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Abstract

Social networks are full of noise and mislead-
ing information, which poses a pressing and
complex challenge for rumor detection. In this
paper, we propose the Intent-Aware Rumor De-
tection Network (IRDNet), designed to address
the challenges of subjectivity, robustness, and
consistency in existing models. IRDNet uses a
multi-task learning framework that integrates
rumor detection and latent intent mining, which
can discern multi-level semantic features and
potential user intentions. In IRDNet, the multi-
level semantic extraction module extracts se-
quential and hierarchical features to produce
robust semantic representations. The intent-
aware hierarchical contrastive learning mod-
ule introduces two complementary strategies,
event-level and intent-level. Event-level con-
trastive learning uses high-quality data augmen-
tation and adversarial perturbations to enhance
the robustness and consistency of the model.
Intent-level contrastive learning utilizes an in-
tent encoder to capture subjective intent and
optimize homogeneity within the same intent
while ensuring heterogeneity between different
intents, thereby clearly distinguishing critical
features from irrelevant elements. Experimen-
tal results verify that the model significantly
improves the effect of early rumor detection
and effectively solves the essential problems of
the existing rumor detection field.

1 Introduction

The contemporary era of social networks witnesses
unprecedented information dissemination, which
concurrently leads to an accelerated spread of ru-
mors. The complexity of this social phenomenon
presents significant challenges in rumor detection
(Gao et al., 2022). Fundamentally, the belief in
rumors is contingent upon two criteria: "able to
believe" and "willing to believe". The former in-
volves the diversity of information in social net-
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Figure 1: The results of traditional data augmentation
methods are similar in semantic structures but inconsis-
tent with the intentions of the information disseminator,
while data augmentation based on large language mod-
els has been proven to be effective.

works and the difficulty of distinguishing its au-
thenticity(Nickerson, 1998). The latter “willing
to believe” means that during the communication
process, under the influence of subjectivity, indi-
viduals rely on previous knowledge and experience
as cognitive anchors to evaluate the authenticity
of new information. This phenomenon, commonly
called the anchoring effect(Tversky and Kahneman,
1974), assumes particular prominence in the propa-
gation of rumors, as content aligned with individu-
als’ existing cognition augments its dissemination.
Therefore, rumor detection is not only a check on
content authenticity but also a complex task in-
volving human cognitive alignment. Similar to the
idea of anchoring effect, contrastive learning (CL)
emphasizes using known data as "anchors" in the
process of information evaluation and generalizing
it to new and unfamiliar data, which can be used to
model the process of cognitive subjectivity. How-
ever, existing methods rely on the assumption that
pairs of augmented data from the same sentence
are semantically similar. As shown in the figure
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1, this may cause contrastive learning to introduce
potential noise or data that contradicts the intention
of the information disseminator, ultimately leading
to poor performance(Li et al., 2023). Traditional
rumor detection methods often ignore the true in-
tentions of information disseminators, rarely con-
sider the importance of personal subjectivity, and
have difficulty effectively capturing and aligning
these implicit intentions. Moreover, distinguishing
key features from irrelevant noise in text repre-
sentation in noisy environments is a considerable
challenge. Many methods have limited adaptability
to the noisy social network environment, making
it difficult to deal with the diversity of information
effectively.

Inspired by this, we propose the Intent-Aware
Rumor Detection Network (IRDNet), which de-
signs a new contrastive learning method targeting
human subjectivity, model robustness, and consis-
tency of key features, and constructs cognitive an-
chors to mine the potential intentions of informa-
tion disseminators. It includes the following key
components:

In Semantic Feature Extraction Module, we de-
sign a semantic extractor that employs pre-trained
models to enhance the model’s semantic and con-
textual relevance handling. Additionally, it com-
bines BiLSTM and capsule networks to achieve se-
quential and hierarchical feature learning, strength-
ening the model’s ability to capture deep semantic
features.

In Intent-aware Hierarchical Contrastive Learn-
ing Module, cognitive anchors are mainly imple-
mented through two levels of contrastive learning:
event-level contrastive learning and intent-level
contrastive learning. In event-level contrastive
learning, we combine adversarial training tech-
niques to build high-quality data augmented repre-
sentations to enhance the robustness of the model.
In intent-level contrastive learning, by building
intent-aware pairs and leveraging intent-level con-
trastive learning, it can separate individual intents
and capture the main intent in a fine-grained man-
ner while ensuring intent consistency.

In general, the main contributions of this paper
are as follows:

• Aiming at the complex aspects of personal
subjectivity, robustness and consistency in ru-
mor detection, we design a multi-task learning
framework that combines rumor detection and
latent intent mining as key tasks by jointly op-

timizing self-supervised loss and supervised
loss.

• We propose intent-aware hierarchical con-
trastive learning, which includes two com-
plementary strategies: event-level and intent-
level contrastive learning. It aims to model
cognitive subjectivity through contrastive
learning, enhance the robustness and consis-
tency of model representation, and address
existing challenges in rumor detection.

• We evaluate the proposed method using two
real-world datasets and compare it with base-
line methods. Experimental results verify the
effectiveness of our method and demonstrate
its significant advantages in early rumor de-
tection tasks.

2 Related Work

Previous rumor detection methods primarily relied
on feature engineering techniques to extract fea-
tures from existing rumor instances (Horne and
Adali, 2017; Castillo et al., 2011; Yang et al., 2012;
Potthast et al., 2017; Wang, 2017). These studies
focused on utilizing features such as post content,
user profiles, and propagation patterns to train su-
pervised classifiers. However, the effectiveness of
this approach heavily depended on the quality of
feature engineering, leading to potential issues with
model generalization across diverse datasets.

Deep learning focuses on extracting deep key
features, such as using recurrent neural networks
(Ma et al., 2016; Asghar et al., 2021) and convolu-
tional neural networks (Ajao et al., 2018; Liu and
Wu, 2018; Yu et al., 2017) to extract important in-
formation from text content. In addition, capsule
networks have been used to address the limitations
of CNN (Zhao et al., 2018; Ren and Lu, 2022; Yang
et al., 2023). Capsule networks use a dynamic rout-
ing mechanism to replace the maximum pooling
operation of CNN to retain spatial information and
capture key patterns in text. (Sabour et al., 2017;
Mazzia et al., 2021). In recent advancements, graph
neural network models have been employed to ex-
ploit valuable features from content semantics and
propagation structures. These models encode con-
versation threads by modeling propagation trees
(Ma et al., 2018b; Wu et al., 2015; Yang et al.,
2024) and propagation graphs (Wei et al., 2022;
Bian et al., 2020; Lin et al., 2021), resulting in
higher-level representations. Nevertheless, when
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data is limited in the early stages of rumor propaga-
tion, the above methods may not fully exploit their
advantages(Hedderich et al., 2020).

Contrastive learning (CL) can alleviate the prob-
lem of data scarcity, especially by improving data
quality and utilizing limited labeled data, and has
gradually been applied to rumor detection(Lin et al.,
2022; Xu et al., 2023; Gao et al., 2023; Cui and Jia,
2024). In addition, multi-task learning (MTL) is a
strategy that improves the generalization ability of
the model by leveraging the shared knowledge be-
tween multiple interrelated tasks(Caruana, 1997),
which has also been widely explored and used in
the field of rumor detection(Zhang et al., 2021;
Zhang and Gao, 2024). Early studies(Kochkina
et al., 2018; Ma et al., 2018a) mainly emphasize
shared features and improve the effectiveness of ru-
mor detection by promoting feature interactions be-
tween different tasks. Recent studies(Khandelwal,
2021; Yang et al., 2022; Ma et al., 2024) simul-
taneously consider related tasks, such as rumor
detection and stance detection, to understand the
text more comprehensively. Some studies (Cui
and Yang, 2022; Zhou et al., 2022; Li et al., 2024)
also attempt to apply MTL in multimodal environ-
ments, fusing multiple information sources such
as text, images, or audio, aiming to more effec-
tively capture the multidimensional properties of
rumor propagation, thereby improving the overall
performance of rumor detection.

3 Problem Statement

In the task of rumor detection, we define a series of
events in the datasets, E = {E1, E2, E3, ..., Em}.
Each event Ei is linked to a source tweet si and all
associated comment contents, denoted as Ei =
{si, x1, x2, ..., xn}, where si can also be repre-
sented as x0, and n represents the number of rele-
vant comments in the discussion thread. The task
goal is to build a robust rumor detection classifier
by fully mining and learning the critical feature
representations of rumor-related events on social
networks, which can be expressed as f : Ei → Yi,
where Yi belongs to the categories of non-rumor,
false rumor, true rumor, and unverified.

4 Methodology

As shown in Figure 2, we propose an intent-aware
rumor detection network (IRDNet) using a multi-
task training framework, including supervised se-
mantic feature extraction tasks and self-supervised

intent-aware hierarchical contrastive learning tasks
and jointly optimize them by fusing supervised
and self-supervised loss functions. Each module’s
principles and specific details will be introduced
below.

4.1 Semantic Feature Extraction Module
In this module, we use BERTweet (Nguyen et al.,
2020) as a semantic extractor, a language model
pre-trained on a large-scale tweet corpus to en-
hance semantic and contextual processing capabili-
ties. We further incorporate BiLSTM and Capsule
Networks into our model to facilitate multi-level
semantic extraction, thereby capturing critical text-
based information more comprehensively.

We input the text sequence si into the semantic
extractor, producing the output ei ∈ Rs×d, where
s denotes the sequence length. Subsequently, BiL-
STM conducts sequential feature extraction to gen-
erate hidden state representations.

Hi = [
−−−−→
LSTM(ei),

←−−−−
LSTM(ei)] ∈ Rs×2h (1)

where 2h signifies the hidden state dimension
of BiLSTM. For hierarchical feature extraction,
we use a 1D convolutional layer for n-gram fea-
ture extraction obtaining primary capsules, ui =
Conv(Hi) ∈ R(s−k+1)×k_num, k is the convolu-
tion kernel size and k_num is the number of convo-
lution kernels. Normalize using the squeeze func-
tion:

ui = Squash(ui) =
||ui||

1 + ||ui||2
ui
||ui||

(2)

Next, the total input vk of the next layer capsule
is the weighted sum of primary capsule’s predic-
tion vectors ûi ∈ Rcin×(s−k+1)×cdim , cin denotes
the number of higher-level capsules, and cdim rep-
resents the dimension of the capsules.

vk =
∑

k

ck|i · ûk|i, ûi = W
t

i ui (3)

where the predicted vector ûi is obtained through
a projection process, and the coupling coefficients
ck|i are derived through an iterative dynamic rout-
ing process, by applying the softmax function to
bk|i. And the values of bk|i are updated by:

ck|i = softmax(bk|i) (4)

bk|i = bk|i + ûk|i · vk (5)

After r rounds of dynamic routing, the capsule
network obtains the final output vk ∈ Rcin×cdim ,
which encapsulates multi-level semantic features.
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Figure 2: IRDNet, a multi-task learning framework that mainly includes supervised semantic feature extraction
and self-supervised intent-aware hierarchical contrastive learning, captures key content features and potential
intent features to enhance the model’s robustness and consistency. In addition, post-processing model optimization
techniques are used in our prediction stage, as shown in Appendix A

.

4.2 Intent-aware Hierarchical Contrastive
Learning Module

In this section, we develop two complementary con-
trastive learning strategies: event-level contrastive
learning and intent-level contrastive learning, aim-
ing to enhance the model’s ability to handle data
noise in social networks and to understand the sub-
jective intent of information disseminators. As
shown in Figure 3, these strategies help the model
obtain key contextual semantic information and fur-
ther improve its ability to distinguish current noise.

4.2.1 Event-Level Contrastive Learning
Data Augmentation: We utilize ChatGPT to en-
hance the original text data, aiming to eliminate
irregularities and improve the overall quality and
accuracy of the data. ChatGPT (Abdullah et al.,
2022) employs Reinforcement Learning from Hu-
man Feedback (RLHF) to generate text data that
is closely aligned with the user’s context and in-

Figure 3: Details of two contrastive learning in intention-
aware hierarchical contrastive learning

tent, demonstrating excellent performance in nat-
ural language processing tasks (Feng et al., 2023).
To effectively guide the generation process, we uti-
lize task prompts designed by Yang et al. (2023).
For each tweet’s semantic representation ei, where
can also be expressed as e0i , two augmented sen-
tences e1i , e

2
i are generated using ChatGPT-based

data augmentation.

Adversarial Training: We incorporate adversar-
ial training techniques to enhance the model’s ro-
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bustness against attacks. The Fast Gradient Sign
Method (Miyato et al., 2016) is utilized to gener-
ate adversarial examples by adding small pertur-
bations based on the gradient of the loss function
L(fθ(ei + r), yi).

ri = ϵ · sign(∇L(fθ(ei), yi)) (6)

where r is the perturbation, ϵ represents the distur-
bance amplitude, fθ represents the classifier with
parameters θ and yi is the label.

Event-Level Contrastive Learning: We construct
training pairs to ensure that adversarial samples
are close to original samples in vector space, so
that the model can learn representations that are
insensitive to noise, thereby improving robustness
and generalization capabilities. Specifically, each
sentence ei ∈ {e0i , e1i , e2i } generates its adversarial
example ẽi ∈ {ẽ0i , ẽ1i , ẽ2i } . The positive pairs are
formed as {(ei, ẽi) | i ∈ batch}. The negative
pairs include {(ei, ẽj) | i ̸= j, j ∈ N (i)}, where
N (i) represents the set of negative samples for
ei. Then the event-level contrastive loss Levent is
formulated as follows:

Levent = − log
exp(sim(ei, ẽi)/τ)∑

j∈N (i)

exp(sim(ei, ẽj)/τ)
(7)

where τ is the temperature parameter. Since text
inputs are typically discrete (one-hot vectors), we
directly perturb the embedding matrix. The specific
steps of the perturbation process are illustrated in
the following pseudocode:

Algorithm 1 Event-Level Contrastive Learning

Input: Semantic representation {e0i , e1i , e2i }Bi=1

with the label {yi}Bi=1, perturbation magnitude
ϵ, negative samples N (i)

Output: Event-level contrastive loss Levent

1: for ei ∈ {e0i , e1i , e2i } with label yi do
2: Forward Pass loss: L(fθ(ei), yi)
3: Gradient Computation: ∇eiL(fθ(ei), yi)
4: Perturb: ri = ϵ · sign(∇eiL(fθ(ei), yi))
5: Adversarial Generation: ẽi = ei + ri
6: end for
7: Event-level contrastive loss using formula (7)
8: for ei and adversarial example ẽi do
9: Positive pairs: (ei, ẽi)

10: Negative pairs: {(ei, ẽj) | j ∈ N (i))}
11: end for

4.2.2 Intent-Level Contrastive Learning
In this module, we design an intent encoder to ob-
tain different intent representations by putting the
original data and perturbation data into the intent
encoder to capture the subjective intent of infor-
mation disseminators in social networks. Through
contrastive learning at the intent level, we can bring
the positive samples closer and ensure that the aug-
mented data and perturbation data maintain the
consistency of the original intent.

Intent Matrix: To better comprehend the mul-
tiple meanings and latent motivations within the
text, we introduce a parameter matrix ci =
{c1i , c2i , . . . , cKi }, where K represents the number
of latent intentions. This matrix can adaptively rep-
resent different latent intentions to deeply explore
the multidimensional subjective value superposi-
tion process of information disseminators.

Saliency Weight: As a metric for assessing the
importance of tweet content, it provides crucial
clues for subsequent intention analysis and aids in
reducing the impact of noise and irrelevant infor-
mation. A non-linear transformation is introduced
to enhance the model’s expressive power, which is
crucial for understanding and representing complex
structures in the text. The calculation formula for
Saliency Weight is as follows:

ekeyi = ei + ReLU (W key · ei) (8)

equeryi = W query · ei (9)

PA(ei) = Softmax

(
ekeyi · (equeryi )T√

d

)
(10)

where ei represents the embedding representation
of text sequence xi through the semantic extractor.

Intent Score: This metric measures the relevance
of a tweet to different latent intentions. Specifically,
for each intention, the score reflects the extent of
association between the tweet and the intention. A
low association with all intentions might be con-
sidered noise or an intention not yet learned by the
model. To determine the likelihood of a text ei
being related to the k-th latent intention:

P k
I (ei) =

exp

(
We·ei·c(k)i

T

√
d

)

∑K
k′=1 exp

(
We·ei·c(

k′)
i

T

√
d

) (11)

where P k
I (ei) is the probability of text ei being re-

lated to the k-th latent intention, c(k)i represents the
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k-th latent intention vector,
√
d is a scaling factor,

and K is the total number of latent intentions.
Finally, the subjective intention representation

of individuals in social networks is captured by
leveraging intention interactions as follows:

Ikei = ReLU
(
P k
I (ei) · PA(ei) · ei + b1

)
(12)

Intent-Level Contrastive Learning: We obtain 6k
intention feature representations through the intent
encoder, resulting in 4k pairs of intent-aware posi-
tive samples, and negative samples are obtained by
sampling j ∈ N (i) . The intent-level contrastive
loss function is as follows:

Lintent = −
K∑

k=1


log

∑
(x,y)∈Ak

exp(f(x, y)/τ)

∑
j∈N ′(i)

exp(f(Ikei , I
k
ej )/τ)




(13)

Ak represents the set of k-th intent positive sample
pairs {(Iei , Ie1i ), (Iei , Ie2i ), (Iẽi , Iẽ1i ), (Iẽi , Iẽ2i )}.
The final loss function includes the supervised
loss function and the self-supervised contrastive
learning loss function:

L = LCE + λ(Levent + Lintent) (14)

Where LCE is the loss function for supervised
learning, λ is a hyperparameter that controls the
contribution of the intent-aware hierarchical con-
trastive loss.

5 Experiments

5.1 Dataset and Experimental Setup
In this study, we use two public datasets in the field
of rumor detection, Twitter15 and Twitter16 (Ma
et al., 2017), covering four categories: true rumors
(T), false rumors (F), unverified rumors (U), and
non-rumors (N).

We conducted experiments on NVIDIA Tesla
V100 GPU using the PyTorch framework with the
following configuration: batch size set to 64 and an
initial learning rate of 1e-5. To control the complex-
ity of the model, we introduce an L2 regularization
term with a weight attenuation coefficient of 0.001.
To avoid overfitting, we implemented an early stop-
ping strategy (Yao et al., 2007). We divided the
dataset throughout the experiment into 70% train-
ing, 20% validation, and 10% testing. The detailed
model parameter settings and hyperparameter sen-
sitivity analysis are in Appendix B.

5.2 Baselines

We compare IRDNet with different baseline mod-
els, including content-based, structure-based, and
contrastive learning-based methods:

(1) GRU-RNN (Ma et al., 2016): This model
employs a Recurrent Neural Network (RNN) for
event classification, distinguishing between rumors
and non-rumors.

(2) dEFEND (Shu et al., 2019): The dEFEND
model employs attention mechanisms to capture
semantic correlations between the source tweet con-
tent and user comments for rumor detection.

(3) RvNN (Ma et al., 2018b): The RvNN model
captures the structure features within the propa-
gation tree using a Recursive Neural Network for
rumor detection.

(4) BiGCN (Bian et al., 2020): The BiGCN
model captures the structural features of rumor
propagation by constructing a bidirectional graph
structure and leveraging a graph convolutional net-
work (GCN).

(5) TextGCN (Yao et al., 2019): The TextGCN
model utilizes graph convolutional network models
to learn text representations for text classification
tasks.

(6) CICAN (Yang et al., 2023): The CICAN
model captures multiple semantic content features
and different semantic structure features in text for
rumor detection.

(7) GACL (Sun et al., 2022): The GACL model
incorporates graph-based adversarial contrastive
learning, utilizing rumor propagation structure in-
formation for rumor detection.

(8) RAGCL (Cui and Jia, 2024): The RAGCL
model utilizes graph contrastive learning with adap-
tive view augmentation guided by node centralities.

5.3 Experimental Results

In this section, we discuss the comparative anal-
ysis of the performance of our proposed IRDNet
model against other methods, as summarized in
Table 1. The IRDNet model delivers significant
performance improvements on the Twitter15 and
Twitter16 datasets, achieving 91.7% and 90.9% ac-
curacy, respectively.

Content-based models, such as GRU-RNN and
dEFEND, employ deep learning methods to con-
sider the relationship between reviews and the orig-
inal text, such as the attention mechanism and the
recurrent neural network (RNN). However, these
models often overlook extracting deep semantic
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Method
Module Twitter15 Twitter16

Content

-based

Structure

-based

CL

-based
ACC

F1
ACC

F1
N F T U N F T U

GRU-RNN ✓ - - 0.708 0.739 0.68 0.699 0.681 0.683 0.622 0.671 0.697 0.664

dEFEND ✓ - - 0.731 0.631 0.646 0.617 0.668 0.721 0.649 0.603 0.611 0.637

RvNN ✓ ✓ - 0.713 0.702 0.691 0.746 0.654 0.737 0.662 0.743 0.801 0.768

BiGCN ✓ ✓ - 0.798 0.716 0.758 0.843 0.876 0.803 0.792 0.788 0.796 0.814

TextGCN ✓ ✓ - 0.83 0.801 0.859 0.842 0.794 0.846 0.816 0.832 0.824 0.801

CICAN ✓ ✓ - 0.855 0.816 0.811 0.870 0.901 0.840 0.838 0.826 0.802 0.862

GACL ✓ - ✓ 0.861 0.872 0.869 0.832 0.851 0.88 0.873 0.884 0.901 0.867

RAGCL ✓ - ✓ 0.867 0.891 0.867 0.869 0.835 0.905 0.836 0.923 0.963 0.882

IRDNet ✓ - ✓ 0.917 0.914 0.928 0.905 0.897 0.909 0.891 0.906 0.903 0.871

Table 1: Rumor detection results on Twitter15 and Twitter16 datasets.

features, resulting in relatively subpar performance.
In contrast, IRDNet incorporates a multi-level se-
mantic extraction module, enabling it to capture
global-local relationships effectively.

Structure-based models, TextGCN, CICAN, and
BiGCN, outperform RvNN due to their superior ca-
pability to model the complex relationships among
structure features. However, these structure-based
models exhibit lower robustness and are more vul-
nerable to malicious user attacks, leading to mis-
leading results and consequently impacting the ac-
curacy of rumor detection.

CL-based models, GACL, RAGCL and IRD-
Net, exhibit significant performance improvement
attributable to two pivotal factors. Firstly, con-
trastive learning enhances the model’s robustness,
making it more resistant to malicious attacks. Sec-
ondly, contrastive learning effectively highlights
the commonalities within the same category and
differences across distinct categories by provid-
ing rich self-supervised signals, thereby enriching
the model training process. In contrast, the IRD-
Net model utilizes hierarchical contrastive learn-
ing, including event-level and intent-level strate-
gies. Event-level contrastive learning improves ro-
bustness by using adversarial training to make the
model resistant to noise. Intent-level contrastive
learning can capture user intent and keep the de-
tected rumors consistent even in noisy data.

5.4 Ablation Experiments
We conducted a series of ablation studies to eval-
uate the contribution of each component in the
IRDNet model. The specific configurations are
as follows:

(1) W/o BERTweet: The BERTweet component

in the Semantic Feature Extraction Module is re-
placed by the standard BERT.

(2) W/o Cap: The Capsule Network component
in the Semantic Feature Extraction Module is re-
moved.

(3) W/o BiLSTM: The BiLSTM component
in the Semantic Feature Extraction Module is re-
moved.

(4) W/o IHCLM: The Intent-aware Hierarchical
Contrastive Learning Module is removed from the
model.

(5) W/o ECL: The Event-level Contrastive
Learning component in the Intent-aware Hierar-
chical Contrastive Learning Module is removed.

(6) W/o ICL: The intent-level contrastive learn-
ing component in the Intent-aware Hierarchical
Contrastive Learning Module is removed.

Models Twitter15-acc Twitter16-acc
IRDNet 0.917 0.909
W/o BERTweet 0.884-0.033 0.870-0.039

W/o BiLSTM 0.893-0.024 0.900-0.009

W/o Cap 0.889-0.028 0.887-0.022

W/o IHCLM 0.890-0.027 0.877-0.032

W/o ECL 0.897-0.020 0.882-0.027

W/o ICL 0.893-0.024 0.884-0.025

Table 2: Ablation experiment results

As indicated by the results from the ablation ex-
periments in Table 2, each module significantly
impacts the model’s performance. Specifically,
the W/o BERTweet configuration has a substan-
tial effect, resulting in performance reductions of
3.3% and 3.9% on the two datasets, respectively.
This highlights the advantage of BERTweet over
traditional BERT in capturing text semantics and
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Figure 4: Early rumor detection experimental results with different number of comments (a, b) and different training
ratios (c, d).

managing contextual relevance, while the Capsule
network and BiLSTM contribute to multidimen-
sional feature extraction, aggregation of input in-
formation from diverse perspectives, and capture
of high-level semantic information. Removing the
intention-level contrastive learning module (W/o
IHCLM) resulted in a decrease in accuracy of 2.7%
and 3.2%, highlighting the important role of this
module in improving the model’s adaptability to
noisy data and its ability to capture semantic consis-
tency. In contrastive learning strategies, removing
event-level contrastive learning (W/o ECL) and
intent-level contrastive learning (W/o ICL) both
resulted in varying degrees of decreased accuracy.

It is proven that by utilizing a multi-level, fine-
grained contrastive learning strategy, the model’s
robustness to noisy data is improved, and its ability
to capture and understand the subjective intentions
of information disseminators is also significantly
enhanced.

5.5 Early Rumor Detection

Timely identification and mitigation are crucial for
rumor detection. As shown in Figure 6, we uti-
lize two methods to evaluate the model’s early ru-
mor detection performance. First, we evaluate the
performance of the model when the number of
comments gradually increases. The IRDNet model
shows good accuracy even in the early stage with
limited comments. This is attributed to the efficient
extraction of semantic features and the advantages
of event-level contrastive learning with adversarial
training. Although the semantic noise increases
as more information spreads in social networks,
the IRDNet model always maintains excellent per-
formance, highlighting its strong generalization
ability.

Another method is to precisely change the ratio

of the training dataset (0.1, 0.3, 0.5, 0.7), while
fixing the validation ratio at 0.2 and the rest is
allocated to the test set. Intent-level contrastive
learning, by emphasizing the commonality between
intent categories and the distinction between differ-
ent intent categories, obtains more context-related
semantic information from intent features, further
improving our ability to distinguish current noise
terms. Models based on graph neural networks
(BiGCN and TextGCN) perform poorly, especially
in scenarios with limited training data. When the
training ratio is 0.1, our model shows a significant
accuracy improvement of 10% to 30% compared
with other models, demonstrating the superiority
of our method.

6 Conclusion and Future Work

This paper proposes an intent-aware rumor detec-
tion network (IRDNet) that combines supervised
semantic feature extraction with self-supervised
intent-aware hierarchical contrastive learning in
a multi-task framework to address the challenges
of subjectivity, robustness, and consistency in the
current field. It contains two modules: the seman-
tic feature extraction module captures multi-level
semantic information and enhances the model’s
ability to understand context. The intent-aware hi-
erarchical contrastive learning module introduces
two strategies: event-level contrastive learning en-
hances robustness through data augmentation and
adversarial training, and intent-level contrastive
learning captures subjective intent features by de-
signing an intent encoder, ensuring intent consis-
tency and improving feature discrimination while
maintaining robustness. Experimental results show
that IRDNet performs better noise resistance and
critical feature capture than baseline methods in
comparative experiments and early rumor detec-
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tion.
Future research will focus on the following two

aspects. First, the proposed contrastive learning
approach will be extended to a broader range of
classification tasks to verify its generality and effec-
tiveness in diverse tasks, expanding its applicability.
Second, efforts will focus on addressing the current
limitations of large language models (LLMs) in ru-
mor detection. Specifically, we will work towards
enhancing the robustness and detection accuracy
of LLMs in dynamic misinformation environments,
while also ensuring higher reliability and consis-
tency in rumor detection tasks.

7 Limitations

Despite the progress made with the Intent-Aware
Rumor Detection Network (IRDNet), some limita-
tions still exist:

Computational Complexity: The multi-task
learning strategy integrating language model and
contrastive learning increases the computational
complexity and resource requirements of IRDNet.
Although negative sampling and parameter freez-
ing are employed to reduce complexity, real-time
deployment and scalability in environments with
limited computing resources may still present chal-
lenges.

Generality in Multilingual Environments: IRD-
Net’s current training and evaluation focus primar-
ily on English datasets. Its effectiveness and robust-
ness in multilingual environments or non-English
social media platforms have yet to be thoroughly
evaluated. Future research will explore other lan-
guages and cross-language applications to improve
the model’s performance across diverse linguistic
contexts.
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A Model Optimization: Classification
with Alternating Normalization

We employ the Classification with Alternating Nor-
malization (CAN) (Jia et al., 2021) to enhance the
prediction accuracy of low-confidence samples and
ensure the average of all probability distributions
aligns with the prior distribution (can be estimated
directly from the training dataset). This method
quantifies the ambiguity of the predicted class prob-
ability distribution, uses a threshold to distinguish
high-confidence and low-confidence samples, and
applies alternating normalization to rescale predic-
tions for low-confidence instances, i.e., alternately
normalizing across samples in each category and
across categories in each sample. The measure of
uncertainty in the prediction result, Htop-k, utilizes
the top-k probability values to compute the entropy
as follows:

Htop-k(p) = −
1

log k

k∑

i=1

p̂i logp p̂i (15)

Where p̂i is the normalized probability distribu-

tion of the first k probability values, p̂i = pi/
k∑

i=1
pi,

and 1/log k is to limit the final indicator value to
[0, 1].

Assuming there are N samples, among which n
are high-confidence with probabilities p(1), ..., p(n).
The low-confidence samples are then corrected
against the high-confidence samples by alternately
normalizing instances of each category and cate-
gories of each instance. Specifically, for each low-
confidence prediction p(j), j ∈ (n+ 1, . . . , N),
we perform normalization across instances for each
category together with the high-confidence predic-
tion as follows:

p(k) =
p(k) ⊙ p̃

p̄
, p̄ =

1

n+ 1
(p(j) +

n∑

i=1

p(i))

(16)
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Where k ∈ (1, 2, · · · , n, j), After the above op-
erations, it is possible that the sum of p(k) may not
equal to 1, so we normalize them as follows:

p(k) ← p
(k)
i

m∑
i=1

p
(k)
i

(17)

Notably, this correction process adjusts each
sample independently, and the probability dis-
tributions of both the high-confidence and low-
confidence samples are updated. However, we ulti-
mately keep the updated probability distribution as
the corrected result for the original low-confidence
samples.

Next, we conducted an ablation experiment on
CAN. As shown in 3, the experiment highlights
the beneficial effect of decisions based on prior
knowledge of model generalization capabilities.

Models Twitter15-acc Twitter16-acc
IRDNet 0.917 0.909
W/o CAN 0.913-0.004 0.901-0.008

Table 3: Ablation experiment results of CAN

B Model Experimental Configuration and
Hyperparameter Sensitivity Analysis

B.0.1 Model Experimental Configuration
In the semantic feature extraction module, the hid-
den size of the BERTweet layer is set to 768 in
bertweet-base and 1024 in bertweet-large, with
weights frozen to prevent overfitting. We experi-
mented with both bertweet-base and bertweet-large
models1 and found that bertweet-large performed
better. The BiLSTM layer consists of 256 hidden
units. The size of the convolutional kernels (k) is
{2, 3, 4}. The number of convolutional kernels
(k_num) is fixed at 256. The higher-level capsule
layer contains 4 capsules (cin). The output dimen-
sion of each capsule (cdim) is set to 50. Dynamic
routing is performed for 3 iterations (r = 3) to
aggregate capsule outputs effectively.

In the intent-aware hierarchical contrastive learn-
ing module, we implement event-level and intent-
level contrastive learning. For event-level con-
trastive learning, we use a perturbation magnitude
ϵ = 0.001 to generate adversarial examples, with
negative samples N (i) = 5 per positive pair to

1https://huggingface.co/docs/transformers/
model_doc/bertweet

ensure robust learning. For intent-level contrastive
learning, the intent encoder is configured with
K = 4 latent intentions, each represented by a
64 dimensional vector and 10 negative samples per
positive pair.

During training, we use the cross-entropy loss
function to measure the discrepancy between pre-
dicted results and true labels, combined with the
event-level and intent-level contrastive loss func-
tions, weighted by a hyperparameter (λ). An early
stopping strategy with a patience of 10 epochs pre-
vents overfitting and ensures generalizability.

B.0.2 Hyperparameter Sensitivity Analysis
We present the impact of crucial hyperparameters
on our experiments, including the number of inten-
tions (k) and CL weight parameter (λ).

Number of Intentions (k)
The number of intents (k) is key to intent-level

contrastive Learning. Figure 5 illustrates the im-
pact of different numbers of intents on the two
datasets, Twitter15 and Twitter16. When k = 1,
the model’s performance is subpar. As k increases,
the model’s performance improves significantly,
reaching an optimal performance at k = 4. This
suggests that employing multiple intentions better
captures the semantics and information embedded
in the text.

However, performance degrades as the number
of intents increases (i.e., k > 4). This degradation
can be attributed to the intent decomposition being
too fine-grained, and the information fragmenta-
tion is severe, which limits the model’s expressive
power.

Interestingly, there is a trend of slightly im-
proved performance in k = 20. This suggests
that additional intents may still capture some use-
ful semantic variation, albeit with diminishing re-
turns. However, given the increased computational
complexity and potential overfitting risk associated
with higher k values, we set k = 4 as the optimal
number of intents.

CL Weight Parameter (λ)
Within the loss function, the weight parame-

ter (λ) that controls the contrastive learning (CL)
loss is another key hyperparameter. We note that
λ = 0.05 yields the optimal performance on the
Twitter16 dataset, and λ = 0.01 is optimal for
the Twitter15 dataset. However, the model’s per-
formance deteriorates when λ exceeds its optimal
value. This phenomenon arises because an elevated
weight on the contrastive loss can compromise the

4482

https://huggingface.co/docs/transformers/model_doc/bertweet
https://huggingface.co/docs/transformers/model_doc/bertweet


Figure 5: Sensitivity analysis of the number of inten-
tions

quality of training for the classification task, result-
ing in decreased performance.

C Visualization Experiments

In the visualization experiment of event-level ad-
versarial training, we use the confusion matrix to
highlight the frequency of label transitions among
key categories (non-rumor, true, false, unverified)
before and after perturbation to compare the distri-
bution of original labels with those resulting from
perturbations.

Figure 6: The impact of introducing perturbed samples
in event-level contrastive learning on model robustness.

The heatmap indicates that the categories are
frequently misclassified as "unverified (3)" after
minor perturbations. This phenomenon can be at-
tributed to the model’s sensitivity to minor pertur-
bations, where the adversarially generated samples
may attenuate the critical features that originally
distinguished these categories. Consequently, the
model fails to effectively capture the core seman-
tic features of the original categories, making it
more likely to classify ambiguous information as
belonging to an uncertain category, indicating that
the model demonstrates insufficient robustness and

contextual comprehension when confronted with
semantic ambiguity. This behavior also aligns with
human cognitive tendencies where slight shifts in
wording or tone can provoke doubt, especially in
the absence of clear evidence or authoritative sup-
port. Even if the information itself is accurate, if its
description becomes ambiguous, individuals may
lean towards considering it as unverified.

4483


