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Abstract

Large language models (LLMs) are widely
used in question-answering (QA) systems but
often generate information with hallucinations.
Retrieval-augmented generation (RAG) offers
a potential remedy, yet the uneven retrieval
quality and irrelevant contents may distract
LLMs. In this work, we address these issues
at the generation phase by treating RAG as
a multi-document QA task. We propose a
novel decoding strategy, Dynamic Contrastive
Decoding (DVD), which dynamically ampli-
fies knowledge from selected documents dur-
ing the generation phase. DVD involves con-
structing inputs batchwise, designing new se-
lection criteria to identify documents worth
amplifying, and applying contrastive decod-
ing with a specialized weight calculation to
adjust the final logits used for sampling an-
swer tokens. Zero-shot experimental results on
ALCE-ASQA, NQ, TQA and PopQA bench-
marks show that our method outperforms other
decoding strategies. Additionally, we con-
duct experiments to validate the effectiveness
of our selection criteria, weight calculation,
and general multi-document scenarios. Our
method requires no training and can be inte-
grated with other methods to improve the RAG
performance. Our codes will be publicly avail-
able at https://github.com/JulieJin-km/
Dynamic_Contrastive_Decoding.

1 Introduction

The emergence of large language models (LLMs)
has significantly advanced various natural language
processing tasks (Touvron et al., 2023; Achiam
et al., 2023). However, despite their extensive
knowledge base and linguistic capabilities, LLMs
frequently struggle with handling new knowledge
and are susceptible to producing outdated content
and hallucinations (Huang et al., 2023; Jiang et al.,
2024). A straightforward resolution involves the
continue updating of LLM’s knowledge via train-

ing, but such a process typically demands substan-
tial time and computational resources.

Retrieval-augmented generation (RAG) offers
an alternative solution and has drawn substantive
effectiveness to mitigate hallucination by introduc-
ing external knowledge (Gao et al., 2023b; Asai
et al., 2023b). After document retrieval, RAG can
be treated as a multi-document question answering
(MDQA) task. Recent studies (Shi et al., 2023a;
Yoran et al., 2024) indicate that the variability in
document quality may cause distractions and im-
pair the generation quality. Besides, knowledge
conflicts, such as discrepancies within retrieved
documents and between parametric and external
non-parametric knowledge, may hinder the perfor-
mance of LLMs (Chen et al., 2022; Jin et al., 2024b;
Ni et al., 2024). Thus, addressing the integration
of diverse knowledge during generation remains a
significant challenge for LLMs.

The primary method for infusing new knowledge
into LLMs involves supervised fine-tuning or con-
tinued training, which is resource-intensive. Prior
research in RAG has introduced various improve-
ments (Vu et al., 2023), such as improving retrieval
quality (Shi et al., 2023d; Xu et al., 2023), refining
responses through multiple iterations (Peng et al.,
2023; Li et al., 2024), using optimized prompts
(Ni et al., 2024), and developing new decoding
strategies (Shi et al., 2023b; Zhao et al., 2024).
However, these methods typically require retrain-
ing or multiple iterations. Contrastive decoding (Li
et al., 2023) offers a training-free solution for hallu-
cination mitigation and inspires many subsequent
works (Shi et al., 2023b; Zhao et al., 2024), but
they often concentrate on single-document scenar-
ios and the resolution of conflicts between internal
and external knowledge, overlooking the challenge
of integrating multiple documents.

In this work, we propose a novel decoding
strategy, termed Dynamic Contrastive Decoding
(DVD), to enhance the integration of various knowl-
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Figure 1: The framework of DVD. We propose a new decoding strategy with selection criteria and dynamic weight
to incorporate knowledge from all documents and amplify knowledge from selected documents.

edge during the generation. The goal of DVD is
to dynamically amplify knowledge from selected
documents during integration to improve model-
generated responses. The process starts with query
associated with multiple retrieved documents. We
create prompts for each question in no-document,
single-document, and multi-documents formats,
and feed them into LLM in a single batch. Dur-
ing each inference step, the model produces logits
for each prompt. Our method introduces a novel
strategy for assessing logits from different prompts.
These logits are then adjusted using contrastive de-
coding to refine the logits that guide the token gen-
eration. Furthermore, it investigates dynamically
adjusting weights during the generation process,
rather than relying on static values. See Figure 1
for better illustration.

To evaluate the effectiveness of our pro-
posed method, we conducted zero-shot exper-
iments across diverse datasets, including the
ALCE-ASQA (Gao et al., 2023a), Natural Ques-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017) and PopQA (Mallen et al., 2022).
Our experiments, utilizing the Mistral (Jiang et al.,
2023), LLaMA2 (Touvron et al., 2023) and Vi-
cuna (Chiang et al., 2023) models, demonstrate that
our method consistently achieves superior response
quality. This enhancement is attributed to our novel
approach of dynamically amplifying knowledge
from selected documents during the integration of

different knowledge. A thorough analysis of our
selection criteria, weight computation, and docu-
ment count reveals consistent performance gains
across all datasets. Importantly, our method is en-
tirely plug-and-play, requiring no additional train-
ing. Furthermore, it seamlessly synergizes with
other techniques, further augmenting the efficacy
of the RAG system.

2 Related Work

2.1 Retrieval Augmented Generation

Retrieval-augmented generation (RAG) is a promi-
nent research area in the development of LLMs, sig-
nificantly improving answer accuracy and reducing
hallucinations, especially in knowledge-intensive
tasks (Gao et al., 2023b; Asai et al., 2023a). RAG
operates by retrieving data from external sources
and integrating it into response generation across
two main phases: retrieval and generation. The
training of the retrieval and generation components
can be conducted independently, sequentially, or
jointly (Asai et al., 2023a). This paper focuses
solely on the generation phase, where the generator
processes both traditional contextual information
and retrieved text segments. Numerous studies
aim to enhance the quality of generation through
methods such as information compression (Yang
et al., 2023; Xu et al., 2023), document rerank-
ing (Ma et al., 2023b; Zhuang et al., 2023; Sachan
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et al., 2022; Shi et al., 2023a), query rewriting (Ma
et al., 2023a), structural and optimization modifica-
tions (Cheng et al., 2023; Shi et al., 2023c). Other
methods include multi-round feedback (Peng et al.,
2023; Asai et al., 2023b; Li et al., 2024), and im-
proved prompts (Zheng et al., 2023; Ni et al., 2024).
While many strategies necessitate training-specific
modules, this paper emphasizes a plug-and-play
decoding strategy that requires no training and is
readily adaptable to various datasets and models.

2.2 Knowledge Conflicts

The generation phase for LLMs involves integrat-
ing both internal parametric and external non-
parametric knowledge, which is challenging when
knowledge conflict happens (Xu et al., 2024).
Many studies have explored the behavior of LLMs
in the presence of knowledge conflicts (Chen et al.,
2022; Jin et al., 2024a; Ni et al., 2024; Xie et al.,
2024; Tan et al., 2024; Jin et al., 2024b). These
studies have identified factors that impact the pref-
erence of LLM during generation, such as confir-
mation bias, text similarity, semantic completeness
(Tan et al., 2024; Xie et al., 2024; Jin et al., 2024a).
These works typically create conflict datasets and
develop strategies for better boundary understand-
ing and response generation in LLMs, yet often
limited to just a few external documents. Our work
expands on this by incorporating multiple docu-
ments, aligning with RAG and practical scenarios,
aiming to enhance the integration of diverse inter-
nal and external knowledge during generation.

2.3 Contrastive Decoding

Contrastive decoding, introduced by Li et al.
(2023), identifies text by maximizing log proba-
bility discrepancies between expert and amateur
models. This training-free method is effective and
widely applicable, inspiring many studies (Zhang
et al., 2023; Chuang et al., 2024; Jin et al., 2024a;
Kim et al., 2023; Shi et al., 2023b; Zhao et al.,
2024). Shi et al. (2023b) introduced context-aware
decoding (CAD) to amplify output disparities with
and without context, improving performance across
datasets. Zhao et al. (2024) used contrastive decod-
ing to merge knowledge from internal and exter-
nal documents, incorporating a dynamic weight to
adjust logits during generation. However, these
approaches typically consider only one or two re-
trieved documents. In contrast, our work addresses
the incorporation of knowledge from multiple docu-
ments, introducing new selection criteria and fusion

methods to integrate all knowledge from both inter-
nal parametric and external multiple documents.

3 Methodology

We explain the details of our method in this sec-
tion. We propose a new decoding strategy that can
amplify knowledge from the selected documents
during the generation phase to adjust the final logits
used to sample answer tokens.

3.1 Notations

For each sample, we use q to present the ques-
tion. The documents are retrieved based on their
relevance with q. We neglect the retrieval phase
and assume the retrieved documents as D =
{d1, d2, ..., dN}, where di is a single document and
N is the overall number of documents. 1 Given q
and D, our task is to generate answers for q based
on retrieved documents D. The quality of docu-
ments varies, while the language model is supposed
to incorporate its internal parametric knowledge
and external knowledge from D to generate accu-
rate and comprehensive answers.

We use x to present the input of large language
models, which is constructed based on q, D, and
certain prompt template T , and the output is indi-
cated as y. The large language model is presented
as θ and generates each token in answer y with
auto-regressive style. At each time step t, LLM
θ first generate logits zt for answer token yt, and
compute the probability distribution as follows:

zt = θ(x, y<t) (1)

pθ(yt|x, y<t) = softmax(zt) (2)

The actual token yt in answers y is generated
based on the probability distribution through cer-
tain sampling strategies.

yt ∼ pθ(yt|x, y<t) (3)

3.2 Dynamic Contrastive Decoding

Contrastive Decoding (Li et al., 2023) is an ef-
fective method to enhance the difference between
logits with different input x and make the log-
its used to generate answer y more reasonable.
Previous researches (Zhao et al., 2024; Shi et al.,
2023b) only compare the input with single docu-
ment (i.e., x = T (q, d1)) or without documents(i.e.,

1The overall number of retrieved documents N is not less
than 5, making it a multiple document setting.

4626



x = T (q)). However, we want to incorporate
knowledge from all documents and amplify knowl-
edge from certain important documents.

We construct the input x in a special style. We
consider multiple inputs simultaneously and ap-
ply different prompt templates to construct them.
There are three types of inputs, corresponding
to three templates. First, we consider the input
without the documents, i.e., x1 = T1(q). Sec-
ond, we consider the input with all documents
concatenating together, x2 = T2(q,D). Last,
we consider the input with a single document for
each document in D, i.e., x3 = T3(q, d1), x4 =
T3(q, d2), ..., xN+2 = T3(q, dN ). In conclusion,
we construct N + 2 inputs for each sample, where
N is the number of documents. Inspired by Su
(2023), we construct these inputs into a batch and
feed them into the LLM. B = {x1, x2, ..., xN+2}.
The LLM generates corresponding N + 2 logits
simultaneously for each sample, which is denoted
as Z. Z = {z1, z2, ..., zN+2}.

Z = θ(B) (4)

We want to incorporate internal and external
knowledge and amplify or neglect knowledge from
certain documents, which need criteria to assess
the quality of logits and make selections. Pre-
vious work often computes the entropy for each
logit. However, LLMs tend to assign probabilities
to numerous tokens in the vocabulary after pre-
training, leading to the overall entropy being in-
fluenced by the meaningless probabilities of many
tokens. Therefore, we emphasize the importance
of head tokens, and only compute the entropy for
tokens with top K2 probability. We use the scor-
ing function f to compute the following score si
for each logits zi in the batch B and get scores
S = {s1, s2, ..., sN+2}:

si = f(zi) (5)

f(zi) = −
K∑

j=1

p(tj) log p(tj), tj ∈ VtopK (6)

where VtopK is the set of tokens with top K highest
probability. According to the characteristics of en-
tropy, the lower the score, the better the distribution
tends to be. The score s1 and s2 corresponding to
inputs without and with documents, respectively,

2K is a hyperparameter and we set K to 10 in main ex-
periments. The influence of K is demonstrated in section
5.1.

are first used to determine the importance of in-
ternal parametric knowledge. We assume that the
model should prioritize the provided documents but
cannot entirely disregard the influence of internal
knowledge. Only if s1 is more than one order of
magnitude lower than the value of s2 (i.e., s1 <= s2
/ 10), should the LLM retain its reliance on internal
knowledge. Otherwise, LLM should depend on the
knowledge from documents to answer the question
and eliminate self-interference. This weight thresh-
old is related to the characteristics of datasets and is
settled in the preliminary experiments. The scores
s3 to sN+2 are used to determine the importance
of each document. The documents with the low-
est score and highest score are selected to adjust
the logits and amplify knowledge from the specific
document, denoted as zl and zh respectively. The
official formula is as follows:

ẑ = z2 + β ∗ (z2 − z1) + γ ∗ (zl − zh) (7)

where β and γ are hyperparameters, and β is set to
0 if s0 is more than one order of magnitude lower
than s1.

Overall, the answer token is sampled based on
the probability distribution generated on ẑ:

yt ∼ pθ(yt|x, y<t) = softmax(ẑ)

= softmax(z2 + β(z2 − z1) + γ ∗ (zl − zh))
(8)

Equally,

yt ∼ pθ(yt|x2, y<t)
pθ(yt|x2, y<t)

pθ(yt|x1, y<t)

β pθ(yt|xl, y<t)

pθ(yt|xh, y<t)

γ

(9)

where x1 and x2 are inputs without and with
documents correspondingly, xl and xh correspond
to the two inputs with the lowest and highest scores.

Our method can be seen as an extension to CAD
proposed by Shi et al. (2023b). We consider the
influence of a single document, amplify knowl-
edge from specific documents, and design special
metrics to select the target document during the
generation process.

In the preliminary experiments, we find that the
setting of hyperparameters β and γ are crucial to
downstream performance. It is inconvenient to run
lots of experiments to explore the perfect weight for
every dataset and language model. Therefore, we
want to dynamically set these weights at each time
step during the generation. Previous work (Zhao
et al., 2024; Jiang et al., 2021) used the highest
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from the normalized predicted token probabilities
probability for LLM confidence, which is not very
effective in our experiments (See section 5.2 for
further details). Inspired by Wang and Zhou (2024),
we apply the difference in probability between the
top 2 tokens as the confidence. Specifically,

Ci = p(y1t |zi)− p(y2t |zi) (10)

β = max(C2 − C1, 0) ∗ 1(s2/10 < s1) (11)

γ = max(Cl − Ch, 0) (12)

where p(y1t |zi) refers to the highest probability
from distribution zi and p(y2t |zi) refers to the sec-
ond highest probability value. Therefore the dy-
namic version of γ is determined by the confidence
difference between logits with the lowest score and
highest score, while β is determined by logits with
and without documents jointly.

In conclusion, we propose a new decoding strat-
egy with selection criteria and dynamic weight to
incorporate knowledge from all documents and am-
plify knowledge from selected documents.

4 Experiments

4.1 Experimental Settings
Datasets We conduct the experiments on a zero-
shot open-domain QA setting, where documents
are retrieved through retrievers. Since the re-
trieval phase is not our focus and to ensure fair
comparisons with other work, we utilized pre-
processed public datasets. Specifically, we ap-
ply the ALCE-ASQA benchmark provided by Gao
et al. (2023a), Natural Questions (NQ) and Triv-
iaQA (TQA) datasets pre-processed by Izacard
and Grave (2020), and PopQA datasets from hug-
gingface community3. It is worth noting that the
retrieval quality is not perfect, with a Recall@5
(R@5) of less than 1. The details of datasets can
be found in the original paper or Appendix A.

Models Due to cost considerations, we use
Mistral-7B-v0.1(Jiang et al., 2023), LLaMA2-7B,
LLaMA2-13B (Touvron et al., 2023) and Vicuna-
13B (Chiang et al., 2023) for experiments, from
which not only can we see the impact of different
scales of the same model, but we can also see the
impact of whether the model has been supervised
finetuned. We also consider Qwen2-7B(Yang et al.,
2024) and the corresponding results are presented
in the appendix C for better format.

3https://huggingface.co/datasets/Atipico1/
popQA_preprocessed

Metrics Our primary evaluation metric is the
quality of answers, which is assessed by check-
ing whether the gold answers (provided by the
dataset) are exact substrings of the generation (Gao
et al., 2023a). We do not use exact match scores be-
tween generated answers and gold answers as met-
rics because our experiments are zero-shot settings
and our language models possess certain expansion
abilities (especially Vicuna-13B model). They tend
to generate sentences rather than single words to
answer the question. Therefore, metrics that check
substrings are more applicable and indicative, de-
noted as “str-em” for further clarification.

Baselines We propose a new decoding strategy,
so we mainly compare our methods with other de-
coding methods, such as regular decoding, CAD
(Shi et al., 2023b) and work of Zhao et al. (2024).
There are various variants for regular decoding,
corresponding to decoding based on input with-
out a document, with all documents concatenated,
and with a single document, which we denote as
“Regular-closed, Regular-full, Regular-single”. The
single document is retrieved from the retriever and
ranked first. There are also two variants for work
of Zhao et al. (2024), corresponding to decoding
with fixed weight and the dynamic weight, and
we only consider dynamic weight and denote it as
“Z-dynamic”.

The number of documents N is set to 5 and K
is set to 10 in our main experiments. The influence
of these important hyperparameters is explored in
section 5.1 and 5.3. To ensure a fair comparison,
all decoding methods differ only in their inputs or
adjustments to logits. Subsequent token sampling
methods based on the logits remain the same, with
the temperature set to 1 as Gao et al. (2023a). Ad-
ditional experimental details, such as the prompt
template and the setting of the rest hyperparame-
ters, can be found in Appendix B.

4.2 Main Results

The results are presented in table 1. From the re-
sults, we can see that: (1) Our proposed decod-
ing strategy, DVD, consistently outperforms other
decoding methods with both fixed and dynamic
weights across all models. (2) Our method with
fixed and dynamic weights shows comparable per-
formance, consistent with findings from Zhao et al.
(2024)’s work. While the fixed weight approach
exhibits better performance in certain instances, the
dynamic weight approach outperforms it in others.
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Model Decoding Strategy ASQA NQ TQA PopQA

Mistral-7B (Jiang et al., 2023)

Regular-closed 14.76 18.67 32.22 20.08
Regular-full 16.67 20.42 42.57 28.22
Regular-single 17.43 20.08 38.35 25.31
CAD (Shi et al., 2023b) 17.85 20.33 42.95 28.01
Z-dynamic (Zhao et al., 2024) 18.02 20.11 40.32 26.90
DVD-fixed 18.20 21.24 42.73 28.13
DVD-dynamic 18.47 21.38 44.78 29.36

LLaMA2-7B (Touvron et al., 2023)

Regular-closed 9.28 17.26 30.46 19.94
Regular-full 12.41 21.05 39.77 21.44
Regular-single 12.30 18.06 31.46 21.80
CAD (Shi et al., 2023b) 14.73 19.29 40.17 21.46
Z-dynamic (Zhao et al., 2024) 14.61 17.25 32.20 21.71
DVD-fixed 15.42 21.18 40.83 21.20
DVD-dynamic 15.85 21.96 41.04 22.00

LLaMA2-13B (Touvron et al., 2023)

Regular-closed 10.53 20.99 43.53 22.26
Regular-full 13.29 25.37 51.25 29.01
Regular-single 13.48 24.09 49.66 29.21
CAD (Shi et al., 2023b) 14.39 25.00 53.15 30.53
Z-dynamic (Zhao et al., 2024) 14.93 24.90 52.63 30.65
DVD-fixed 16.51 27.06 54.86 30.59
DVD-dynamic 16.18 27.86 53.54 31.52

Vicuna-13B (Chiang et al., 2023)

Regular-closed 26.68 34.85 62.78 27.56
Regular-full 36.94 56.34 72.56 49.47
Regular-single 27.51 46.84 65.56 41.34
CAD (Shi et al., 2023b) 37.96 56.92 72.45 49.14
Z-dynamic (Zhao et al., 2024) 28.91 48.78 70.43 42.61
DVD-fixed 38.24 57.67 72.95 49.91
DVD-dynamic 38.68 56.98 73.15 50.54

Table 1: Str-em results under zero-shot setting. Regular-closed, -full, and -single corresponds to Regular Decoding
without documents, with all documents concatenated, and single document. DVD-fixed means fixed β and γ while
DVD-dynamic refers to dynamic β and γ.

The impact of these weights is further explored
in section 5.2. (3) In our experiments, the zero-
shot setting and irrelevant retrieved passages pose
challenges. However, the fine-tuned Vicuna-13B
achieves great performance under a zero-shot set-
ting, which indicates that fine-tuning can enhance
the model’s robustness and ability to resist irrele-
vant information. This is also demonstrated by the
experiments of Qwen2 in the appendix C. The ex-
perimental results also show that our method works
for models of various sizes, regardless of whether
the model is fine tuned or what architecture it is. (4)
Regular-full outperforms Regular-single in most of
the cases, which is consistent with intuition and
previous findings that increasing retrieved informa-
tion can help models better answer questions. But
for some distracting datasets, such as the ASQA
dataset, which we use retrieval results coming from
DPR without reranking, irrelevant information is
caused to potentially interfere with the models. In
that case, models that haven’t undergone further
fine-tuning and lack the ability to utilize contex-
tual information and mitigate irrelevant influences
are impacted. That is why Regular-single outper-
forms Regular-full for LLaMA2-13B and Mistral-

7B in some datasets. (5) Additionally, Zhao et al.
(2024)’s work (Z-dynamic) only considers a pair of
documents and uses their difference to adjust final
logits, making it a slight improvement compared
to Regular-single. In contrast, CAD applies the
difference between logits with and without docu-
ments, making it more similar to Regular-full. Our
method demonstrates universality and can achieve
better results after the incorporation of all knowl-
edge and dynamical enhancement of knowledge
from selected documents. (6) We retain most hy-
perparameters used in sampling same for simplicity,
such as the number of new tokens, temperature, and
sample method, which indicates that there may still
be room for performance improvement. However,
given that all decoding strategies employ the same
sampling method, our method consistently outper-
forms other decoding methods with both fixed and
dynamic weights.

5 Analysis

In this section, we conduct experiments from vari-
ous perspectives to explore the factors that affect
out method and demonstrate its efficiency. We
mainly present the results of LLaMA2-13B on the
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Selection Criteria Weight ASQA

Our DVD
fixed 16.51
dynamic 16.18

Random
fixed 14.22
dynamic 13.42

Retrieval
fixed 16.13
dynamic 15.83

Table 2: Str-em results on ALCE-ASQA with LLaMA2-
13b on zero-shot setting of different selection criteria.
Selection Criteria refer to different methods to choose
zl and zh. Fixed weight and dynamic weight refer to
fixed or dynamic β and γ. See details in section 3.2.

Figure 2: Str-em performance with different K. K is
the number of tokens.

ALCE-ASQA benchmark for better illustration.

5.1 Selection Criteria
In section 3.2, we propose to use the entropy of
head tokens with top K probability to assess the
logits and choose the logits that are worth ampli-
fying (i.e., zl and zh). To demonstrate the effi-
ciency of this selection criteria, we compare it with
other selection criteria for choosing zl and zh, such
as choosing randomly and choosing based on the
ranking of the retrieval system. The results are
presented in table 2.

The results show that: (1) Our method outper-
forms static selection criteria, such as random se-
lection or selection based on retrieval ranking. (2)
Using the ranking of the retrieval system directly
to select the logits and amplify knowledge also
yields great improvement compared to results in
table 1, while choosing randomly leads to inferior
results. This indicates the effect of our motivation,
amplifying knowledge from specific documents dy-
namically selectively during the incorporation of
all documents can help the model generate better
answers. While the retrieval system can offer in-

sights into selecting certain documents compared to
random selection, choosing the document with the
highest retrieval ranking is not always the optimal
choice.

In addition to comparison with static selection
criteria, we also explore the influence of the number
of tokens K. K determines the calculation range
of entropy, ranging from a few head tokens to all
tokens. We conduct experiments with different K
and present the outcomes in the figure 2.

“All” refers to using all tokens to calculate the
entropy, which is equivalent to regular entropy. The
results align with our motivations that the overall
entropy, impacted by the meaningless probability
of numerous tokens, may not adequately represent
the quality of distribution in autoregressive-style
LLMs. Head tokens with high probability deserve
more attention and can serve as good indicators
for documents worth amplifying. The number of
tokens considered impacts the performance of both
fixed and dynamic weights, as it affects the selec-
tion criteria across different logits. In our main ex-
periments, the best performance is achieved when
the number of tokens K is set to 10. However, the
optimal K may vary depending on the characteris-
tics of the dataset and language models, necessitat-
ing additional experiments to determine the ideal
value.

5.2 The Design of Weight
In addition to selection criteria, the value of weight
also impacts the final adjustment of logits that are
used to sample tokens. β is related to the influence
of internal parametric knowledge, while γ is related
to the influence of knowledge from selected knowl-
edge. Since the former is well studied in previous
work (Li et al., 2023; Shi et al., 2023b), we mainly
discuss the influence of different implementations
of γ in this section.

The value of γ can either be a static hyperparam-
eter or determined dynamically during the genera-
tion phase, as discussed in section 3.2. For static
approaches, we conduct experiments with different
fixed values of γ and present the results in table 3.
For dynamic approaches, the calculation process
involves model confidence. We apply the differ-
ence in probability between the top 2 tokens as the
confidence, as demonstrated in equation 10 in sec-
tion 3.2. Previous researches often use the highest
probability directly as the confidence, which can be
presented in an official formula as Ci = p(y1t |zi).
We also conduct experiments to compare these two
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Weight Confidence Calculation ASQA

Fixed No need for confidence

γ = 0.1 14.60
γ = 0.2 16.19
γ = 0.4 16.51
γ = 0.6 14.56
γ = 0.8 14.76
γ = 1.0 16.24

Dynamic

Ci = p(y1t |zi)
γ = Cl 15.69
γ = (Cl + Ch)/2 15.01
γ = max(Cl − Ch, 0) 13.74

Ci = p(y1t |zi)− p(y2t |zi)
γ = Cl 14.46
γ = (Cl + Ch)/2 15.74
γ = max(Cl − Ch, 0) 16.18

Table 3: Str-em results on ALCE-ASQA with LLaMA2-13b on the zero-shot setting of different calculation of
weight γ. Fixed weight approach doesn’t require confidence. Dynamic weight approaches have many variants based
on the calculation of confidence and weight.

Figure 3: Str-em performance with different N . N is
the number of documents.

implementations.
After the calculation of model confidence, how

to use confidence to determine the weight is also
an important issue, leading to various calculation
variants. We apply the difference of confidence as
weights as shown in equation 11 and 12. There
are also variants like using the average confidence
(γ = (Cl + Ch)/2) or using only the confidence
that needs to be emphasized (Zhao et al., 2024)
(γ = Cl). We conduct experiments on all variants
and present the results in table 3.

The results show that: (1) The value of γ signif-
icantly impacts performance. The optimal value
of γ depends not only on language models but
also on the retrieval system. If the overall qual-
ity of retrieval is high, the model should prioritize
the concatenation of all documents. Conversely,
if the overall retrieval quality is low and irrele-
vant documents are present, the model should am-

plify specific knowledge and focus on particular
documents. In our experiments on the ALCE-
ASQA benchmark, γ is set to 0.4 for LLaMA2-
13B to get better performance. (2) For dynamic ap-
proaches, while many variants lead to great perfor-
mance compared to results in table 1, our design of
Ci = p(y1t |zi)−p(y2t |zi) and γ = max(Cl−Ch, 0)
outperforms other variants. This finding aligns
with previous research about using the difference
in probability between the top 2 tokens as confi-
dence (Wang and Zhou, 2024; Xiang et al., 2024),
and is consistent with rationality that Cl and Ch

should jointly determine the weight. The design
of Ci = p(y1t |zi) and γ = Cl also performs well
compared to results in table 1 and those of fixed
approaches, making it applicable when speed and
computational efficiency are prioritized. While
there are more designs and combinations for confi-
dence and weight calculation, they are beyond the
focus of this paper.

5.3 The Number of Documents

Our work concentrates on multi-document scenar-
ios and construct the input for every document as
said in section 3.2. We investigate our method
with different values of N to demonstrate its ef-
fectiveness in a broader range of situations. For
simplicity, we utilize the dynamic weight approach
to represent our method. We primarily compare our
method with Regular-full and CAD, as they apply
to various document scenarios and serve as strong
baselines. The results are presented in figure 3.

The results show that our proposed method can
outperform regular decoding and CAD across dif-
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ferent number of documents. As the number of
documents N increases, the interference of irrele-
vant information for LLM is also increasing, while
our method that amplifying knowledge from spe-
cific documents can consistently be helpful.

6 Conclusion

In this paper, we propose a decoding strategy that
can amplify knowledge from the selected docu-
ments during the generation phase to adjust the
final logits used to sample answer tokens. We con-
struct the inputs batch-wise with different templates
and instructions, and get corresponding logits from
LLM. We design a new selection criteria that com-
putes the entropy of head tokens with high prob-
ability to assess the logits and choose the ones
that worth amplifying. The contrastive decoding
is used to adjust the logits, where the weights are
calculated based on logits dynamically during the
generation phase.

We explore several selection criteria and calcu-
lation of weights to demonstrate the efficiency of
our design. Extensive experiments show that DVD

makes consistent improvement on downstream per-
formance and is superior to other decoding strate-
gies, such as regular decoding and CAD. DVD ex-
plores the usage of contrastive decoding under the
setting of multi-documents, making the incorpora-
tion process of knowledge more diverse.

In conclusion, our method propose a new decod-
ing strategy to incorporate knowledge in a more
discriminative way under the multi-document set-
ting. Our method is plug-and-play and doesn’t
require any training, and it can be combined with
other orthogonal methods to improve the overall
performance of the RAG system.

Limitations

Our work has the following limitations:
(1) Our method is applied on the logit level, ne-

cessitating access to each logit in the batch, and
subsequently adjusts the final logits used for sam-
pling answer tokens. Consequently, its applicabil-
ity may be limited to white-box models that are
open-source and offer access to such information.
Closed-source models, such as ChatGPT, GPT4,
and others, may not be compatible with our method
due to the lack of access to the underlying logits.

(2) We propose to construct the input in a batch
with different templates and instructions, which can
help LLM consider multiple inputs simultaneously

and incorporate all kinds of knowledge including
internal parametric knowledge and external non-
parametric knowledge from documents. However,
this methodology may result in increased resource
utilization during inference, particularly in terms of
hardware consumption. Actual hardware consump-
tion is directly proportional to the size of batch, i.e.
the number of documents. Therefore, our method
may require lots of resources when applied in situ-
ation where the number of documents exceeds 10.
To mitigate this limitation, alternative batch con-
struction methods can be explored. For instance,
concatenating two or more documents into a single
input within the batch may reduce memory con-
sumption. However, it’s important to note that this
approach may compromise the accuracy of docu-
ment selection.

(3) In this paper, we only consider limited situa-
tions such as zero-shot muli-document QA setting
and models up to 13B due to the cost consider-
ation. We will also conduct experiments to test
our method on a wider range of application scenar-
ios in the future, such as few-shot settings, bigger
models, and more kinds of datasets. While our ap-
proach has demonstrated the effectiveness of ampli-
fying knowledge from specific documents during
the generation phase, it’s important to acknowledge
the existence of various other selection criteria and
fusion methods. Further investigation into these
alternatives may yield additional performance im-
provements.
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A Details about Datasets

In this paper, we use ALCE-ASQA and NQ bench-
mark to evaluate our method.

ALCE-ASQA is proposed by Gao et al. (2023a).
There are many variants about this dataset. We
choose the one retrieved by DPR without reranked
oracle retrieval results (asqa_eval_dpr_top100.json
in their repository4). There are 948 evaluation sam-
ples. And we use their official eval code in the

4https://github.com/princeton-nlp/ALCE
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Model Decoding Strategy ASQA NQ TQA PopQA

Qwen2 (Yang et al., 2024)

Regular-closed 21.47 29.36 40.39 19.15
Regular-full 36.00 59.67 72.32 50.86
Regular-single 29.64 51.30 68.00 44.25
CAD (Shi et al., 2023b) 36.20 60.11 72.42 51.14
Z-dynamic (Zhao et al., 2024) 31.79 57.12 72.08 47.87
DVD-fixed 37.04 60.75 72.68 51.78
DVD-dynamic 37.14 60.00 72.04 51.36

Table 4: Str-em results under zero-shot setting. Regular-closed, -full, and -single corresponds to Regular Decoding
without documents, with all documents concatenated, and single document. DVD-fixed means fixed β and γ while
DVD-dynamic refers to dynamic β and γ.

repository to evaluate our generated answers. See
their repository for more details.

Natural Questions (NQ) is a popular QA dataset
proposed by Kwiatkowski et al. (2019) and is
widely used in many open-domain researches. The
retrieval system affect downstream performance.
Therefore, we use the retrieval results and pre-
processed NQ dataset from Izacard and Grave
(2020) directly for simplicity. Since our work fo-
cus on zero-shot multi-document setting, we only
use the test set with 3610 samples. According to
their repository5, the R@5 value is 73.8, making it
suitable for our experiments that aim at improving
performance under irrelevant interfere.

TriviaQA(TQA) is also a popular RAG dataset
proposed by Joshi et al. (2017). Like the Natu-
ral Questions dataset, we use the retrieval results
and pre-processed version from Izacard and Grave
(2020) directly. According to their repository, the
R@5 value is 77.0. This dataset contains over
10000 data, which makes its coverage wider, but
requires more time and resources to test.

PopQA is a entity-centric QA dataset proposed
by Mallen et al. (2022). The author apply cus-
tomized templates to construct questions by replac-
ing topics in knowledge triplets. They also define
the popularity based on the monthly Wikipedia
page views related to the entity mentioned. In this
paper, we concentrate only on the questions and
retrieval documents rather their construction and
popularity. The dataset contains 14k data, which is
a huge challenge for our equipment. And its ques-
tions are constructed based on templates, making
them not as natural as NQ and TQA. Therefore, we
only test 4267 data sampled from original dataset
and pre-processed by huggingface community6.

5https://github.com/facebookresearch/FiD
6https://huggingface.co/datasets/Atipico1/

popQA_preprocessed

B Experimental Details

We provide more details about our experiments in
this section.

First, the prompt templates we use in the
experiments are diverse. As for ALCE-ASQA
benchmark, we apply asqa_closedbook.json
as T1 for input without document and apply
asqa_default.json as T2 and T3 for input with all
documents and single document. Both files are
provided by original work (Gao et al., 2023a),
and we apply their prompts directly to avoid
the influence of different templates. One of the
example of our constructed input based on these
template is presented in table 5. As for the rest
benchmarks, we apply simple prompt, "Question:
{question} \n Answer:" for closed-book
setting, and "Write a high-quality answer
for the given question using only the
provided search results (some of which
might be irrelevant). \n\n {documents}
\n\n Question: {question} Answer:"
for multi-documents and single-document
setting, where documents are also formatted
as "Document [{document.index}](Title:
{document.title}) {document.text}".

Then, we will list the settings of hyperparameters
we used in the experiments. The seed is set to 42.
The generation configuration includes, temperate
is set to 1, the value of top_p is set to 0.95 and the
number of max_new_tokens is 300. The value of
β is set to 0.25 for all models in the setting of fixed
weight.

C Extra Experimental Results

Due to the constraint of paper length, we present
the results of Qwen2(Yang et al., 2024) in this sec-
tion. The setting of the experiments is the same as
table 1.

4636

https://github.com/facebookresearch/FiD
https://huggingface.co/datasets/Atipico1/popQA_preprocessed
https://huggingface.co/datasets/Atipico1/popQA_preprocessed


An input instance on the ALCE-ASQA dataset

x1 Instruction: Write an accurate, engaging, and concise answer for the given question. Use an
unbiased and journalistic tone.\n\n Question: Who has the highest goals in world football? \n\n
Answer:

x2 Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If
multiple documents support the sentence, only cite a minimum sufficient subset of the documents.
\n\n Question: Who has the highest goals in world football? \n\n Document [1](Title: FIFA
World Rankings) FIFA World Rankings The FIFA World Ranking is a ranking system for men’s
national teams in association football, ... \n Document [2](Title: FIFA World Rankings) based on
the importance of the match and the strength of the opponent. ... \n Document [3](Title: FIFA
World Rankings) The 19 July 2018 release was cancelled following the new calculation method
implementation. ... \n Document [4](Title: World Football Elo Ratings) Ukraine 26 years, and for
Montenegro 11 years. For Croatia and Slovakia th ... \n Document [5](Title: FIFA World Ranking
system (2006–2018)) match status multipliers are as follows: A win against a very highly ranked
opponent is a considerably great... \n Answer:

x3 Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If
multiple documents support the sentence, only cite a minimum sufficient subset of the documents.
\n\n Question: Who has the highest goals in world football? \n\n Document [1](Title: FIFA World
Rankings) FIFA World Rankings The FIFA World Ranking is a ranking system for men’s national
teams in association football, currently led by Belgium.... \n Answer:

x4 Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If
multiple documents support the sentence, only cite a minimum sufficient subset of the documents.
\n\n Question: Who has the highest goals in world football? \n\n Document [2](Title: FIFA World
Rankings) based on the importance of the match and the strength of the opponent. ... \n Answer:

x5 ...
x6 ...

x7 Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If
multiple documents support the sentence, only cite a minimum sufficient subset of the documents.
\n\n Question: Who has the highest goals in world football? \n\n Document [5](Title: FIFA World
Ranking system (2006–2018)) match status multipliers are as follows: A win against a very highly
ranked opponent is a considerably great... \n Answer:

Table 5: One instance of our constructed input based on templates of ALCE-ASQA. The batch consists of x1, ... ,x7

together and fed into LLM.
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