
lowing documents by their relevance to query Q:
document A, document B, document C, etc.” (Sun
et al., 2023a) Thus, there are several distinct modes
by which LLMs can be used for ranking purposes,
which provide different kinds of output.

Each mode of applying LLMs to ranking tasks
offers distinct advantages in terms of performance
and efficiency. The pseudo-rater mode is cur-
rently favored in LLM applications within ranking
systems due to its simplicity and high efficiency
(Liang et al., 2022; Sachan et al., 2022; Thomas
et al., 2023; Oosterhuis et al., 2024). Given the
high costs associated with deploying or training
LLMs for high-throughput applications like search
and recommendations, it is, so far, only efficiently
feasible to use LLMs as pseudo-raters to label a
fraction of raw data in zero-shot or few-shot fash-
ion as a replacement of more expensive human
raters. However, the general LLMs are not tuned
to generate meaningful ranking scores, as a result,
there is still an apparent gap between state of the art
(SOTA) ranking performance and the performance
reached when leveraging LLM pseudo-labels for
model training (Thomas et al., 2023).

In parallel to exploring the costly fine-tuning of
LLMs as ranking specialists (Nogueira et al., 2020;
Zhuang et al., 2023b), previous work has also inves-
tigated the direct ranking modes of LLMs, where
no finetuning is involved. Some of these direct
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ranking modes, such as PRP (Qin et al., 2023), can
reach SOTA ranking performance that is on-par
with LLMs finetuned for ranking. Moreover, PRP
enables open-source (OSS) LLMs to outperform
the largest commercial models like GPT-4 (Ope-
nAI, 2023). However, document scoring by PRP
solely considers the resulting order of the candi-
date list, and thus, the absolute values of scores are
meaningless. This makes PRP results unsuitable to
be directly used as pseudo-labels. For example, the
PRP ranking score of a fair candidate in the list of
only poor candidates would be comparable to that
of a good candidate in the list of strong competing
candidates, (see example in Figure 1). How to ef-
fectively combine these direct ranking modes with
the pseudo-rater mode to consolidate ranking and
relevance predictions of LLMs remains an essen-
tial challenge in applying LLMs to real world main
stream applications.

In this work, we study post-processing meth-
ods to do the consolidation, especially for the case
when we have no human labelled data. We first de-
fine the problem in LLM ranking in Section 3, and
propose our post-processing methods to consoli-
date LLM predictions for unlabelled data in Sec-
tion 4. We discuss our experiments on public rank-
ing datasets in Section 5 and show our methods
could approach the state of the art ranking perfor-
mance with minimal tradeoff in relevance predic-
tion performance in Section 6. Our contributions
include:

• The first systematic study on the tradeoff be-
tween ranking and relevance predictions of
LLMs.

• A ranking-aware pseudo-rater pipeline with a
novel post-processing method using constrained
regression to combine both PRP ranking and
LLM relevance generation.

• Extensive experimental study on public ranking
datasets that demonstrates the effectiveness of
our proposed methods.

2 Related Work

The strong capability of LLMs in textual under-
standing has motivated numerous studies leverag-
ing LLM-based approaches for textual informa-
tion retrieval (Bonifacio et al., 2022; Tay et al.,
2022b; Jagerman et al., 2023). Before the gen-
erative LLM era, the focus was more on finetun-
ing pre-trained language models (PLMs) such as

T5 (Nogueira et al., 2020; Zhuang et al., 2023b) or
BERT (Nogueira and Cho, 2019) for the supervised
learning to rank problem (Liu, 2009; Qin et al.,
2021), which becomes less feasible with larger gen-
erative LLMs. Two popular methods—-relevance
generation (Liang et al., 2022; Zhuang et al., 2023a)
and query generation (Sachan et al., 2022)-—aim to
generate per-document relevance scores or retrieval
queries using generative LLMs. These methods
are also termed pointwise approaches for ranking.
More recent works (Sun et al., 2023a; Ma et al.,
2023; Pradeep et al., 2023; Tang et al., 2023) ex-
plore listwise ranking generation approaches by
directly inserting the query and a list of documents
into a prompt. Pairwise order generation through
pairwise prompts (Qin et al., 2023) turns out to be
very effective for ranking purposes, especially for
moderated-sized LLMs. However, none of these
ranking approaches using generative LLMs attempt
to consolidate the results with relevance generation.

Previous works on non-LLM neural rankers (Yan
et al., 2022; Bai et al., 2023) focus on balanc-
ing or aligning regression with ranking objec-
tives during the model training, which is unfor-
tunately not feasible for LLMs using zero-shot
or few-shot prompting. Post-processing methods
that calibrate model predictions using some vali-
dation data could be potentially applicable. Orig-
inally developed for classification model calibra-
tion (Menon et al., 2012), these methods include
parametric approaches like Platt scaling (Platt,
2000) for binary classification; piecewise linear
transformation (Ravina et al., 2021) for regres-
sion; and non-parametric approaches like isotonic
regression (Menon et al., 2012; Zadrozny and
Elkan, 2002), histogram binning, and Bayesian
binning (Zadrozny and Elkan, 2001; Naeini et al.,
2015). But how effectively these post-processing
approaches could be extended to LLM-based rank-
ing and relevance predictions has not been well
studied in existing literature.

3 Problem Formulation

We formulate the problem of consolidating ranking
and relevance predictions within this framework.
Given a set of queries, for each query q, we have
a set of corresponding candidate documents {d}q,
and their ground truth labels, {y}q, as their rele-
vance evaluations, such as graded relevance. Our
first goal is to predict the relevance labels based
on the content of each corresponding candidate.
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Our second goal is to predict a ranked list of candi-
dates, and we use {r}q to denote the rank of each
candidate in this predicted ranking. The predicted
ranking is optimal when the ranks align with the
order of the relevance labels: ri ≤ rj if yi ≥ yj
for any pair of candidates (di, dj) belonging to the
same query q. Taken together, our overall task is
to optimize LLM predictions for both relevance
estimation and ranking performance.

3.1 Relevance Prediction
For this purpose, in this work, we consider real-
number predictions, i.e., ŷi ∈ R, as the relevance
pseudo-labels for query-document pairs. Such
pointwise real-number ratings can be averages over
the annotations of multiple human raters. For LLM-
based raters, pseudo-labels can be obtained from
the average rating of raters with discrete output
space (Thomas et al., 2023) or from finer-grained
rating generation (Zhuang et al., 2023a), or directly
leveraging the token probabilities to formulate the
relevance predictions if available in the generative
LLMs (Liang et al., 2022).

In specific, we use LLM as a rater to generate
“Yes” or “No” to answer the question “does the pas-
sage answer the query?” for each query-document
pair. See Appendix A.1 for the prompt. We obtain
the generation probabilities Pi(Yes), Pi(No) and
take

ŷi =
Pi(Yes)

Pi(Yes) + Pi(No)
(1)

as the normalized relevance prediction: ŷi = 1 for
the most relevant document and ŷi = 0 for the
least.

To evaluate the relevance prediction performance
of {ŷ}q, we consider the mean squared error
(MSE):

MSE({y}q, {ŷ}q) =
1

|{d}q|
∑

i∈{d}q
(ŷi−yi)2, (2)

as well as the empirical calibration error
(ECE) (Naeini et al., 2015; Guo et al., 2017):

ECEq =
1

|{d}q|
M∑

m=1

∣∣∣∣∣
∑

i∈Bm

yi −
∑

i∈Bm

ŷi

∣∣∣∣∣ , (3)

where we group candidates of each query into M
successive bins of model score-sorted results Bm,
and |{d}q| gives the size of candidate documents to
query q. Compared to MSE, ECE is more sensitive
to the distribution divergence between predictions
and ground truth labels due to binning.

3.2 Ranking Prediction
In the pairwise ranking prompting (PRP) mode,
LLMs generate pairwise preferences: for any two
documents d1 and d2, LLMs are prompted to gener-
ate “d1” or “d2” to answer the question on “which
of the passages is more relevant to the query?” See
Appendix A.2 for the prompt. Based on the results
and the consistency of results when switching the
order of d1 and d2 in the prompt, we could have d1
consistently better (d1 > d2), d2 consistently better
(d1 < d2), and inconsistent judgement (d1 = d2),
as the LLM generated preferences.

To get a consistent ranking from these pairwise
preferences, we follow Qin et al. (2023) to compute
a ranking score si for each document di by perform-
ing a global aggregation on all other candidates of
the same query,

ŝi = 1×
∑

j 6=i
Idi>dj + 0.5×

∑

j 6=i
Idi=dj , (4)

where Icond is an indicator function of the condi-
tion cond: 1 when cond is true and 0 otherwise. ŝi
essentially counts number of wins for each docu-
ment. We then sort the candidates by their ranking
scores {ŝ}q to get predicted ranking {r}q.

The ranking performance is evaluated by the
normalized discounted cumulative gain (NDCG)
metric:

DCGq =
∑

i∈{d}q

2yi − 1

log2(1 + ri)
, (5)

NDCGq =
1

DCGideal
q

DCGq, (6)

where DCGideal
q = max{r}q DCGq is the optimal

DCG obtained by sorting documents by their la-
bels (Järvelin and Kekäläinen, 2002). In practice,
the NDCG@k metric that cuts off at the top k re-
sults is used.

3.3 The Consolidation Problem
Although the two formulations, relevance and rank-
ing predictions, are conceptually aligned to the
same ground-truth labels, different modes above
are leveraged in practice for different purposes: the
pseudo-rater mode of LLMs, directly predicting
the candidate relevance to a query, gives relatively
good relevance estimation ŷ (Liang et al., 2022),
while the ranker mode of LLMs, using pairwise
prompting, achieves significantly better NDCG but
with totally uncalibrated ranking scores ŝ that have
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query 1

rel = 1
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query 2

rel = 3
score = 2

rel = 2
score = 1

rel = 1
score = 0

Rating prompt

query

documents Rating prompt

LLM

Pairwise ranking prompt

initial 
ratings

pairwise preferences

Constrained 
Regression

ranking-aware 
ratings

Ranking-aware Pseudo-Rater

Figure 1: Left: Example of PRP scores not calibrated over different queries. Right: Illustration of the ranking-
aware pseudo-rater pipeline that generates ranking-aware ratings with LLMs from the input query and list of
candidate documents.

poor relevance prediction performance (Qin et al.,
2023), or see Figure 1 for an example. How to
address this dichotomy then is the problem that we
study in this paper.

In the optimization problem with multiple ob-
jectives like this, optimizing for both relevance
prediction and ranking performance, the success is
difficult to be measured with a single metric. Ad-
ditionally, a tradeoff typically exists between these
metrics (ECE and NDCG in our case) – improving
one leading to demoting the other, represented by a
Pareto front in the figure of both metrics. Please see
examples in Figure 3. An improvement against the
baselines is qualified by whether the new method
could push the Pareto front by positing metrics on
the better side of the current Pareto front.

4 The Methods

This section presents our post-processing methods
to consolidate the ranking scores ŝ as well as the
pairwise preferences from the LLM ranker mode
and the relevance estimation ŷ from the pseudo-
rater mode, aiming to optimally balance ranking
and relevance prediction performance. To make a
fair comparison with previous LLM rankers, we
stick to zero-shot prompting results with no training
or finetuning.

Specifically, we introduce a constrained regres-
sion method to find minimal perturbations of the
relevance predictions ŷ such that the resulting rank-
ing matches the the pairwise preference predictions
of PRP. Additionally, we also introduce an effi-
cient version of our constrained regression method
that avoids querying an LLM to construct the com-
plete quadratic number of pairwise constraints by
selecting a linear-complexity subset of pairwise
comparisons. Finally, with the constrained regres-

sion to consolidate, we propose a ranking-aware
pseudo-rater pipeline that leverages both rating and
ranking capabilities of LLMs to make high-quality
ratings for search.

4.1 Constrained Regression
The goal of the constrained regression methods
is to adjust the LLM relevance predictions ŷ so
that their order aligns with the ranking order of the
PRP results ŝ. By minimizing the perturbations to
adjust the predictions, the resulting scores should
closely match the original relevance predictions
while adhering to the PRP’s ranking performance.

Formally, given a query q, we aim to find a set
of minimal linear modifications {δ}q of the LLM
relevance predictions, so that for a PRP pairwise
preference di > dj or ŝi > ŝj , the modified pre-
dictions match that order: ŷi + δi > ŷj + δj . In
general terms:

{δ∗}q = argmin{δ}q
∑

i∈{d}q δ
2
i (7)

s.t. ∆ij [(ŷi + δi)− (ŷj + δj)] ≥ 0

for ∀i, j ∈ {d}q,
where ∆ij = ŝi − ŝj , if preference is constructed
from ranking scores, or ∆ij = Idi>dj − Idi<dj
if direct preference is considered. Thus, the sign
of ∆ij indicates the pairwise order between i and
j, and a lack of preference in ordering results in
∆ij = 0. We use {ŷ + δ∗} as our final predictions
for both ranking and relevance.

The mathematical problem posed in Eq. 7 is
a well-known constrained regression problem that
can easily be solved with publicly available existing
math libraries (Virtanen et al., 2020).

4.2 Efficiency Improvements
Constrained regression is a traditional, fast, and
cost-efficient algorithm compared to LLM opera-
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SlideWin

A C D E B…

A C D E B…

A C D B E…

A C B D E…

A B C D E…

A B C D E…

Initial ranking:

Final ranking:

k = 2

A C D E B…Initial ranking:

TopAll

k = 2

A B C D E…Final ranking:

window size = 2

stride = 1

Figure 2: Illustration of how to select LLM pairwise
constraints in SlideWin and TopAll methods. Top:
SlideWin method with window size 2 and stride 1
takes o(kn) successive pair comparisons, illustrated by
paired arrows, to sort for top k results from some ini-
tial ranking. Bottom: TopAll method considers top-k
results from an initial ranking and their pairwise con-
straints with all other results, shown by o(kn) double-
headed arrows.

tions, as detailed in Section B. A limitation of the
above method is the need to identify all o(n2) pair-
wise constraints through pairwise ranking prompt-
ing to calculate ranking scores ŝ in Eq. 4 for a list
of size n. As the method only depends on pair-
wise constraints given by ∆ij , a simple way to
improve efficiency is to reduce the number of pair
constraints to be processed by LLM.

Here we introduce two efficient constraint
choices: SlideWin and TopAll, as illustrated in
Figure 2. (1) As the ranking performance focuses
mostly on the top results (top 10 or top 20), PRP
work (Qin et al., 2023) proposes to just run a slid-
ing window sorting from some initial ranking to
find the top-k results with o(kn) pair comparisons.
We just reuse these o(kn) pair comparisons as con-
straints ∆ij in Eq. 7. We call this variant SlideWin.
(2) As our final predictions rely upon the relevance
scores ŷ, we don’t need to sort from random. As-
suming the initial ranking from initial relevance
scores ŷ is close to the final PRP ranking, we can
just consider pairwise constraints between the can-
didates of top relevance predictions and the rest. In
specific, we consider top-k in the relevance scores

Table 1: Summary of constrained regression methods
vs Pseudo-Rater and PRP baselines.

Methods Use ŷ Use {di > dj} Complexity of
LLM calls

PRater Yes No o(n)
PRP No Yes, all o(n2)

Allpair Yes Yes, all o(n2)
SlideWin Yes Yes, partial o(n)
TopAll Yes Yes, partial o(n)

ŷ and all other results in the candidate list, or top-k
vs. all, where o(kn) pair constraints to be enforced.
We call this variant TopAll.

In Table 1, we summarize the use of LLM-
generated relevance predictions ŷ and pairwise
preferences {di > dj} and the method complex-
ities in terms of LLM calls of all proposed meth-
ods together with the Pseudo-rater and PRP base-
lines. More efficiency analysis can be found in
Appendix B.

4.3 Ranking-Aware Pseudo-Rater
To conclude, we propose a ranking-aware pseudo-
rater pipeline that leverages both the rating and
ranking capabilities of LLMs, as illustrated in Fig-
ure 1. For a given query q and a list of candi-
date documents {d}q, we formulate pointwise rat-
ing and pairwise ranking prompts, then feed these
prompts to the central LLM to obtain initial rat-
ings and pairwise preferences, respectively. We
then combine the initial ratings and pairwise pref-
erences using our constrained regression methods
for consolidation. The output of this pipeline is the
ranking-aware pseudo labels.

5 Experiment Setup

We conduct experiments using several public rank-
ing datasets to answer the following research ques-
tions:

• RQ1: Can our proposed constrained regression
methods effectively consolidate the ranking per-
formance of PRP and the relevance performance
of LLMs as psuedo-raters?
• RQ2: What is the tradeoff between ranking and

relevance prediction performance for different
methods?

5.1 Datasets
We consider the public datasets with multi-level la-
bels to study the above research questions. Specif-
ically, we utilize the test sets of TREC-DL2019
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Table 2: Statistics of experimental datasets.

# of normalized
Dataset queries labels labels
TREC-DL2019 43 {0, 1, 2, 3} {0, 1/3, 2/3, 1}
TREC-DL2020 54 {0, 1, 2, 3} {0, 1/3, 2/3, 1}
TREC-Covid 50 {0, 1, 2} {0, 1/2, 1}
DBPedia 400 {0, 1, 2} {0, 1/2, 1}
Robust04 249 {0, 1, 2} {0, 1/2, 1}

and TREC-DL2020 competitions, as well as those
from TREC-Covid, DBPedia, and Robust04 in the
BEIR dataset (Thakur et al., 2021). Table 2 summa-
rizes the statistics of queries and the range of labels.
The candidate documents are selected from the MS
MARCO v1 passage corpus, which contains 8.8
million passages. LLM rankers are applied on the
top 100 passages retrieved by BM25 (Lin et al.,
2021) for each query, same setting as existing LLM
ranking works (Sun et al., 2023a; Ma et al., 2023;
Qin et al., 2023).

5.2 Evaluation Metrics
For ranking performance, we adopt NDCG (as de-
fined in Eq. 5) as the evaluation metric, with higher
values indicating better performance. We primar-
ily focus on NDCG@10, but also present NDCG
with other cutoff points in certain ablation studies.
For the relevance prediction performance, we use
the mean squared error (MSE) in Eq. 2 and the
empirical calibration error (ECE) in Eq. 3 as the
evaluation metrics. The lower ECE values indi-
cate better relevance predictions. In this work, we
chooseM = 10 bins (Naeini et al., 2015) with each
bin containing approximately the same number of
documents (∼ 10 documents per bin).

5.3 Comparison Methods
We investigate the performance of the following
methods in ranking and relevance prediction:

• BM25 (Lin et al., 2021): The sole non-LLM
ranker baseline.

• PRater (Sun et al., 2023a): The pointwise LLM
relevance pseudo-rater approach.

• PRP (Qin et al., 2023): The LLM ranker using
pairwise ranking prompting (PRP). All pair com-
parisons are used to compute the ranking scores
(as in Eq. 4).

• Allpair (Ours): The naive constrained regres-
sion method in Eq. 7 with all pairwise prefer-
ences based on the PRP scores, ∆ij = ŝi − ŝj .

• SlideWin (Ours): The constrained regression
method in Eq. 7 with pairwise LLM constraints
collected with the sliding window ordering ap-
proach, proposed by Qin et al. (2023): pair com-
parisons are selected from sliding bottom up on
the initial order by BM25 scores with sliding
window size k = 10.

• TopAll (Ours): The constrained regression
method with pairwise LLM constraints on the
pairs between top k = 10 results by sorting on
pseudo-rater predictions ŷ versus all candidates
in the list.

Unless specified, all LLM results in above methods
are based on the FLAN-UL2 model (Tay et al.,
2022a), an OSS LLM 1.

In addition, motivated by the multi-objective ap-
proach to consolidate ranking and relevance pre-
dictions in non-LLM rankers (Yan et al., 2022),
we also consider a simple weighted ensemble of
PRater predictions ŷ and PRP scores ŝ:

ŷ + wŝ, (8)

where w is the relative weight, and we use Ensem-
ble to refer the method. Note that in practice some
labeled data is needed to decide w, while the other
methods discussed above are fully unsupervised.

5.4 Prediction Normalization

It should be noted that none of the methods are
optimized for ground truth label values, hence, the
ECE and MSE metrics from the raw results are not
directly comparable. Thus, we scale their predic-
tions to match the range of the ground truth labels:

ỹ = ymin+(ymax−ymin)
ŷ −min(ŷ)

max(ŷ)−min(ŷ)
, (9)

where max and min are global max and global
min on the full test set. Subsequently, we compute
ECE based on the scaled predicted scores ỹ. For
normalized relevance labels, we insert ymin = 0
and ymax = 1.

5.5 Supervised PWL Transformation

We also compare a post-processing method requir-
ing labelled data, specifically the piecewise linear
transformation (PWL) introduced in Ravina et al.

1https://huggingface.co/google/flan-ul2
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Table 3: Evaluation of LLM-based ranking methods on both ranking (NDCG@10) and relevance prediction (ECE
and MSE) metrics on TREC-DL 2019 and 2020, TREC-Covid, DBPedia, and Robust04. Bold numbers are the best
of all and numbers underlined are the best among proposed methods in each row. Upscript “†” indicate statistical
significance with p-value=0.01 of better performance than the baselines, PRater for NDCG@10 and PRP for ECE
and MSE.

Baselines Our Consolidation Methods
Method BM25 PRater PRP PRater+PWL PRP+PWL Allpair SlideWin TopAll

TREC-DL2019
NDCG@10 0.5058 0.6461 0.7242 0.6461 0.7242 0.7236† 0.7265† 0.7189†

ECE 0.2088 0.1167 0.3448 0.1199 0.1588 0.1084† 0.1090† 0.1199†

MSE 0.1096 0.0688 0.1787 0.0652 0.0836 0.0592† 0.0601† 0.0692†

TREC-DL2020
NDCG@10 0.4796 0.6539 0.7069 0.6539 0.7069 0.7054† 0.7046† 0.7025
ECE 0.2219 0.0991 0.3690 0.0793 0.0954 0.0865† 0.0911† 0.0966†

MSE 0.1122 0.0632 0.1978 0.0444 0.0488 0.0519† 0.0560† 0.0600†

TREC-Covid
NDCG@10 0.5947 0.7029 0.8231 0.7029 0.8231 0.8220† 0.7943† 0.7962†

ECE 0.2460 0.2047 0.2340 0.1590 0.2192 0.1990† 0.1984† 0.2216
MSE 0.2268 0.1756 0.1621 0.1419 0.1557 0.1575† 0.1644 0.1870

DBPedia
NDCG@10 0.3180 0.3057 0.4613 0.3057 0.4613 0.4598† 0.4651† 0.4029†

ECE 0.2183 0.1360 0.4364 0.0554 0.0629 0.1302† 0.1308† 0.1329†

MSE 0.0864 0.0967 0.2571 0.0387 0.0350 0.0846† 0.0863† 0.0901†

Robust04
NDCG@10 0.4070 0.5296 0.5551 0.5296 0.5551 0.5532† 0.5364 0.5347
ECE 0.1291 0.0650 0.4154 0.0689 0.0658 0.0654† 0.0669† 0.0804†

MSE 0.0594 0.0386 0.2285 0.0368 0.0361 0.0379† 0.0390† 0.0509†

(2021), defined as follows,

f
(
s | {s̃m, ỹm}Mm=1

)
= (10)





ỹ1 s ≤ s̃1,
ỹm + ỹm+1−ỹm

s̃m+1−s̃m (s− s̃m) s̃m < s ≤ s̃m+1,

ỹM s > s̃M ,

where {s̃m, ỹm}Mm=1 are 2M fitting parameters.
ỹm+1 > ỹm and s̃m+1 > s̃m are enforced for
any m to reinforce the monotonicity of the trans-
formation to effectively scale predictions without
affecting the ranking order.

We apply PWL to baseline methods PRater
and PRP as a special set of baselines with la-
belled data available, named as PRater+PWL and
PRP+PWL in the results. Comparing these with
supervised methods allow for a better understand-
ing of our proposed unsupervised approaches. To
compute the post-fitting in PWL, we apply four-
fold cross-validation to the test set data: we ran-
domly divide the test set into four folds by queries,
and then fit the PWL transformation function on
one set and predict on one of the others, repeatedly,
to get PWL transformation results for the whole
test set.

6 Experimental Results

6.1 Main Results

The main results, summarized in Table 3 and Fig-
ure 3, include the following observations:

• MSE and ECE metrics are consistent in Table 3.
Therefore, we will focus on ECE for the remain-
der of the discussion.

• Without PWL transformations, the pointwise rel-
evance LLM rater (PRater) performs better in
labelling than both the naive BM25 and PRP
rankers, as evidenced by a consistenly lower
ECE in Table 3.

• Despite its poor ECE, PRP has the best or nearly
best ranking performance in terms of NDCG.

• The constrained regression approach can best
leverage the relevance estimations of PRater and
the ranking capability of PRP and reaches com-
parable ranking performance in terms of NDCG
to PRP, and on par or even better relevance pre-
diction in terms of ECE to PRater.

• Our methods consolidate the ranking from PRP
and relevance predictions from PRater effec-
tively, evident by that the combined performance
on NDCG and ECE sits well beyond the Pareto
fronts of simple weighted Ensemble of the two.

• Our consolidation methods even outperform
PRP+PWL, the one with extra data, in ECE on 4
out of 5 datasets and while keeping ranking per-
formance in NDCG@10 as good on all datasets.
This is because supervised methods may not
learn effectively with limited annotations, which
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Figure 3: Tradeoff plots on ECE versus NDCG@10 on
five ranking datasets. NDCG@10 is higher the better
and ECE is lower the better. Overall better methods are
on the top right corner of the plots. Lines correspond
to the Pareto fronts of Ensemble of PRater and PRP
by tuning the weight w in Eq. 8. Our consolidation
methods in Table 3 are scattered in the Figure.

is the case for public search datasets given the
high cost of collecting human annotations.

• Finally, efficient constrained regression methods
may trade off some performance in ranking and
regression for the efficiency, but they can still
outperform the baselines of PRater and PRP and
weighted ensemble of the two in most of the
datasets.

With these main results, we can answer the main
research questions. RQ1. Using the constrained
regression methods, we can boost the LLM raters
with the superior ranking capability of PRP rankers
while keep their relevance predictions nearly un-
touched. RQ2. Naive ensemble of LLM pseudo-
rater predictions and PRP scores may lead to a
tradeoff between ranking and relevance prediction
performance. However, we can get over this trade-
off with the constrained regression methods.

6.2 Model Size Effect
As with other tasks involving pretrained LLMs,
larger models generally perform better in both

Table 4: Model size effect of constrained regression
methods and LLM baselines on TREC-DL 2020. The
better metrics of the two sizes are bolded per method.

NDCG@10 ECE
Method T5-XXL UL2 T5-XXL UL2
PRater 0.6258 0.6539 0.0949 0.0991
PRP 0.6985 0.7069 0.3698 0.3690

Allpair 0.6960 0.7054 0.0871 0.0865
SlideWin 0.6735 0.7046 0.0900 0.0911
TopAll 0.6794 0.7025 0.1038 0.0966

ranking and regression metrics. We studied the
size effect by comparing results of the FLAN-UL2
model (20B parameters) with those of the FLAN-
T5-XXL 2 model (11B parameters). Table 4 shows
that our constrained regression methods achieve
significantly better NDCG, and comparable or bet-
ter ECE with the FLAN-UL2 model compared to
the FLAN-T5-XXL model. The same size effect is
observed in PRater and PRP as well. This shows
our consolidation method scales together with the
underlying LLM’s performance.

We have also run experiments on the choices
of initial ranking models and choices of parame-
ter k for efficient constrained regression methods
(SlideWin and TopAll). The results are included in
Appendix C.

7 Conclusion

In this work, we have studied the problem of consol-
idating ranking and relevance predictions of LLMs.
We have found that the direct scores from the zero-
shot pairwise ranking prompting (PRP) poorly cor-
relate with ground truth labels. To leverage the su-
perior ranking ability of PRP while aligning closely
with the ground truth labels, we have investigated
post-processing methods and proposed a class of
constrained regression methods that combine point-
wise ratings from the LLM raters and pairwise con-
straints from the PRP rankers to take advantage of
the two. We have demonstrated with experiments
on public ranking datasets that our methods are effi-
cient and effective, offering competitive or superior
ranking performance compared to the PRP baseline
and relevance prediction performance akin to the
pointwise LLM rater. Last but not least, we have
proposed a novel framework on how to effectively
use generative LLMs to generate ranking-aware rat-
ings, foundation for LLM-powered search ranking.

2https://huggingface.co/google/flan-t5-xxl
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Limitations

First, our work mainly focused on consolidating
relevance raters with pairwise LLM rankers due
to their effectiveness, particularly with moderate-
sized open-sourced LLMs. Our methods can be ap-
plied to listwise ranking results from listwise LLM
rankers (Sun et al., 2023b) by decomposing their
ranking results into pairwise comparisons. Our re-
sults can be found in Appendix D. However, more
effective methods to consolidate listwise rankers,
may exist, which we consider for future work. Sec-
ond, our framework assumes reasonable rating and
ranking performance by LLMs. Although gener-
ally supported by advances in LLM research and
validated across diverse datasets, more advanced
adjustments may be required for scenarios where
LLMs perform suboptimally, such as in domains
opaque to the underlying LLMs.
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A Reproducibility

A.1 Prompts for Relevance Prediction
We used the same prompt template for all 5 datasets evaluated in the paper. Below is the prompt
template for estimating relevance in the pseudo-rater mode:

Passage: {passage}

Query: {query}

Does the passage answer the query? Output Yes or No:

A.2 Prompts for Pairwise Preference
Below is the prompt template for pairwise preference in the pairwise ranking mode:

Given a query {query}, which of the following two passages is more relevant to the query?

Passage A: {passage1}

Passage B: {passage2}

Output Passage A or Passage B:

A.3 Code and Data Release
Our experimental results are easily reproducible, using open-sourced LLMs and standard aggregation
methods (win counting, sorting, and sliding window) used in the work. We intend to release pairwise
preference results on all five datasets from the two open-source LLMs to aid future research. Specifically,
we will release the data in JSON format, which will include query-document pair information (ids, text,
label, retrieval rank and scores), along with the prompts used, the generated texts, and relevance estimation
scores.

B Computational Costs

Our constrained regression methods are based on a traditional algorithm, the extra computation cost is
negligible compared with the LLM calls. Specifically, depending on the model and the token lengths of
the documents, the GPU time for LLM calls to obtain one relevance estimation or one pairwise preference
could vary, but it is typically on the order of 10 ms to 1 s per LLM call. For PRP, a list of 100 documents
would require at least 100 s of GPU time to obtain all pairwise preferences. The constrained regression,
independent of the model or the document length, can be solved (with scipy.optimize.minimize)
in about 100 ms on common CPUs for a query of 100 documents.

C More Results on Efficient Constrained Regression

C.1 LLM vs non-LLM raters
A good relevance rater is important for the constrained regression methods to work. LLM pseudo-rater
(PRater) scores are cheaper than the PRP scores, and are directly leveraged in our methods. On the other
hand, BM25 scores are fast ad hoc results for result retrieval and are thus available at ranking stage. Here,
we study the effects of replacing the LLM rater (PRater) with non-LLM rater (BM25) as the base rater for
ŷ in all constrained regression methods and as the initial ranker to select pairwise constraints in efficient
sliding window (SlideWin) and top vs all pairs (TopAll) methods.

The results are summarized in Table 5. We have the following observations: First, the choice of the
base rater (Base) mainly affects the relevance prediction performance: ECE of results with PRater is
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Table 5: Effects of initial ranker (init) and base rater (base) on different constrained regression methods on TREC-
DL 2020. Bold numbers indicate the best metrics in each column per method.

Method init base NDCG@10 ECE

Allpair
- BM25 0.7061 0.2941
- PRater 0.7054 0.0865

SlideWin

BM25 BM25 0.7046 0.2707
BM25 PRater 0.7046 0.0911
PRater BM25 0.6939 0.2985
PRater PRater 0.6939 0.0945

TopAll

BM25 BM25 0.6524 0.5712
BM25 PRater 0.6938 0.0918
PRater BM25 0.5949 0.3149
PRater PRater 0.7025 0.0966

significantly better than of those with BM25, as the relevance prediction performance of the constrained
regression methods is mainly limited by the base scores ŷ. In contrast, the choice of Base is nearly
insignificant to the ranking performance in AllPair and SlideWin methods, but affects ranking more in
the TopAll method: TopAll with PRater Base always show better NDCG than TopAll with BM25 Base.
Furthermore, the choice of the initial ranker (Init) is almost neutral on regression in terms of ECE, but
has a complex effect on ranking in NDCG in SlideWin and TopAll methods. We note that using PRater
as initial ranker in SlideWin leads to slightly worse NDCG than using BM25. This is attributable to the
better alignment of LLM relevance rater and PRP ranker, so that the pairwise constraints become less
informative than starting from initial ranking of BM25. On the other hand, using PRater as initial ranker
in TopAll leads to better NDCG when PRater is the base rater and worse NDCG when BM25 becomes
the Base. This is attributable to the alignment of initial ranker and base rater to select useful pairwise
constraints. Based on these results, we recommend to use LLM PRater as the base rater for all constrained
regression methods and use BM25 as the initial ranker for SlideWin while PRater as the initial ranker for
TopAll method.

Table 6: Effects of top k parameters in sliding window (SlideWin) and top vs all pair (TopAll) constrained regres-
sion methods on TREC-DL 2020. Bold numbers indicate the best metrics in each column per method.

NDCG
Method top k @1 @5 @10 @20 ECE

SlideWin

2 0.8580 0.7367 0.6978 0.6547 0.0966
5 0.8580 0.7535 0.7013 0.6698 0.0936
10 0.8580 0.7535 0.7046 0.6674 0.0911
20 0.8580 0.7535 0.7046 0.6676 0.0890

TopAll

2 0.7778 0.7014 0.6762 0.6366 0.0981
5 0.8642 0.7319 0.6965 0.6559 0.0954
10 0.8549 0.7367 0.7025 0.6593 0.0966
20 0.7685 0.7052 0.6848 0.6520 0.0987

C.2 Choice of parameter k
We investigate the effect of hyper-parameter k in both SlideWin and TopAll methods. Note that though
we have chosen the same character k to represent the parameters, the actual meanings of the parameters
are different in the corresponding methods: top k is the number of top results to be sorted in the SlideWin,
and k is the number of the top results in the initial ranker to fetch pairwise constraints.

In Table 6, primarily, we find the choice of top k affects the ranking performance (NDCGs) only. In
specific, ignoring numerical fluctuations, increasing parameter k of SlideWin monotonically improves
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NDCG@m till k ∼ m. On the other hand, increasing parameter k of TopAll leads to non-monotonic
NDCG@m that is optimized approximately around k ∼ m. The intuition of the difference between
SlideWin and TopAll is that (1) the parameter k of SlideWin is the top number after pairwise ordering, so
that top k result orders will always be consistent with PRP results so as NDCG@m, as long as k > m; (2)
while the parameter k of TopAll is the number of top results in initial ranker, which is different from the
PRP results, so that when k < m, increasing k is likely improving NDCG@m as more top results are
included, however, when k > m, more intra-top pair constraints become more dominant than top vs rest
pairs, which may break the order between top k vs rest results and lead to worse NDCG.

Table 7: Consolidation results of listwise ranking on TREC-DL 2019 and TREC-DL 2020. ListRank method
reranks the top 20 results retrieved from BM25 and the top 20 results from PRater. Allpair method is then applied
to consolidate ListRank and PRater predictions. Bold numbers indicate the best metrics in each row.

Dataset Metric PRater BM25 Top20 PRater Top20
ListRank Allpair ListRank Allpair

TREC-DL19
NDCG@10 0.6461 0.6379 0.6567 0.7477 0.7477

ECE 0.1167 0.1614 0.1149 0.1549 0.1237
MSE 0.0688 0.2008 0.0660 0.1586 0.0711

TREC-DL20
NDCG@10 0.6539 0.6123 0.6442 0.6694 0.6694

ECE 0.0991 0.1309 0.0988 0.1291 0.0963
MSE 0.0632 0.1786 0.0618 0.1462 0.0596

D Applying Consolidation Methods to Listwise Ranking

Our consolidation methods are applicable to the LLM-based listwise ranking. In Table 7, we summarize
our results of the consolidation method (Allpair in specific) applied to the ListRank, our reproduction of
the RankZephyr approach (Pradeep et al., 2023) on the PaLM 2 model (Google et al., 2023).

In ListRank, we train an LLM to directly predict the final ranking order of top 20 retrieved candidates.
In specific, we have compared top 20 candidates retrieved with BM25 score (BM25 Top20) and with an
LLM PseudoRater (UL2, PRater Top20 in Table 7). As a validation of our reproduction, the NDCG@10
of ListRank on BM25 Top20 is comparable to the value in Table 5 in the RankZephyr paper (Pradeep
et al., 2023).

The NDCG metrics are measured with the predicted order of the top 20 results. The ECE and MSE
metrics are computed on scaled ranking scores from the predicted ranks ri:

si =
1

20
max(0, 21− ri).

The “Allpair” columns next to the “ListRank” columns show our consolidation results with all pairwise
order constraints of top 20 results from the ListRank predictions. In all consolidation results, the scores
are computed with the PRater scores as initial scores.

As shown in Table 7, Allpair methods outperform both PRater and ListRank baselines in both ranking
and relevance prediction. These results verify the generalizability and efficacy of our proposed method.
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