
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4566–4580
November 12-16, 2024 ©2024 Association for Computational Linguistics

Bootstrapped Policy Learning for Task-oriented Dialogue
through Goal Shaping

Yangyang Zhao1,2 and Ben Niu1 and Mehdi Dastani2* and Shihan Wang2∗

1Changsha University of Science and Technology
2Utrecht University

yyz@csust.edu.cn; M.M.Dastani@uu.nl; s.wang2@uu.nl

Abstract

Reinforcement learning shows promise in op-
timizing dialogue policies, but addressing the
challenge of reward sparsity remains crucial.
While curriculum learning offers a practical so-
lution by strategically training policies from
simple to complex, it hinges on the assump-
tion of a gradual increase in goal difficulty to
ensure a smooth knowledge transition across
varied complexities. In complex dialogue envi-
ronments without intermediate goals, achieving
seamless knowledge transitions becomes tricky.
This paper proposes a novel Bootstrapped Pol-
icy Learning (BPL) framework, which adap-
tively tailors progressively challenging subgoal
curriculum for each complex goal through goal
shaping, ensuring a smooth knowledge transi-
tion. Goal shaping involves goal decomposition
and evolution, decomposing complex goals into
subgoals with solvable maximum difficulty and
progressively increasing difficulty as the policy
improves. Moreover, to enhance BPL’s adapt-
ability across various environments, we explore
various combinations of goal decomposition
and evolution within BPL, and identify two uni-
versal curriculum patterns that remain effective
across different dialogue environments, inde-
pendent of specific environmental constraints.
By integrating the summarized curriculum pat-
terns, our BPL has exhibited efficacy and ver-
satility across four publicly available datasets
with different difficulty levels.

1 Introduction

Task-oriented dialogue (ToD) systems aim to assist
users in completing specific tasks (also referred to
as goals) with fewer turns, such as making restau-
rant reservations. Two common architectures for
building ToD systems are the pipeline and end-to-
end architectures (Kwan et al., 2023). The pipeline
architecture comprises concatenated submodules:
natural language understanding (NLU), dialogue
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Table 1: Example user goals with increasing complexity.

User goal g1: The user wants to book a flight ticket from
New York to Los Angeles today.

User goal g2: The user wants to book a direct flight from
New York to Los Angeles today and reserve a
hotel room for one night at the departure city.

User goal g3: The user wants to book a business class flight
ticket for an evening flight from New York to
Los Angeles today. Additionally, they need to
reserve two nights of hotel rooms at both the
departure and arrival cities, and book tickets
to nearby attractions for two people.

state tracking, dialogue policy (DP), and natural
language generation(NLG) (Chen et al., 2017).
Among these, DP plays a pivotal role in determin-
ing system responses based on dialogue state input,
directly influencing system success (Zhang et al.,
2022b). While large language models (LLMs) in-
deed exhibit vast potential, the end-to-end frame-
work introduces challenges in controllability and in-
terpretability (Rohmatillah et al., 2023). Therefore,
it is more common to leverage LLMs for replacing
specific components within pipeline frameworks of
TOD systems, such as NLG (Zeng et al., 2024),
NLU (Mirza et al., 2024), or word-level compo-
nents (Yi et al., 2024), rather than all components
in pipelines. Reinforcement learning (RL) emerges
as a preferred DP approach due to its adeptness in
sequential decision-making. However, optimizing
dialogue policies using RL faces hurdles due to the
sparse dialogue goal rewards, requiring extensive
exploration to achieve the goal and trigger learning
signals (Kwan et al., 2023; Takanobu et al., 2020).

Curriculum Learning (CL) strategically orders
DP learning from easy to difficult to alleviate re-
ward sparsity challenges. This ordered learning
strategy allows DP to use simpler goals’ knowledge
or skills as a foundation for tackling more complex
ones (known as knowledge transition) (Narvekar
et al., 2020; Geishauser et al., 2022). These CL-
based methods typically require goal difficulty to
increase gradually over time. However, in complex
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dialogue scenarios where intermediate goals are
absent, achieving smooth knowledge transitions be-
comes tricky. Taking Tab.1 as an example, existing
CL methods typically rank user goals from easy
(g1) to difficult (g3), facilitating smooth transitions.
Nonetheless, in complex dialogue environments,
simpler goals like g1 and g2 are often absent as
intermediate steps. Training difficult goals g3 di-
rectly requires numerous rounds of interactions to
yield meaningful rewards, ultimately diminishing
learning efficiency (Lu et al., 2019).

To this end, this paper introduces Bootstrapped
Policy Learning (BPL), a novel framework utiliz-
ing goal shaping to dynamically tailor a subgoal
curriculum for each complex user goal. This cur-
riculum progressively increases in difficulty to en-
sure smooth knowledge transitions. Goal shaping
involves two operations: goal decomposition and
evolution. Goal decomposition decomposes com-
plex goals into subgoals with solvable maximum
difficulty, reducing their complexity. Meanwhile,
goal evolution gradually increases the difficulty of
subgoals in line with the policy’s growing capa-
bilities, ultimately enabling mastery of the entire
goal. On the one hand, BPL efficiently guides the
policy’s progression from easier to more difficult
goals, ensuring a smooth knowledge transition. On
the other hand, the customized subgoal curricu-
lum aligns with the policy’s developing abilities,
enhancing training efficiency.

To enhance BPL’s generality across diverse en-
vironments, we explore various combinations for
goal decomposition and evolution within the BPL
framework and identify optimal combination pat-
terns for dialogue datasets with different difficulty
characteristics. It allows BPL practitioners to ef-
ficiently learn dialogue policies in future datasets
by selectively choosing suitable BPL combinations
based on these identified patterns. Additionally, we
identify two universal, dataset-independent combi-
nation patterns that maintain effectiveness across
various dialogue environments, independent of spe-
cific environmental constraints. In summary, our
contribution is three-fold:
• We propose a novel Bootstrapped Policy Learn-

ing (BPL) framework that dynamically tailors sub-
goal curriculum through goal shaping, facilitating
smooth knowledge transition.
• We extract optimal combination patterns

within the BPL framework, facilitating the selec-
tion of suitable BPL combinations for diverse di-
alogue datasets, broadening its applicability and

potential impact across various environments.
• We identify two universal combination pat-

terns, which transcend dataset-specific constraints
and outperform existing CL approaches across a
spectrum of dialogue datasets.

2 Related Work

Our work is closely related to two areas of research:
curriculum learning and goal decomposition in
pipeline-based task-oriented policies.

Curriculum learning (CL) has proven its efficacy
in accelerating learning in both supervised learning
(Bengio et al., 2009; Zhang et al., 2022a) and rein-
forcement learning (RL) (Florensa et al., 2017; Ren
et al., 2018; Wöhlke et al., 2020; Wu and Vorob-
eychik, 2022; Klink et al., 2022). As a natural
extension, the integration of CL with deep RL for
dialogue policies has been progressively garnering
more attention (Saito, 2018; Zhao et al., 2021; Liu
et al., 2021; Zhao et al., 2022), aiming to enhance
learning efficiency through well-structured curricu-
lum sequences. Earlier approaches relied on man-
ually pre-defined goal sequences (Wu et al., 2018;
Budzianowski et al., 2018). For instance, (Saito,
2018) employed a coarse-grained criterion, artifi-
cially defining the number of slots in user goals
for curriculum sequencing. However, such crite-
ria lack precision in achieving optimal curriculum
sequencing. (Zhao et al., 2021) addressed this by in-
troducing an RL-based teacher model considering
both efficiency and diversity in curriculum sequenc-
ing. However, this approach incurs additional costs
for teacher model design and training. Meanwhile,
(Liu et al., 2021) and (Zhao et al., 2022) proposed
distinct difficulty evaluation criteria based on user
goals, involving the differential space of dialogue
states and cumulative rewards obtained. Yet, these
methods assume each user goal is trained at least
once to calculate its difficulty scores. In summary,
prior research mainly focused on meticulous goal
sequencing in curriculum policy learning. In con-
trast, our approach allows for the dynamic creation
of an intrinsic subgoal curriculum tailored to each
complex goal. Moreover, as highlighted in the
introduction, existing methods struggle with com-
plex environments lacking intermediate goals for
smooth knowledge transitions, a gap our proposed
approach seeks to address.

Our framework integrates goal decomposition
algorithms. Current algorithms are limited to eas-
ily decomposable multi-domain goals (Peng et al.,
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Figure 1: Illustration for dialogue policy learning using
proposed BPL framework.

2017) or rely on extensive successful experience
for training the subgoal discovery network (SDN)
(Tang et al., 2018). However, accumulating such
extensive data might be undesirable or unneces-
sary, given the promising performance of other CL-
based dialogue policies. In contrast, our approach
eliminates the need for manual decomposition or
significant data costs. Instead, the BPL framework
automatically generates an intrinsic subgoal cur-
riculum for each complex goal based solely on a
coarse-grained difficulty criterion.

3 Bootstrapped Policy Learning

This section introduces our Bootstrapped Policy
Learning (BPL) framework, as depicted in Fig.1,
composed of two integral components: Decom-
poser and Evolver. The user simulator randomly
selects a user goal to start the conversation. If the
dialogue fails, Decomposer decomposes the user
goal into a subgoal with solvable maximal diffi-
culty for goal decomposition. Conversely, upon
dialogue success, Evolver increases the complexity
of the subgoal for goal evolution, until the dialogue
policy masters the entire goal.

3.1 Difficulty Criteria for User Goals
This section introduces fundamental concepts such
as user goal, entire goal, subgoal, and current user
goal. Additionally, it outlines a coarse-grained
difficulty criterion for user goals, crucial for con-
structing both Decomposer and Evolver, offering
theoretical foundation.

3.1.1 User Goal
User goals describe user needs and dialogue objec-
tives. Typically, a user goal g comprises a set of
constraints C and requests R, where C denotes the
information constrained provided by the user and
R denotes the information required by the user (Lu

et al., 2019). To represent user goals, we assume a
set of slot names S and the domain of values V (s)
for each slot name s. An information constraint
provided by the user is of the form s = v for s ∈ S
and v ∈ V (s), indicating that slot s has value v.
A user request is then considered as a set of slot
names for which the user seeks values.

Taking a train-ticket booking as an example, the
user goal is to inquire about the departure time of
today’s trains from A to B, where the user goal g is
in the following form:

g = (C,R) where

C =




location_form = A
location_to = B
date = today



 and

R = {departure_time}

(1)

Definition 1 Subgoal: given two user goals g1 =
(C1, R1) and g2 = (C2, R2), g2 is considered as
a subgoal of g1, if C2 ⊆ C1 and R2 ⊆ R1, and
g2 ̸= ∅.

Definition 2 Entire goal: an unshaped user goal
before dialogue policy training commences.

Definition 3 Current User Goal: A user (sub)goal
sampled at the start of a dialogue.

The current user goal can be either the entire
goal or a subgoal. To encourage dialogue policies
to achieve the entire goal rather than settling for
subgoals, we adjust the turn-based reward function:

ℜ =





Rmax ∗ |gcurr|
|gent| if conversation success,

Rmin if conversation fails,

−1 otherwise
(2)

where gent is the entire goal corresponding to the
current user goal gcurr, |g|, indicates the total num-
ber of slots in g, Rmax is the maximum reward for
successful completion of gent, Rmin is the penalty
for a failed user goal, and −1 serves as a fixed
penalty to encourage shorter dialogues, with these
values set within Sec.4.2.

3.1.2 Difficulty Evaluation
Dialogue success hinges on accurately identifying
all provided information C from the user, respond-
ing correctly to all user requests R, and success-
fully booking a ticket meeting the specified infor-
mation. Thus, the difficulty of user goal g varies
based on the number of information and requests
in C and R. Fewer constraints and requests re-
sult in fewer agent actions required to complete g,
reducing error risks. The user goal’s difficulty is
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Figure 2: Changes in the user goal set during the decomposition and evolution processes of user goals.

measured by the combined count of C inform slots
and R request slots:

Definition 4 Goal Difficulty D(gi) = |Ci|+ |Ri|,
where |Ci| is the number of Ci in user goal gi, and
|Ri| is the number of Ri in user goal gi.

Consider the user goal g in Equ.1, its difficulty
is 4, calculated as D(g) = |C|+ |R| = 3 + 1 = 4.
While other factors influence user goal difficulty
(e.g., the differential space of dialogue states (Liu
et al., 2021) and the cumulative rewards obtained
(Zhao et al., 2022), the sum of slot entropies (Pa-
pangelis et al., 2017)), precisely defining them is
challenging. Our approach avoids this by using the
coarse-grained criterion outlined above.

Based on this difficulty measure, we introduce
the core concepts of goal shaping:

• Goal Decomposition: reducing the number of
slots in the user goal to lower its difficulty.

• Goal Evolution: increasing the number of slots
in the user goal to enhance its difficulty.

3.2 Decomposer

The left side of Fig.2 depicts changes in the user
goal gi during goal decomposition, involving: i)
Boundary state detection, identifying state s4 near-
est to the goal state within a failed dialogue trajec-
tory of gi; ii) Goal Decomposition, dividing the
current user goal gi into a corresponding boundary
subgoal based on the detected boundary state s4;
iii) Goal Substitution, substituting the current user
goal gi with the boundary subgoal (the orange one).

3.2.1 Boundary State Detection

A state qualifies as a boundary state under the fol-
lowing conditions:
i) All slot-value pairs in the state are present
in the goal state; A dialogue state st captures the
dialogue session until time t, including the current
user action, previous agent action, dialogue history,
and mentioned slot-value pairs. The goal state sg
contains all slot-value pairs representing g1.
ii) the distance d between the boundary state
and the goal state is the shortest. d is determined
by the number of mismatched slot-value pairs: d =
N(sg)−N(s), where where N(sg) represents the
number of slots contained in the goal state sg. In
fact, N(sg) = D(g). N(s) represents the number
of slots in the current state s that are the same as
those in the goal state sg. The difference between
the two indicates the distance from the current state
s to the goal state sg.

In cases of multiple boundary states, the most
recent state is selected as the boundary state, as
it took more dialogue rounds to reach this state.
If no state in the dialogue trajectory matches any
slot-value pair of the goal state, a slot-value pair
is randomly selected from the inform_slot set in
the goal as the boundary state.

3.2.2 Goal Decomposition

Based on slot-value pairs present in the detected
boundary state, the user goal is decomposed into
two parts: the boundary subgoal, containing slots

1Even though a user goal has more than one goal state,
their slot-value pairs are the same. Therefore, it does not
affect the detection of the boundary state.
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from the boundary state, and the failed subgoal,
comprising the remaining slots in the user goal.

3.2.3 Decomposition Condition
The decomposer’s role is to decompose tricky user
goals during training, and avoid decomposition
for simple goals. Three decomposition conditions
guide BPL in identifying optimal moments for de-
composition across dialogue scenarios:
Failure at any time (A): the decomposer activates
whenever a user goal fails.
Failure after training for N2 epochs (T): a user
goal persists failing after N epochs of policy learn-
ing, it undergoes decomposition.
Failure M times consecutively2 (C): User goals
failing consecutively M times indicate surpassing
the policy’s capability, prompting decomposition.

3.3 Evolver

The right side in Fig.2 depicts changes in the user
goal gi during goal evolution, comprising three
stages: i) Evolutionary segmentation, dividing the
failed subgoal into an evolved part for subgoal evo-
lution and a retained part for the next iteration,
based on the dialogue policy’s performance. ii)
Subgoal evolution, merging the evolved part and
the current goal gi into a new goal. iii) Goal Substi-
tution, replacing the original user goal gi with the
evolved new goal.

3.3.1 Evolutionary Segmentation
This stage randomly allocates slot-value pairs from
a failed subgoal to the evolved and retained parts,
depending on the dialogue policy’s capability. Poli-
cies with better performance allocate more pairs to
the evolved part. To strike a balance, we explore
methods to assess segmentation strategies.
Fixed number of slots (F): Only one slot as the
evolved part, regardless of policy ability.
Obtained rewards control (R): Inspired by (Zhao
et al., 2022), the number of evolved slots NoE
is determined by comparing cumulative rewards
R to Rg

max for subgoal g, calculated as NoE =
⌊ Rg

Rg
max

×Ngf ⌋, where Ngf is the failed subgoal’s
slot count, Rg is cumulative rewards obtained
by the agent after executing user goal g, Rg

max

is the maximum reward that can be obtained by
completing this user goal, calculated as Rg

max =
Rmax ∗ gcurr/gent, and ⌊⌋ is the floor function.

2The impact of varying M and N on performance is ex-
perimentally evaluated in Appendix D.

Exploration degree control (E): Inspired by (Liu
et al., 2021), we propose a measure based on ex-
ploratory dialogue state differential space, related
to policy proficiency in achieving user goals,

NoE = ⌊(1− η

T∑

t=0

S(Φ̂(st+1),

Φ(st+1))))×Ngf ⌋
S(Φ̂(st+1),Φ(st+1))) = (Φ̂(st+1)− Φ(st+1))

2

where Φ(·) denotes the dialogue state encoding
network, Φ̂(st+1) is the predicted next state feature,
Φ(st+1) is the actual next state feature, S denotes
the dialogue state differential space that dialogue
policy needs to explore, and η denotes a scaling
factor to scale the value of S to [0,1].

3.3.2 Subgoal Evolution
Evolved inform and request slots merge into corre-
sponding positions of the subgoal.

3.3.3 Evolution Timing
The evolution process relies on Evaluator(D, g)3

function output, assessing if dialogue D completes
goal g. The evolution process is executed when
Evaluator(D, g) = True.

4 Experiment

Our experiments utilize four datasets: Movie-
Ticket Booking, Restaurant Reservation, Taxi Or-
dering, and Multiwoz 2.1 (Li et al., 2016, 2018;
Budzianowski et al., 2018). The first three are
single-domain datasets with varying difficulty lev-
els, while Multiwoz 2.1 spans seven domains. For
the single-domain experiments, we employed the
Microsoft Dialogue Challenge platform, which pro-
vides a unified experimental environment, standard-
ized datasets, and publicly available rule-based user
simulators, facilitating collaboration and bench-
marking within the dialogue research community.
Multi-domain experiments using the Multiwoz
dataset were conducted on the ConvLab-2 platform,
which also offers standardized datasets and a pub-
licly available agenda-based simulator4. To better
evaluate our method, we also conducted experi-
ments with human users, as shown in Section 4.5.

User goal difficulty positively correlates with
slot count (Zhao et al., 2021; Liu et al., 2021;

3https://github.com/thu-coai/Convlab-2
4https://github.com/zhaoyangyangHH/BPL
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Figure 3: The distribution of the number of slots for
user goals in each dataset.

Budzianowski et al., 2018). Slot distributions were
plotted for each dataset, as shown in Fig.3, reveal-
ing 5 to 7 slots for movie goals (indicating simplic-
ity), 5 to 12 slots for restaurant goals (reflecting
varied difficulty), and 8 to 13 slots for taxi goals
(suggesting higher complexity). In summary, dif-
ficulty levels were: Movie = Easy, Restaurant =
Moderate, Taxi = Difficult. Multiwoz 2.1 domain
sizes aided in controlling slot counts for datasets
of different difficulty levels.

We first analyze and summarize the optimal BPL
combination patterns in dialogue environments
across varying difficulty characteristics. Then, we
validate the effectiveness and adaptability of these
summarized patterns within three Multiwoz 2.1-
based environments with varying difficulty levels.

4.1 Baselines
This paper aims to deal with the constraints im-
posed by CL in the application of RL-based task-
oriented dialogue policies by goal decomposition
techniques. Therefore, we selected all the state-
of-the-art techniques (including RL-based task-
oriented dialogue policies with CL or goal decom-
position), as well as the standard baseline model
DQN, for comparison:
Standard baseline model

• DQN agent learns based on randomly sampled
user goals (Li et al., 2017).

RL-based TOD policies with CL

• SNA-DQN agent learns incrementally from
easy to difficult based on a curriculum sorted
by the number of slots in the user goal (Saito,
2018).

• SND-DQN agent learns incrementally from
difficult to easy based on a curriculum sorted

by the number of slots in the user goal (Saito,
2018).

• ACL-DQN agent learns based on the sequence
of sampled user goals selected by a RL-based
teacher model. The teacher model selects
the user goals based on the learning feedback
from the dialogue policy and over-repetition
penalties (Zhao et al., 2021).

• SDPL agent learns from a curriculum sorted
from easy to difficult based on the differential
space of dialogue states derived from user goal
experiences (Liu et al., 2021).

• VACL agent learns from a curriculum sorted
from easy to difficult based on the cumulative
rewards obtained from user goals, allowing
for skipping levels of execution (Zhao et al.,
2022).

RL-based policies with goal decomposition

• HRL agent consists of two layers of policies,
where the higher-level policy prioritizes com-
pleting domains and the lower-level policy’s
objective is to accomplish the selected domain
subgoals (Peng et al., 2017).

• SDN agent decomposes user goals using a sub-
goal discovery network trained from success-
ful dialogues and learns from the decomposed
user goals (Tang et al., 2018).

4.2 Settings

We standardized common parameters across all
models for fairness and selected unique optimal pa-
rameters for each model. All models use a single-
layer perceptron with 80 neurons and RMSprop
optimizer, with fixed hyperparameters: learning
rate at 0.001, batch size at 16, and discount fac-
tor at 0.95. The experience replay buffer size is
10, 000. During training, an ϵ-greedy strategy with
ϵ = 0.1 is used for exploration. To mitigate cur-
riculum sequencing cost, only 120 dialogues are
utilized for warm start, curriculum initialization
(if necessary), and training the subgoal discovery
network in SDN5. A total of 500 epochs are allo-
cated for joint training of the dialogue policy and
curriculum fine-tuning. Reward parameters are set

5As using over 1600 successful dialogues for SDN training
or initializing curriculum difficulty with excessive dialogues
would be unfairly compared to other methods.
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Table 2: Results of different agents on three datasets across different difficulties.

Movie Restaurant TaxiAgent
Rank Success Rewards Turns Rank Success Rewards Turns Rank Success Rewards Turns

DQN 0.5576 15.54 24.75 0.7909 34.01 15.39 0.3635 -7.18 21.81
SNA-DQN 0.1871 -34.51 35.93 0.0061 -43.96 31.03 0.0000 -42.08 26.16
SND-DQN 0.1923 -34.23 36.63 0.0044 -44.05 30.89 0.0000 -41.62 25.24
ACL-DQN 0.6649 27.07 21.44 0.8024 35.44 15.54 0.5874 13.90 19.92
SDPL 0.6300 25.68 23.84 0.8223 37.57 17.81 0.6318 18.22 18.27
VACL 0.6600 29.94 21.33 0.7933 34.49 16.88 0.5675 12.51 19.13
HRL 0.5485 16.44 33.72 0.8099 36.34 15.90 0.3783 -3.92 21.24
SDN 0.5829 19.49 24.93 0.8298 37.31 15.53 0.6209 17.24 19.29
BPL-AF 0.6566 29.18 21.21 0.8034 35.59 15.44 1st 0.8181 36.61 15.23
BPL-AR 1st 0.8031 48.91 16.94 0.8290 35.24 16.35 0.7091 26.11 17.42
BPL-AE 0.7979 47.68 16.50 0.7976 34.96 15.65 0.7619 31.32 16.70
BPL-TF universal 0.6739 32.01 19.71 universal 0.9193 47.13 13.21 universal 0.6972 24.75 17.99
BPL-TR 0.7614 43.60 17.52 0.9064 45.77 15.60 0.4030 -4.35 23.24
BPL-TE universal 0.7955 48.02 16.87 universal 0.8490 38.24 15.27 universal 0.6955 24.72 17.75
BPL-CF 0.6440 27.94 20.69 1st 0.9233 47.47 13.25 0.8108 35.90 16.14
BPL-CR 0.6631 29.97 21.21 0.8110 36.37 15.25 0.4641 1.80 21.92
BPL-CE 0.6659 30.51 20.80 0.7798 33.35 15.67 0.7633 31.14 17.11

Table 3: The abbreviation of BPL combinations.

Abbr. Decomposition Condition Evolutionary Segmentation
BPL-AF

Failure at any time (A)
Fixed number of slots (F)

BPL-AR Obtained rewards control (R)
BPL-AE Exploration degree control (E)
BPL-TF

Failure after training
for N epochs (T)

Fixed number of slots (F)
BPL-TR Obtained rewards control (R)
BPL-TE Exploration degree control (E)
BPL-CF

Failure M times
consecutively (C)

Fixed number of slots (F)
BPL-CR Obtained rewards control (R)
BPL-CE Exploration degree control (E)

with Rmax at 2L and Rmin at L, Eq.2. L denotes
the maximum allowed number of dialogue turns,
which defaults to 40 across all domains. For a fair
comparison, we use the ground-truth goal informa-
tion to decompose and evolve user goals during
the training phase. However, we do not use any
goal information during the test phase. We utilize
ground-truth goal information to decompose and
evolve user goals during the training phase but do
not use any goal information during testing. The
specifics are as follows:

Training Phase: At the start of a dialogue,
the user simulator initiates the dialogue with a
user goal randomly sampled from the training
set. Throughout the dialogue, the dialogue pol-
icy has no ground-truth goal information. If the
dialogue fails, BPL decomposes the sampled goal
based on the dialogue trajectory and ground-truth
goal. If the dialogue succeeds and the sampled goal
is a sub-goal, BPL evolves the user goal.

Test Phase: The user simulator begins the dia-
logue by randomly sampling a user goal from the
test goals set. Similar to training, the policy does
not access ground-truth information. We then eval-
uate performance using the metrics provided by

the datasets, including success rate, average turns,
and average rewards. All results are computed over
ten runs of 1,000 dialogues, with each run tested
on 100 dialogues with different random seeds after
training on a single dialogue. We conducted statis-
tical tests using the t-test. The differences between
the results of all agent pairs evaluated at the same
epoch are statistically significant (p < 0.05).

4.3 Analysis

To explore optimal combinations patterns in diverse
dialogue environments and establish a general ap-
proach, we conducted analytical experiments, with
main results presented in Tab.2 (abbreviated in
Tab.3)6. Findings based on experimental results
are summarized below:
For low-difficulty datasets
• Early decomposition (Condition A) outper-

forms delayed decompositions (T and C), suggest-
ing dialogue policies struggle with reward scarcity
even in simple datasets.
• Combining Condition C with evolutionary seg-

mentation (R and E) yields poor results, as simple
user goals are less prone to continuous failures,
limiting the benefits of BPL.
• Combining Condition A with evolutionary seg-

mentation (R or E) efficiently meets learning de-
mands in low-difficulty datasets, resulting in signif-
icant performance improvements.

In low-difficulty datasets, the optimal combi-
nation is early decomposition (A) combined with
evolutionary segmentation (R or E).
For medium difficulty datasets:
• Condition A performs worse than T and C due

6Detailed results and variance are in Appendix A.
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Table 4: Results of different agents on three datasets based on Multiwoz 2.1 under varying difficulty levels, where
the dataset difficulty is controlled by the number of domains, termed as (size).

Difficulty = Simple (1) Difficulty = Medium (3) Difficulty = Difficult (7)Agents
Rank Success Rewards Turns Rank Success Rewards Turns Rank Success Rewards Turns

DQN 0.6609 -8.59 11.90 0.3332 -24.40 18.00 0.1223 -41.91 35.17
SNA-DQN 0.4945 -14.47 11.34 0.1853 -50.88 15.12 0.0115 -57.02 38.79
SND-DQN 0.4232 -15.62 9.22 0.0940 -56.92 14.70 0.0153 -56.68 39.02
ACL-DQN 0.7395 1.20 13.26 0.4642 -10.73 20.22 0.0584 -50.63 37.26
SDPL 0.7044 -3.44 17.12 0.3726 -16.74 20.56 0.0294 -54.72 38.49
VACL 0.6894 -3.91 14.39 0.3456 -22.44 24.06 0.0544 -51.25 37.55
HRL 0.6588 -9.54 19.48 0.4937 -6.64 24.72 0.2564 -24.56 28.67
SDN 0.6939 -7.72 17.04 0.4522 -10.38 23.38 0.0986 -45.20 35.05
BPL-AF 0.7031 -2.40 10.38 0.4600 -8.84 14.40 1st 0.3592 -9.21 26.62
BPL-AR 1st 0.8263 35.48 7.26 0.3893 -12.24 17.62 0.2939 -18.39 29.30
BPL-AE 0.7895 16.00 12.68 0.4156 -11.06 16.98 0.3115 -15.95 28.67
BPL-TF universal 0.7406 3.12 8.24 universal 0.6441 14.92 12.19 universal 0.3239 -14.18 28.11
BPL-TR 0.7539 7.20 9.52 0.6285 8.54 12.72 0.2331 -26.64 31.23
BPL-TE universal 0.7567 13.43 8.85 universal 0.5044 -0.82 13.18 universal 0.2747 -20.97 29.86
BPL-CF 0.6664 -5.53 12.66 1st 0.6628 19.53 10.04 0.3001 -17.49 29.00
BPL-CR 0.6950 -2.30 17.52 0.5117 3.58 12.81 0.3329 -12.88 27.66
BPL-CE 0.7126 0.49 10.06 0.4983 -1.20 14.54 0.3423 -11.73 27.62

to a mix of simple and difficult user goals, where T
and C accurately identify difficult goals.
• Evolutionary segmentation (F) outperforms

R or E, as gradual difficulty increases align with
improving policy capability.

For medium-difficulty datasets, the optimal com-
bination pattern includes selecting difficult goal
identification (T or C) and evolutionary segmenta-
tion with gradual difficulty increase (F).
For high-difficulty datasets:
• Early decomposition (Condition A) is crucial

for improving learning efficiency and final perfor-
mance, outperforming other conditions.
• Evolution of difficult user goals should involve

a gradual difficulty increase, rendering evolutionary
segmentation (R or E) with a significant difficulty
boost unsuitable.

For high-difficulty datasets, the optimal combi-
nation pattern involves early decomposition (Condi-
tion A) and gradual increases in user goal difficulty
through evolutionary segmentation (F).
The universal good combination:

BPL-TF/TE, involving difficult goal identifica-
tion (Condition T) and slow or adaptive evolution
(F or E), shows effectiveness across various dia-
logue environments, promising broad applicability.

In summary, utilizing the outlined optimal cur-
riculum patterns allows strategic selection of suit-
able BPL combinations for efficient dialogue policy
learning, adapted to future datasets with different
difficulties. When encountering unknown difficul-
ties of future datasets, adopting the universal cur-
riculum pattern adeptly handles diverse dialogue
environments. Crucially, the BPL framework of-

fers flexibility for expansion based on identified
optimal combination patterns, without requiring
strict adherence to our specific approach.

4.4 Validation

As per prior research findings (Zhao et al., 2021;
Liu et al., 2021; Budzianowski et al., 2018), the
dataset’s difficulty correlates with the distribution
of slots in user goals in the datasets. In a multi-
domain environment, the more domains involved
in user goals, the more slots are included, thus
increasing the dataset’s difficulty. Therefore, we
control the difficulty of the MultiWOZ dataset by
manipulating the number of domains involved in
the user goals.

To validate the effectiveness and generality of
the BPL framework, we selected two optimal com-
binations and two universal combinations based on
summarized curriculum patterns. These methods
were compared with baselines across datasets from
Multiwoz 2.1, featuring diverse difficulties. Results
in Tab.4 align with Analysis experiments. DQN
excels in simple domains but struggles in medium
and difficult ones due to random user goal selec-
tion. SNA-DQN and SND-DQN establish learning
sequences based on slot difficulty, impacting ef-
ficiency, yet inflexible curricula hamper learning,
especially in challenging domains. VACL and SDN
use precise criteria but require pre-assessment data.
ACL-DQN improves in simple and medium do-
mains but faces challenges in difficult ones. HRL
excels in multi-domains but struggles in single-
domains with complex goals. Conversely, BPLs
outperform baselines, especially those selected us-
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ing optimal curriculum patterns, underscoring tai-
lored combinations’ efficacy in known difficulty
datasets. Universal BPL combinations remain ben-
eficial in uncertain difficulty scenarios. Overall,
BPL proves versatile and effective across various
challenging dialogue tasks, showcasing consistent
performance across diverse datasets.

Besides the experiments presented in the main
body of the paper, we have conducted supplemen-
tary experiments, to further analyze the reasons
behind the outstanding performance of BPL. These
results are available in Appendices B and C.

4.5 Human Evaluations

We evaluated the validation of BPL through hu-
man evaluation involving 98 student participants,
employing established metrics consistent with our
study’s datasets and commonly used ones (e.g.,
(Liu et al., 2021; Peng et al., 2017; Zhao et al.,
2022; Tang et al., 2018)): success rate (SR) and av-
erage scores (AS) ranging from 1 to 5. These met-
rics gauge naturalness, coherence, and task com-
pletion capability. Participants interacted with dia-
logue systems by engaging with randomly selected
user goals matched in difficulty, unaware of the spe-
cific algorithm employed. They could discontinue
interaction if deemed unproductive. The results,
derived from at least 35 meaningful dialogues, to-
taled 1460 collected dialogues. Human evaluation
results, illustrated in Tab. 5, showcased superior
performance compared to the baseline, consistent
with simulated experiment outcomes.

Table 5: Results of different agents on human evalua-
tions under varying difficulty levels, where the difficulty
is controlled by the sampled difficulty of user goals.

Simple Medium DifficultAgents SR AS SR AS SR AS
DQN 0.5000 3.0 0.1944 1.7 0.0811 1.3
SNA-DQN 0.4872 2.8 0.1026 1.1 0.0286 1.1
SND-DQN 0.4595 2.6 0.0278 1.1 0.0000 1.0
ACL-DQN 0.6316 3.5 0.2683 2.4 0.0526 1.2
SDPL 0.5714 3.1 0.2432 1.9 0.0500 1.1
VACL 0.5789 3.2 0.2286 1.7 0.0270 1.2
HRL 0.5143 2.9 0.2703 2.1 0.1622 1.6
SDN 0.5385 3.1 0.2368 2.2 0.1026 1.8
BPL-AR 0.6757 3.7 0.2432 2.0 0.2000 1.9
BPL-CF 0.5263 3.1 0.4230 3.1 0.1892 1.8
BPL-AF 0.5789 3.3 0.2713 2.4 0.2973 2.7
BPL-TF 0.6486 3.6 0.4000 2.9 0.2368 2.1
BPL-TE 0.6389 3.5 0.3714 2.7 0.2381 2.2

5 Conclusion and future work

This study introduces a novel BPL framework
adept at handling diverse environments with dif-
fering difficulty levels, thereby facilitating efficient
task-oriented dialogue policy learning. It dynam-
ically generates progressive subgoal curricula for
complex goals through goal shaping, involving two
key processes: 1) goal decomposition, extracting
solvable boundary subgoals from user goals based
on dialogue trajectories, and 2) goal evolution, pro-
gressively increasing the difficulty of subgoals until
mastery of the entire goal. To enhance the versa-
tility of BPL, we systematically explore various
combinations of goal decomposition and evolution
within the framework, summarizing optimal cur-
riculum patterns for dialogue datasets with varying
difficulty levels. By incorporating curriculum pat-
terns, the BPL framework can selectively choose
suitable combinations to handle dialogue datasets
with known difficulty characteristics. Moreover,
we identify two universal combination patterns that
maintain effectiveness and generality across diverse
dialogue environments, irrespective of specific en-
vironmental constraints. In the future, our focus
will delve into mechanisms for transferring knowl-
edge acquired from subgoals to new agents.

Limitation

A limitation of most curriculum learning meth-
ods, including our approach, is that the knowledge
learned from subgoals/previous tasks is only trans-
ferred and accumulated to the current agent for
learning on a specific dataset. Either replacing
the dataset or replacing the agent requires retrain-
ing again. Thus, an interesting question for future
work is: how can we transfer and accumulate such
knowledge to the new agents and datasets?
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A Complete Results and Variance

In this section of the appendix, we provide com-
prehensive results of the performance of different

agents across different epochs and datasets with
varying difficulty levels. The complete results for
each agent on the three distinct datasets, including
the highlighted optimal outcomes, are detailed in
Tab.6. Additionally, we enhance our analysis by
incorporating box plots with variance to visually
represent the performance of different agents on the
three datasets with varying difficulty levels. These
graphical representations are displayed in Fig.7-9.
Notably, we have included the average success rate
of the best-performing baseline model as a refer-
ence line for enhanced comparison. The results
of these supplementary experiments further rein-
force the efficacy and versatility of our proposed
framework, as presented in the main paper. By
validating our approach in a broader experimental
setup, we draw more comprehensive conclusions,
highlighting the potential of our method in enhanc-
ing dialogue policy learning.

(a) Movie (b) Rest.

(c) Taxi (d) Multiwoz

Figure 4: The effect of the number of N on performance
on four datesets.

B Case Study

To further validate the efficacy of the BPL frame-
work in facilitating knowledge transfer between
subgoals and original goals or similar goals, we
present an example and visual dialogue trajectories
between two similar user goals (g1 and g2) with
common subgoal (g′1), as depicted in Tab.7. Based
on the example of a failed dialogue for user goal
g1, we identify a boundary state s4 and its corre-
sponding subgoal g′1 through goal decomposition.
The acquired knowledge of completing subgoal
g′1 can seamlessly transfer to accomplishing user
goal g2, as g′1 is also a subgoal of g2. The visual
dialogue trajectories reaffirm this outcome, reveal-
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Table 6: The complete results of different agents at different epochs on three datasets across different difficulties.

Epoch = 50 Epoch = 150 Epoch = 300Agent Dataset
Success Rewards Turns Success Rewards Turns Success Rewards Turns

DQN 0.0003 -49.0 20.10 0.4315 -2.22 30.01 0.5576 15.54 24.75
SNA-DQN 0.0066 -48.04 19.68 0.1115 -43.57 35.91 0.1871 -34.51 35.93
SND-DQN 0.0026 -47.83 18.31 0.0972 -45.25 35.82 0.1923 -34.23 36.63
ACL-DQN 0.0103 -38.21 24.52 0.4943 5.96 27.76 0.6649 27.07 21.44
SDPL 0.0013 -49.42 21.18 0.4258 -2.60 29.39 0.6300 25.68 23.84
VACL

Movie

0.1100 -41.84 31.68 0.5600 22.82 34.89 0.6600 29.94 21.33
HRL 0.0012 -50.12 22.56 0.4669 -6.42 34.89 0.5485 16.44 33.72
SDN 0.0219 -32.71 26.70 0.4654 0.26 28.22 0.5829 19.49 24.93
BPL-AF 0.0066 -50.52 24.66 0.4040 -4.73 28.42 0.6566 29.18 21.21
BPL-AR 0.5101 10.47 23.50 0.7457 41.26 18.44 0.8031 48.91 16.94
BPL-AE 0.4952 7.99 24.87 0.6846 33.66 18.99 0.7979 47.68 16.50
BPL-TF 0.0141 -50.44 26.28 0.4761 4.40 27.45 0.6739 32.01 19.71
BPL-TR 0.4495 2.01 25.89 0.6593 29.98 20.28 0.7614 43.60 17.52
BPL-TE 0.4898 7.24 25.09 0.7148 37.09 19.37 0.7955 48.02 16.87
BPL-CF 0.0065 -50.23 24.05 0.4861 5.63 27.40 0.6440 27.94 20.69
BPL-CR 0.0049 -50.48 24.15 0.5018 7.80 26.82 0.6631 29.97 21.21
BPL-CE 0.0038 -49.38 21.69 0.4260 -2.36 28.95 0.6659 30.51 20.80
DQN 0.0155 -39.33 23.47 0.5278 8.39 20.22 0.7909 34.01 15.39
SNA-DQN 0.0000 -36.14 14.30 0.0203 -41.01 27.66 0.0061 -43.96 31.03
SND-DQN 0.0000 -36.79 15.60 0.0149 -41.48 27.63 0.0044 -44.05 30.89
ACL-DQN 0.0114 -38.82 21.71 0.5066 6.13 20.92 0.8024 35.44 15.54
SDPL 0.0291 -38.05 23.35 0.4915 4.56 21.34 0.8223 37.57 17.81
VACL

Rest.

0.0091 -38.95 21.57 0.4797 5.40 20.13 0.7933 34.49 16.88
HRL 0.0208 -39.81 25.38 0.5363 8.78 23.70 0.8099 36.34 15.90
SDN 0.0185 -38.59 22.53 0.5615 9.58 22.90 0.8298 37.31 15.53
BPL-AF 0.0203 -39.62 24.90 0.5302 8.53 20.38 0.8034 35.59 15.44
BPL-AR 0.0147 -38.19 21.04 0.5457 10.09 20.05 0.8290 35.24 16.35
BPL-AE 0.0274 -38.34 23.63 0.5037 5.80 21.07 0.7976 34.96 15.65
BPL-TF 0.2734 -16.21 23.65 0.8086 36.13 15.29 0.9193 47.13 13.21
BPL-TR 0.1189 -33.47 22.36 0.6222 14.84 20.32 0.9064 45.77 15.60
BPL-TE 0.1295 -33.84 25.02 0.5426 7.22 22.12 0.8490 38.24 15.27
BPL-CF 0.2659 -17.55 24.96 0.7761 32.90 15.89 0.9233 47.47 13.25
BPL-CR 0.0093 -39.07 21.82 0.4195 -2.40 22.31 0.8110 36.37 15.25
BPL-CE 0.0262 -39.51 25.76 0.5131 6.75 20.86 0.7798 33.35 15.67
DQN 0.0061 -43.31 29.73 0.0685 -37.10 28.52 0.3635 -7.18 21.81
SNA-DQN 0.0000 -42.48 26.97 0.0000 -42.61 27.22 0.0000 -42.08 26.16
SND-DQN 0.0000 -42.12 26.27 0.0002 -42.82 27.67 0.0000 -41.62 25.24
ACL-DQN 0.0131 -42.22 28.82 0.2457 -17.61 21.43 0.5874 13.90 19.92
SDPL 0.0206 -41.29 28.32 0.2617 -16.60 22.30 0.6318 18.22 18.27
VACL

Taxi

0.0241 -41.11 28.58 0.1826 -23.38 21.63 0.5675 12.51 19.13
HRL 0.0568 -50.51 37.15 0.1736 34.72 33.10 0.2564 -24.56 28.67
SDN 0.0412 -52.56 37.52 0.0677 -49.33 36.91 0.0986 -45.20 36.05
BPL-AF 0.0581 -37.60 27.66 0.3714 -6.03 20.91 0.8181 36.61 15.23
BPL-AR 0.0335 -40.28 28.82 0.2729 -15.7 22.51 0.7091 26.11 17.42
BPL-AE 0.0353 -39.85 28.07 0.3611 -7.74 22.48 0.7619 31.32 16.70
BPL-TF 0.0282 -40.56 28.20 0.3100 -16.73 22.37 0.6972 24.75 17.99
BPL-TR 0.0041 -43.61 29.96 0.1158 -32.32 27.49 0.4030 -4.35 23.24
BPL-TE 0.0194 -41.67 28.83 0.4386 -12.89 21.38 0.6955 24.72 17.75
BPL-CF 0.0206 -29.34 24.82 0.2246 -10.93 21.63 0.8108 35.90 16.14
BPL-CR 0.0066 -43.35 29.90 0.1023 -33.85 28.11 0.4641 1.80 21.92
BPL-CE 0.0148 -42.29 29.24 0.2414 -18.22 21.89 0.7633 31.14 17.11

ing a significant overlap in the dialogue paths for
achieving user goals g1 and g2. Once the agent
has mastered the skill of reaching state s4, it can
more effortlessly reach the goal states of g1 and g2,
in contrast to starting exploration from the initial
state s0. This tangible demonstration reinforces
the potential of the BPL framework to facilitate

the transfer of knowledge between analogous user
goals with shared subgoals.

C Ablation Study

Ablation experiments aim to investigate the indi-
vidual contributions of the decomposer and evolver
components in the BPL framework. Below are the
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(a) Movie (b) Rest.

(c) Taxi (d) Multiwoz

Figure 5: The effect of the number of M on performance
on four datesets.

BPL variants used:

• BPL-*: Includes only the decomposer compo-
nent, with ablation conducted for all three decom-
position conditions (e.g., BPL-AR corresponds to
using decomposition condition A).

• BPL-*F/R: Integrates both decomposer and
evolver components. Optimal evolutionary ways
based on summarized optimal curriculum patterns
are selected (e.g., evolutionary way R for Movie
dataset, F for Restaurant and Taxi domains).

As the evolver relies on subgoals decomposed by
the decomposer, individual ablations on the evolver
are not performed. Comparing BPL-* with BPL-
*F/R reveals the evolver’s utility within the BPL
framework. The experimental results in Fig. 6
reveal important findings. In the Movie dataset, de-
composition conditions (A, T, and C) all positively
contribute to the BPL framework, with condition A
exhibiting the most substantial improvement. The
combination of the evolver and decomposer yields
the best outcomes. In the Restaurant dataset, de-
composition condition A adversely affects BPL-AF
without the evolver due to the dataset’s blend of
simple and complex user goals. Nonetheless, the
evolver and later-executed conditions (T and F)
can mitigate this effect. In the challenging Taxi
dataset, the decomposer’s impact outweighs the
evolver’s, as it addresses the sparse reward issue
by simplifying user goals. In conclusion, these
ablation experiments highlight the distinct contri-
butions of the decomposer and evolver components
within the BPL framework, confirming the validity
of our identified optimal curriculum patterns.

(a) Movie

(b) Rest.

(c) Taxi

Figure 6: Impact of ablating BPL components on per-
formance.

D Effect of varying N&M values on BPL

Intuitively, N and M control the decomposition
condition, and their number significantly impacts
dialogue policy learning. Therefore, we conducted
experiments with different numbers of M and N
values on three datasets across different difficul-
ties. Fig.4 and 5 shows the moving average success
rate during the learning. The results show that for
the medium difficult dataset, both N and M pro-
vide accurate discrimination of difficult user goals
for decomposition. In contrast, for the easy and
difficult dialogue datasets, the user goals are gen-
erally easy or difficult, thus, N and M play little
role. It validates our conclusion in the analytical
experiments again. When N = 0, two models are
actually the BPL-AF model, so it does not incorpo-
rate the value choice. We default N to 100 and M
to 2 for all domains, while the default for the Taxi
dataset M is 3.
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Figure 7: Box plots of ten trial results for different dialogue agents on the Movie dataset.

Figure 8: Box plots of ten trial results for different dialogue agents on the Restaurant dataset

Figure 9: Box plots of ten trial results for different dialogue agents on the Taxi dataset
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