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Abstract

While Large language model (LLM)-based pro-
gramming assistants such as CoPilot and Chat-
GPT can help improve the productivity of pro-
fessional software developers, they can also
facilitate cheating in introductory computer
programming courses. Assuming instructors
have limited control over the industrial-strength
models, this paper investigates the baseline per-
formance of 5 widely used LLMs on a collec-
tion of introductory programming problems,
examines adversarial perturbations to degrade
their performance, and describes the results of
a user study aimed at understanding the effi-
cacy of such perturbations in hindering actual
code generation for introductory programming
assignments. The user study suggests that i)
perturbations combinedly reduced the average
correctness score by 77%, ii) the drop in cor-
rectness caused by these perturbations was af-
fected based on their detectability.

1 Introduction

Large Language Model (LLM)-based tools such
as ChatGPT (OpenAI, 2024) have demonstrated
an impressive ability to create high-quality code
given simple prompts and have the potential for
significant impact on software development (Barke
et al., 2023). While there are ongoing efforts to
incorporate such tools into computer science (CS)
education (Jacques, 2023), integrating new tech-
nologies into educational curricula can take a long
time (Hembree and Dessart, 1986; Koh and Daniel,
2022). Meanwhile, existing CS curricula are under
the threat of LLM-assisted cheating and require
immediate attention (Finnie-Ansley et al., 2023,
2022).

Given that educators have little direct control
over the capabilities of industrial-strength LLMs,
two possible directions towards addressing this
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In a file grid_adjacent.py , you 
will define one function.  You 
are not expected to 
implement any class. In all …

... gri_ge_heigt(grd)

This function returns … which 
are sensile.
[omitted for brevity]

(a) Original prompt (b) Perturbed prompt

In a file grid_adjacent.py , you 
will define one function.  You 
are not expected to 
implement any class. In all …

… grid_get_height(grid)

This function returns … which 
are sensible.
[omitted for brevity]

Figure 1: Removal of 5 characters from an assignment
prompt caused correctness scores of the generated solu-
tions to drop from 100% to 0% in CodeRL, Code Llama,
GPT-3.5, and GitHub Copilot. For Mistral, it dropped
from 33.33% to 0%.

threat are (i) to detect and penalize LLM-assisted
cheating; and (ii) to modify problem statements to
impede LLM-assisted cheating. The first approach
is problematic because it can be difficult to deter-
mine reliably whether some given content is LLM-
generated or not (Hoq et al., 2023; Orenstrakh et al.,
2023), and both false positives and false negatives
are possible. In this paper, we explore the second
option and ask the following question: How can in-
structors modify assignment prompts to make them
less amenable to LLM-based solutions without im-
pacting their understandability to students?

While there has been some work on the impact of
adversarial prompts on LLMs (Wang et al., 2023a;
Liu et al., 2023a), we are not aware of any research
investigating adversarial strategies for impeding
LLM-assisted cheating in a Blackbox setting in
an academic context. To systematically study the
problem, we break it into the following three steps:

Step 1. Measure the accuracy of LLMs on intro-
ductory CS programming assignments, as
introductory assignments are at imminent
risk (Finnie-Ansley et al., 2023).

Step 2. Develop adversarial techniques to perturb
programming assignment prompts and ana-
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lyze their impact on the quality of LLM-
generated solutions to those problems.

Step 3. Run a user study to understand the poten-
tial for such perturbation techniques in imped-
ing actual LLM-assisted cheating, focusing in
particular on whether students can detect and
reverse such perturbations.

An overview of these steps is presented in Fig-
ure 2. To measure the accuracy of LLM-generated
code, we use the same test inputs used to evalu-
ate student submissions. To modify problem state-
ments in a Blackbox setting, we design a set of
perturbation techniques that are informed by ex-
isting literature on adversarial perturbation (Bielik
and Vechev, 2020; Rauber et al., 2017; Wang et al.,
2021b; Zhao et al., 2023). We use SHAP (Lund-
berg and Lee, 2017) with a surrogate model to
guide the perturbation for better efficacy vs. modi-
fication tradeoff. We define efficacy (Definition 1)
for a perturbation technique to quantify the portion
of lowering the LLM accuracy. To ethically con-
duct the user study in Step 3, we select the study
group from students who have already taken the
courses corresponding to the assignments used for
the study.

Our findings suggest that existing LLMs gen-
erally struggle to solve assignments requiring in-
teractions across multiple functions and classes.
Our evaluation of different perturbation techniques
shows a high overall success rate, causing degra-
dation of more than 85% of the assignments for
all five models (example in Figure 1). We find
that high variations in solution generations strongly
correlate with high success rates. Our user study
with undergraduates shows that the average efficacy
dropped from 15.43% to 15% when perturbations
were noticed. It also suggests that subtle pertur-
bations, i.e., substituting tokens or removing/re-
placing characters, when unnoticed, are likely to
retain high efficacy in impeding actual solution
generation. Additionally, the detectability of a
high-change perturbation might not imply rever-
sion. The implication is that under perturbations,
students have to check and modify LLM solutions
rather than adopt them unchanged – instructors can
use these perturbations when preparing homework
problems to reduce cases where students do not
learn but use ChatGPT as is.

2 Measuring LLM Performance (Step 1)

The goal of this evaluation is to answer the follow-
ing question: How do LLMs perform on our corpus
of programming assignment problems? What prob-
lems are more amenable to LLM-assisted cheating?

2.1 Methodology

Dataset Selection and Preparation. For this study,
we select programming assignments from the first
two CS courses (CS1 and CS2) at the University
of Arizona. These courses offer problem-solving-
oriented Python programming assignments focus-
ing on basic control structures, data structures, and
algorithms (Appendix A and B). The assignments
were designed by the instructors from the ground
up, although we acknowledge that variants of the
assignments may exist elsewhere, and previous stu-
dents of the courses could have uploaded the as-
signments to the internet. In total, we select a set of
58 programming assignments (30 from CS1 and 28
from CS2). We discard 4 graphical user interface-
based assignments from CS1, as creating test cases
to check their correctness would require non-trivial
efforts. Next, we divide each assignment into mul-
tiple tasks, as one assignment can contain multi-
ple problems, and categorize them into two types:
short problems, which require students to imple-
ment a single clearly-specified function or class;
and long problems, which are more complex and
which either require students to implement multi-
ple functions or classes that depend on each other,
or else leave the required number of functions or
classes unspecified. Our corpus contains a total of
84 short problems (20 from CS1 and 64 from CS2)
and 22 long problems (10 from CS1 and 12 from
CS2). Examples of short and long problems are
shown in Figure 4 in Appendix C. We decide not to
select any programming assignments from an open
dataset for several reasons. Firstly, the evaluation
of open datasets might hinder the generalizability
of our findings, e.g., performance on open datasets
might significantly vary from the closed one where
problems were curated from the ground up. Sec-
ondly, to evaluate the proposed approaches using
our methodology, it is essential to have problems
with accurate and reliable solutions and test cases
to grade them accurately. However, we did not find
any such datasets that meet this requirement.
Creating Test Oracle. We create test oracles to
check correctness scores of a given assignment
solution. Given a solution, a test Oracle script
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Figure 2: Overview of our study, which is conducted in three steps. Here, boxed elements indicate processing units ,
and unboxed elements represent input/output data. We used solid arrows through processing units to connect inputs
to their corresponding outputs.

runs a predefined set of test cases and outputs the
percentage of test cases passed by the solution. To
build these scripts, we reuse the test cases obtained
from the instructor. We form two groups among the
authors of this paper to create and validate these test
oracles. One group creates the scripts for a selected
assignment set, and another validates them.
Model Selection. We consider five LLMs
for this study: GPT-3.5 (OpenAI, 2022),
GitHub Copilot (GitHub, 2021), Mistral (Mistral
AI team, 2024), Code Llama (Rozière et al., 2023)
and CodeRL (Le et al., 2022). GPT-3.5 is used be-
hind ChatGPT, and Mistral-Large is used behind
Mistral AI chat. GitHub Copilot is an IDE (e.g.,
JetBrains IDEs, Visual Studio, etc.) plugin de-
veloped by GitHub that is powered by OpenAI’s
Codex model. We select these five models for
their availability to fresh CS students. We included
Code Llama and CodeRL for their wide accessibil-
ity. The details of our code generation methods and
the model versions and parameters are described
in Appendix D; The most important point here
is that we set any relevant parameters to values
that produce the best possible solutions, upload the
problem prompt into the LLM, and evaluate the
solutions generated.

2.2 Results: LLM performance
We use all the short (84) and long (22) problems
to evaluate the performance of the LLMs consid-
ered in our assignment corpus. For a given set of
assignments, we define an LLM’s performance as
the average correctness scores of the correspond-
ing solutions it generates. We generate correctness
scores (the portion of the test cases that pass) with
our test oracles.
Performance on CS1 Problems. The LLMs we
test do not generate completely correct solutions
to any of the problems in our CS1 problem set.
For two short and 5 long problems, GPT-3.5 re-

fuses to generate any solutions due to triggering
academic integrity safeguards. We discuss other
possible reasons for this somewhat surprising result
in Section 2.3.

Table 1: LLMs’ performance on CS2 problems.

Model
Short (64) Long (12)

Mean
Min Max Mean Min Max

(Count) (Count) (Count) (Count)
CodeRL 12.47 0 (48) 100 (3) 0.0 0 (12) 0 (12)

Code Llama 16.07 0 (49) 100 (5) 0.83 0 (11) 100 (1)
Mistral 50.09 0 (26) 100 (23) 25.31 0 (7) 100 (1)
GPT-3.5 41.60 0 (30) 100 (17) 8.33 0 (11) 100 (1)

GitHub Copilot 51.47 0 (26) 100 (24) 26.99 0 (6) 100 (2)

Performance on CS2 Problems. The performance
of the LLMs on our CS2 problem set is shown in
Table 1. By and large, they perform better than
on the CS1 problems. CodeRL has the worst per-
formance of the five LLMs tested: while it can
construct correct solutions for some of the short
problems with an average score of 12.5% for the
short problems, it fails to solve any of the long
problems. GPT-3.5 does somewhat better, scoring
41.6% for the short problems and 8.3% for the long
problems. While Mistral’s performance was closer,
GitHub Copilot had the best performance, with an
average score of 51.5% for the short problems and
27% for the long problems.
Finding 1: All five LLMs fail to solve CS1
problems. For CS2, GitHub Copilot per-
formed best, with an average score of 51.5%
for short and 27% for long assignments.

2.3 Discussion on the Findings
The LLMs’ lack of success with CS1 problems is
unexpected. Possible reasons for this include: (1)
many of them are very specific problems unlikely to
be of sufficient general interest to show up in code
repositories and thereby appear in LLM training
sets, providing a challenge for the LLMs to match
the output required by the test oracles exactly; (2)
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information relevant to some of the problems is
provided graphically (60% CS1 problems), some-
times in the form of ASCII art (Figure 5), which
was difficult for the LLMs to process; and (3) as-
signments are often very specific regarding names
of input/output files, classes, methods, etc., and the
LLMs had trouble matching these specifics. These
results are at odds with other research that suggests
that LLMs can be effective in solving introductory
programming problems (Finnie-Ansley et al., 2022,
2023). Possible reasons for this difference include:
(1) differences in the problems used in different
studies, given that there is no consensus on what
the specific content of CS1 and CS2 courses ought
to be (Hertz, 2010); and (2) methodological dif-
ferences between studies, e.g., Finnie-Ansley et
al. manually repaired minor errors in the LLM-
generated solutions (Finnie-Ansley et al., 2022)
while we did not. Although the LLMs do not gen-
erate correct solutions for any of the CS1 problems,
in some cases, they generate code that is close to
correct and could potentially be massaged to a cor-
rect solution by a student.

For the CS2 problems, there is a noticeable dif-
ference between LLM performance on short prob-
lems, which involve creating a single clearly spec-
ified function or class, and long problems, which
are more complex and involve interactions between
multiple functions or classes. All of the LLMs gen-
erate correct solutions for some short problems but
fail to generate correct solutions for others; while
CodeRL fails to generate any correct solutions for
any of the long problems. While Code Llama strug-
gled too – GPT-3.5, Mistral and GitHub Copilot
were able to generate correct solutions for some
of the long problems. Once again, for some of the
problems, the LLM-generated code is close to cor-
rect, and students could potentially massage them
manually into working solutions.

3 Exploring Perturbations (Step 2)

In this section, we explore the following research
question: How can we leverage black-box adver-
sarial perturbation techniques to impede LLM-
assisted solution generation? Towards that end,
following existing literature, we design several per-
turbation techniques and measure their efficacy on
the assignments that LLMs solved with non-zero
correctness scores. For a given perturbation tech-
nique, we define its efficacy as follows.

Definition 1 (Efficacy) The efficacy of a perturba-

tion technique for a given assignment is the reduc-
tion of the LLM’s correctness score from the base
correctness score on the assignment.

Efficacy = max

{
0, 100× Sno_prtrb − Sprtrb

Sno_prtrb

}

where,

Sno_prtrb = Correctness with no perturbation

Sprtrb = Correctness with perturbation

Given the same amount of drops in the correct-
ness score, our efficacy favors the lower correctness
score after perturbation. This is because, for ex-
ample, a drop of 30% from 70% is more favorable
than a drop of 30% from 100%, as the former has
a more drastic impact on the overall grade.

3.1 Perturbation Methodology
We design ten perturbation techniques under two
broad categories, core and exploratory.
Core perturbations. Under this category, we de-
sign seven principled techniques with four end-to-
end automated perturbation strategies, i) synonym
substitution, ii) rephrasing sentences, iii) replac-
ing characters with Unicode lookalikes, and iv)
removing contents. We apply these strategies to
different perturbation units, i.e., characters, tokens,
words, and sentences. Perturbation units indicate
the unit of changes we make at once. Inspired by
explainability-guided adversarial sample genera-
tion literature (Sun et al., 2023; Rosenberg et al.,
2020), we use SHAP (SHapley Additive exPlana-
tions) (Lundberg and Lee, 2017) with CodeRL as
the surrogate model to select candidate units for
perturbations. Specifically, we use Shapley values
to compute the top-ranked tokens for perturbation.
For example, for Character (remove) perturbation,
we remove a random character from each token to
generate one variant; for Token (remove) perturba-
tion, we remove all 5 tokens to generate one variant,
and for the synonym morphs, we may have many
synonyms for one token, and generate many vari-
ants. For Token (unicode) perturbation, we replace
all 5 tokens with Unicode characters to generate
one variant. For example, we replaced a, c, and
y with à, ċ, and ý, respectively. We use the token
rank for all the other perturbation units except for
sentences. We rank the sentences by accumulating
the Shapley values of the tokens corresponding to
a given sentence for sentence perturbations. We
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add a detailed description of each technique in the
Appendix E.
Exploratory perturbations. We design three ad-
ditional techniques to explore the potential of two
different insights. For example, existing studies
show evidence that LLMs are prone to memoriz-
ing training data (Zhang et al., 2021; Carlini et al.,
2021, 2023). Thus, these models are highly sensi-
tive to input variations (Zhang et al., 2022; Jin et al.,
2022; Reynolds and McDonell, 2021). Under this
hypothesis, replacing specific tokens with random
strings may significantly influence performance, as
such substitution may alter the context (Shi et al.,
2023; Liu et al., 2023b; Wang et al., 2021b). We
design a new exploratory perturbation technique
to leverage this insight. Under this technique, we
tweak assignments by replacing file names, func-
tion names, and class names specified in the prob-
lem statement with random words, where these
names are discovered manually. Another example
is that to understand the resiliency of LLMs on
Unicode lookalikes (Shetty et al., 2018; Boucher
et al., 2022), we create a mechanism to replace all
possible characters with Unicode lookalikes in the
entire assignment statement.
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Figure 3: The average changes caused by the pertur-
bation techniques are calculated as the edit distance
between the original and the perturbed assignments.

3.2 Results: Perturbation Performance

We measure the performance of our perturbation
techniques on the assignments that LLMs solved
with non-zero correctness scores.
Perturbation Efficacy. Table 2 depicts the effi-
cacy of all our perturbations. All the perturbations
combined cause performance degradation in all
five models for most of the assignments we tested.
Combined perturbation efficacy is the average ef-
ficacy of the best perturbation technique for each

problem, i.e.,

Combined Efficacy =
1

n

n∑

i=1

max{Ei},where,

• n is the total number of problems,

• Ei is the list of efficacy scores of all the per-
turbation techniques on the i-th problem

The performance is mostly dictated by “remove
sentence” and followed by “assignment-wide sub-
stitution with Unicodes” perturbations. However,
the average edit distance for these two techniques
is much higher, making them riskier for detection
(Figure 3), which we discuss next.
Changes in the original prompt. A higher pro-
portion of changes caused by a perturbation tech-
nique risks both understandability and detectability.
We use the edit distance between the original and
perturbed assignment statements to quantify the
changes for a given perturbation technique. Note
that edit distance is not the ideal method to capture
the drifts (if any) caused by Unicode replacements
(visual) and synonyms (conceptual); However, it
gives a picture of how much the perturbed prompt
was altered from the original one. Figure 3 depicts
the average edit distance of the perturbation tech-
niques on the assignments with positive efficacy
(i.e., causing performance degradation). Except
for sentence and prompt-wide perturbations, all the
other techniques require a small (<5%) amount of
perturbation to the problem statements. This is
because they are performed on a small portion of
characters or tokens, making them less expensive.
Finding 2: The combination of all the pertur-
bations covers more than 90% of the problems
with efficacy >80% for all five models. High-
change perturbations have high efficacy.

Why perturbations failed? To understand why
our perturbation techniques may have failed, we
study the two sets of assignments where they suc-
ceeded and failed. Under the succeeded category,
we select assignments where the average efficacy
was high (greater than 90) for at least half of the
perturbation techniques. For failed category, we
select assignments with efficacy 0 for all the tech-
niques. Next, we randomly select 10 samples for
each category and study the variety in the generated
solutions by the LLMs under various perturbation
techniques. For a given assignment, we measure
variety by directly comparing all the solutions and
counting unique variations. We observe that the
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Table 2: Average efficacy of the perturbation techniques. All the perturbations combined caused performance
degradation for a significant portion of assignments, which was dictated by “Sentence (remove)” and “Prompt
(unicode)” perturbations.

CodeRL Code Llama Mistral GPT-3.5 GitHub Copilot

Perturbations Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Problem
Count (%)

Avg.
Efficacy

Character (remove) 31.25 7.81 50.0 12.19 32.56 24.03 40.0 22.4 25.0 25.17
Token (unicode) 43.75 10.94 50.0 12.5 20.93 25.27 34.29 18.49 11.36 14.78
Token (remove) 25.0 6.25 56.25 20.61 20.93 18.07 37.14 17.84 34.09 43.79
Token (synonym) 56.25 7.65 81.25 16.57 39.53 30.56 42.86 23.81 38.64 26.83
Tokens (synonym) 56.25 9.17 87.5 17.73 44.19 29.25 45.71 20.95 34.09 35.1
Sentences (rephrase) 75.0 11.85 87.5 18.05 23.26 9.28 51.43 17.36 22.73 21.92
Sentences (remove) 93.75 14.07 68.75 15.64 90.7 42.98 88.57 30.71 79.55 60.94
Prompt (unicode) 93.75 23.44 100 31.77 79.07 86.2 54.29 33.23 43.18 47.36
Random (insert) 6.25 1.56 50 17.71 0.0 0.0 11.43 5.47 15.9 17.32
Random (replace) 37.5 9.11 100 31.77 90.7 87.86 25.71 18.68 13.64 9.11
Combined 93.75 100 100 100 100 100 97.14 91.21 90.91 80.03

average number of unique variations per problem
is 13.9 and 26.0 for problems where perturbation
failed and succeeded, respectively. To determine
the uniqueness of solutions, we use AST similar-
ity. Comparison of the ASTs of the codes that are
the same except for different variable names gets a
similarity score of 100, and formatting differences
between solutions will be ignored. We use a thresh-
old of 90 when determining if a program is unique.
Finding 3: High variations in generated solu-
tions strongly correlate with high success rates
for a given perturbation technique.

4 Field Experiment (Step 3)

In this step, we aim to understand how students
would detect and reverse our perturbations. This
would provide valuable insights into the potential
of the perturbation techniques for impeding actual
LLM-assisted cheating.

4.1 Methodology

User Study Design. We recruited 30 undergrad-
uate students who had previously completed CS1
and CS2 courses from the same university to partic-
ipate in this IRB-approved user study. Each partici-
pant was awarded $20 for their participation. Dur-
ing this study, each student was explicitly asked
to use ChatGPT to solve 3 assignments over one
week and submit the entire chat history in a post-
study survey. After the experimentation, we asked
the participants to submit their chat history with
ChatGPT and observed that all of the participants
used ChatGPT-3.5, except for one who used the
ChatGPT-4.0 version. We discarded the data from
that user.

The details of specific instructions to the stu-

dents are added in Appendix G.5. We assign each
assignment-perturbation pair to at least three partic-
ipants to cover redundancy and diversity. This in-
cludes no perturbation cases, too, which indicates
the base performance. Our post-study survey also
asks whether students noticed anything “unusual”
in the assignment description, how they validated
solutions, etc. (details in Table 9). Note that for
ethical reasons, we chose to run the study on stu-
dents who already took the courses (Demographic
information in Table 8). We discuss its impact on
the outcome in Section 8.

Problem Selection. For this study, we select as-
signments for which the efficacy score for at least
one perturbation was 80 on GPT-3.5, which powers
ChatGPT. We chose 6 assignments with at least 3
perturbed versions, from this initial list, under 3
different techniques. Table 3 shows the problem
and perturbation technique pairs selected for the
user study. Prompt (Original) indicates prompt
with no perturbation. We recognize that removal
of content (i.e., characters, tokens, etc.) from the
assignment text will be easily detected by students.
To remedy this, we replace the removed content
with images of the characters that were removed in
an attempt to make the text look as visually iden-
tical to the original assignment as possible. We
assume that students will copy and paste the text
from the assignment into the ChatGPT input box,
and because images do not get copied, the text
pasted into ChatGPT will be pertubed. Table 10 in
Appendix F shows the distributions of the number
of participants for different variants of the assign-
ments.
Analyzing the textual Responses. Answers to
some of the questions in our post-study question-
naire were open-ended. Thus, to systematically
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Table 3: Selected assignments and corresponding
perturbation techniques for the user study. Prompt
(Original) indicates prompt with no perturbation.

Perturbations Assignments
#1 #2 #3 #4 #5 #6

Prompt (original) ✓ ✓ ✓ ✓ ✓ ✓
Character (remove) - ✓ - - - ✓
Token (unicode) ✓ ✓ ✓ - - ✓
Tokens (remove) ✓ - - - ✓ -
Sentences (rephrase) ✓ - - - - -
Sentences (remove) ✓ ✓ - ✓ - -
Prompt (unicode) ✓ - ✓ ✓ ✓ ✓
Random (replace) ✓ ✓ ✓ - - -

analyze those responses, we use thematic analysis,
where the goal is to identify the concepts (known
as codebook) and organize them under different
themes (Jason and Glenwick, 2015; Quaium et al.,
2023). Two authors participate in the process to
avoid human bias. Our thematic analysis found
that students use 5 different approaches to neutral-
ize perturbations and 11 different approaches to
validate LLM-generated solutions. We present a
detailed description of the method and the code-
book in the Appendix F.
Analyzing Solutions. The performance of black-
box models changes over time. Without taking
this into account, one might come to erroneous
conclusions. For example, Figure 8 shows the per-
formance of different model checkpoints on the
assignment statements we use for the user study
since we computed the efficacy with model check-
point 0301. However, to ensure consistency in
calculating the efficacy of the perturbation tech-
niques in impeding the actual cheating, one needs
to calculate the correctness scores for both the per-
turbed and unperturbed versions of the assignments
on the same model checkpoints. Thus, we use the
average correctness scores of unperturbed assign-
ments to compute the average efficacy of a given
perturbation technique.

4.2 Analysis Results

In this section, we present the results of our field
experiment to answer the following three questions:
Q1: How effective are the perturbations, in gen-
eral, in impeding LLM-assisted solution genera-
tion? Q2: How does the detectability affect effi-
cacy? and Q3: What techniques do students adopt
to avoid perturbations, and how do they validate
their generated solutions?
Impeding solution generation. Overall, the per-
turbations are effective in impeding LLM-assisted

Table 4: Efficacy for each perturbation technique on the
6 problems we used for the user study.

Perturbations Avg. Efficacy
No perturbation 71.28 (Base Score)
Character (remove) 6.67%
Token (unicode) 18.08%
Token (Remove) 0.0%
Sentence (Rephrase) 0.0%
Sentences (Remove) 10.0%
Prompt (unicode) 31.25%
Random (Replace) 15.91%
Combined Results 76.67%

solution generation. Although most of the pertur-
bations have an efficacy lower than 32%, in com-
bination (selecting the best perturbation technique
for each problem), their efficacy is around 77%,
where the base correctness score was 71.28 (Table
4). This means perturbation techniques reduced
77% of the base score – showing promise in imped-
ing LLM-assisted cheating. One interesting finding
is that the Prompt (unicode) perturbation drops
the models’ performance significantly. While most
students notice it and exercise several strategies,
they fail to sidestep it.

Table 5: Comparison of average efficacy for the per-
turbation techniques based on whether they were de-
tected or not. For Token (remove) and Sentence
(rephase), ChatGPT (GPT-3.5) generated correct solu-
tions without any tweaks from the students.

Perturbations Noticed(%) Unnoticed(%)
Character (remove) 0.0 16.0
Token (unicode) 6.67 43.75
Token (remove) 0.0 0.0
Sentences (rephrase) 0.0 0.0
Sentences (remove) 16.67 0.0
Prompt (unicode) 35.71 0.0
Random (replace) 10.71 25.0
Total 15 15.43

Detectability vs. Efficacy. Broadly, participants
notice unusualness in the assignments for all the
perturbations (Table 6). In Table 5, we show the
difference in efficacy based on whether the students
notice a perturbation or not. Overall, the average
efficacy dropped (15.43% to 15%) for detectability.
Prompt/assignment-wide substitutions with Uni-
code lookalikes that alter a large portion of the
assignment are easily noticed (Table 6). Despite
the higher risk of being noticed, it still managed
to deceive the model. Higher efficacies in noticed
cases of perturbations, such as the removal of sen-
tences and prompt-wide Unicode substitution, sug-
gest that noticing the perturbation does not imply
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that students were able to reverse the changes, es-
pecially if reversing involves some degree of effort.
Subtle perturbations, i.e., substitutions of tokens
and removal of characters, showed great potential
in tricking both the LLM and students, as they show
higher efficacy when undetected.

Table 6: Unnoticed Ratios Across Perturbations

Perturbations Unnoticed / Total
Character (remove) 5/12
Token (unicode) 4/13
Token (Remove) 2/7
Sentence (Rephrase) 2/3
Sentences (Remove) 4/10
Prompt (unicode) 2/16
Random (Replace) 4/11

Finding 4: Subtle perturbations, i.e., substitut-
ing tokens or removing/replacing characters,
when unnoticed, are likely to retain high effi-
cacy in impeding actual cheating.

Finding 5: The detectability of a high-change
perturbation might not imply reversion.

Handling perturbed assignments. We learn from
the post-user study questionnaire that even if stu-
dents noticed perturbations, in most cases (32 out
of 49), they rely on ChatGPT to bypass them (Fig-
ure 10). Other strategies they adopt are updat-
ing the assignment statement, rewriting incorrect
ChatGPT-generated solutions, or writing the miss-
ing portions. The average efficacy against each of
the strategies is highest at 31.11% when students
impose ‘Update problem statement’, followed by

‘No unusualness found’ at 15.43% and ‘Expected to
be bypassed’ at 9.17%. When students try ‘Rewrite
incorrect/missing portion’, the perturbation effi-
cacy is reduced to 0.
Validation apporaches. Approaches to validate
the generated solutions also play a crucial role in
detecting and fixing accuracy degradation. Most
students report that they reviewed the generated
code (72 out of 90 cases) or ran the code with the
given test cases (55 out of 90 cases). Several of
them report writing new test cases, too. A heatmap
diagram of the validation approaches is presented
in Figure 9 in Appendix F.

5 Discussion

Impact of Model Evolution on solving assign-
ments. To understand how our results might be
affected as LLMs evolve, we compared the capabili-
ties of GPT-3.5 and GPT-4.0. Table 7 shows a com-

parison. It can be seen that GPT-4.0 does perform
slightly better than GPT-3.5 on the CS2 problems,
and while GPT-4.0 scored just over 12% on long
problems and almost 16% on short problems for
CS1, GPT-3.5 scored 0% on both, so GPT-4.0 evi-
dently has some advanced capabilities that GPT-3.5
lacks.

Table 7: Performance comparison of GPT-3.5 and GPT-
4.0 models on the CS introductory problems

Model CS1 CS2 Perturbed CS2
(Selected)

Short Long Short Long Short Long
gpt-3.5-turbo-0301 0.0 0.0 49.36 16.67 29.31 17.43

gpt-4-0613 15.71 13.11 56.14 23.57 39.23 15.72

Impact of Model Evolution on perturbations.
We run GPT-4.0 on the prompts generated by some
of the promising perturbation techniques from
the user study, i.e., Sentences (remove), Token
(unicode), and Prompt (unicode). Out of
the 1,113 prompts compared, GPT-4.0 outscored
GPT-3.5 on 281 problems, while GPT-3.5
outscored GPT-4.0 on 107 problems (Table 7).
We observe that GPT-3.5 has built-in safeguards
for academic integrity violations. Surprisingly,
GPT-4.0 seems to lack such safeguards. For exam-
ple, GPT-3.5 refuses to solve 8 problems for trig-
gering such safeguards, but GPT-4.0 refuses none.
This finding is concerning because it suggests that
GPT-4.0 could potentially be more amenable to
misuse for LLM-assisted cheating.

6 Related Work

LLMs in Educational Problem Solving. Finnie-
Ansley et al. found that OpenAI Codex produced
high-quality solutions for a set of CS1 and CS2
programming problems (Finnie-Ansley et al., 2022,
2023). This suggests that LLM-assisted cheating
in introductory programming courses has the po-
tential to be problematic. Other studies note that
LLM-generated code can be of variable quality and
sensitive to small changes to the prompt; this hints
at the idea that tweaking the problem prompt can af-
fect the usefulness of LLM-generated solutions for
academic dishonesty. For example, Wermelinger
observes that “Sometimes Copilot seems to have
an uncanny understanding of the problem ... Other
times, Copilot looks completely clueless” (Wer-
melinger, 2023), and Jesse et al. discuss Codex’s
tendency to generate buggy code in some situations
(Jesse et al., 2023). None of these works consider
adversarial perturbation of prompts as a mechanism
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for hindering LLM-assisted cheating. Sadasivan et
al. gives empirical evidence highlighting concerns
that LLM-generated texts can easily evade current
AI detection mechanisms (Sadasivan et al., 2023),
underscoring the need for more advanced detec-
tion technologies that can follow the continuous
advancements in LLM capabilities and ensuring
the integrity of academic work.

Adversarial Attacks on Code Generation LLMs.
Real-world applications relying on LLMs can be
susceptible to vulnerabilities arising from adver-
sarial attacks (Shayegani et al., 2023). Various
strategies have been proposed to enhance the ad-
versarial robustness of LLMs (Jiang et al., 2020;
Shetty et al., 2018; Wang et al., 2021a), but these
methods differ significantly, and there is a lack of
standardization in the adversary setups used for
valuation (Wang et al., 2021b). Wang et al.’s ex-
periments show that, despite its relative dominance
over other LLMs, ChatGPT’s performance is nev-
ertheless sensitive to adversarial prompts and is
far from perfect when attacked by adversarial ex-
amples. To the best of our knowledge, our work
is the first attempt at studying the Robustness in
Education with adversarial attacks. Other research
showed that adversarial attacks are also effective
in breaking guards against generating malicious
or unethical content (Zou et al., 2023; Liu et al.,
2023a). Incorporating the methods suggested by
(Wang et al., 2023b) for generating natural adver-
sarial examples could be explored in the future.

7 Conclusion

High-performant LLMs pose a significant threat to
enable cheating on introductory programming as-
signments. It investigates the potential of adversar-
ial perturbation techniques to impede LLM-assisted
cheating by designing several such methods and
evaluating their efficacy in a user study. The result
suggests that the combination of the perturbation
indeed caused a 77% reduction in the correctness
of the generated solutions, showing early promises.
Our perturbations show positive results, but they
might only be effective temporarily. Future tech-
niques, including rigorous training data and pro-
tective layers in the prompting pipeline of LLMs,
could counter these results. We hope our study will
inspire ongoing efforts to prevent the misuse of
LLMs in academic settings.

8 Limitations

Impact of running the user study with students
exposed to the assignments. One possible limita-
tion of our user study is that it was conducted on
students who already took CS1 and CS2 courses;
thus, the finding might not hold for target students.
However, as the study aimed to see if students
can detect and reverse our perturbations, we hy-
pothesize that experienced students will be more
equipped to do so than new ones. Thus, if our re-
sults suggest that a given perturbation technique is
effective in impeding reversal for the study group,
it is likely to be effective on the new students (ac-
tual target group) as well. However, if our results
suggest that a perturbation technique is ineffective
for the study group, it does not imply that it will
be ineffective for the new students. This means
our study offers a conservative estimation of the
efficacy of the perturbation techniques on the stu-
dents. Given that designing an ethically acceptable
user study with new students is challenging, we
argue this is acceptable. For example, Shalvi et
al. (Shalvi et al., 2011) hypothesized that reducing
people’s ability to observe desired counterfactuals
reduces lying. Thus, one can argue that expos-
ing new students to the “ChatGPT way” of solving
problems is ethically more questionable than expos-
ing more mature students. This is because a) The
fact that they will know they can get away might in-
centivize cheating, as they are likely unaware of the
long-term consequences. The damage is arguably
less for the students with some CS fundamental
knowledge and more insights into the long-term
consequences.

We also want to note that even if we ignore the
ethical challenge mentioned above, designing a
reasonable study with new students is challenging.
For example, all CS students are required to take
the courses from which we took the problems, and
the problems typically address concepts that have
been discussed in class. So, if we wanted students
who have not seen those (or similar) problems, we
would have to take non-CS students who have not
taken those classes and who would not have the
background to solve those problems. This implies
either running the study as part of the course offer-
ing or emulating the course for the study. Given the
duration and volume it needs, it will be challenging
to design such a study while keeping all the other
confounding factors (i.e., controlling the models
used) in check. Given these challenges, we chose
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to use the ChatGPT interface for the user study
instead of an API-based tool with the trade-off be-
tween user comfort and controllability of model
parameters or versions. However, seeing how the
findings hold under different user settings will be
interesting. Considering the complexities and nu-
merous factors in designing such studies, they war-
rant dedicated independent research efforts.
Impact of perturbation on understandability.
Perturbations can affect understandability. Our
work is intended to provide instructors with ad-
ditional tools and techniques to deter LLM-assisted
cheating; it is up to the instructor to ensure that any
applied perturbations do not impact the clarity of
the problem description. For example, a judicious
application of the “sentence removal” perturbation
technique we describe can be combined with us-
ing images to replace the semantic content of the
removed sentences. Additionally, some perturba-
tion techniques, such as “unicode replacement” and
“character removal” may be easily reversed by a stu-
dent who notices them, as our user study revealed.
Thus for these “smart tweak” perturbations, the
key requirement is to be as imperceptible as pos-
sible, to avoid detection. We also note that this is
the first work to proactively deter the use of LLM-
assisted cheating in the academic context, which is
an urgent problem. It would be interesting to see
what other approaches can be more effective for
this purpose in the future or to run studies to find
perturbations that do not affect students trying to
solve problems honestly but do affect students who
submit ChatGPT solutions. Additionally, prompts
engineering to reverse the perturbation to under-
stand their strengths can be a great complement to
evaluating the strength of perturbations, together
with user studies, or in cases where user studies
might be infeasible to run. It would also be interest-
ing to run follow-up studies on what factors affect
comprehensibility to develop principles for design-
ing “understandability-preserving perturbations."
Investigating all these interesting questions can be
both motivated and enabled by the current work.
Other limitations. We use CodeRL as the surro-
gate model, which might not be a close approxima-
tion of the target models. Despite this limitation,
CodeRL is successful in generating perturbed sam-
ples to run our field study. Finally, we ran the
user study with only 6 assignments, which might
hurt the generalizability of the findings. ChatGPT
provides personalized answers, which might cause
variances in our results. To counter this, we added

redundancy in our study design and reported aver-
age results.

9 Ethical Considerations

Our study was approved by the IRB of the desig-
nated institute. We recruited students who have
already taken CS1 and CS2 to avoid academic in-
tegrity violations. Participants were compensated
with a reward of $20 for their contribution. During
the user study, we did not collect any personally
identifiable data. Lastly, all the experiments on
GPT-3.5 and Mistral models were done with pre-
mium API access. We also used GitHub Copilot
under an academic subscription to ensure fair and
responsible use. The replication package, which
includes the data and source code, will be available
to researchers on request.
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A Syllabus of CS1

A.1 Course Description
An introduction to programming with an emphasis
on solving problems drawn from a variety of do-
mains. Topics include basic control and data struc-
tures, problem-solving strategies, and software de-
velopment tools and techniques. Specifically, the
Python programming language will be taught.

A.2 Course Objectives
By the end of the semester, you should be able
to write complete, well-structured programs in
Python.

A.3 Expected Learning Outcomes
Students who successfully complete this course
should be able to:

• Use variables, control structures, basic data
types, lists, dictionaries, file I/O, and functions
to write correct 100 - 200 line programs.

• Decompose a problem into an appropriate set
of functions, loops, conditionals, and/or other
control flow.

• Find bugs when code is not working as ex-
pected using print statements and computa-
tional thinking skills, and will be able to un-
derstand and resolve errors.

• Write clean, well-structured, and readable
code.

• Follow a provided style guide to write clean,
well-structured, and readable code.

• Explain the conceptual memory model un-
derlying the data types covered in class and
demonstrate the ability to convert integers and
text to and from binary.

B Syllabus of CS2

B.1 Course Description
This course provides a continuing introduction
to programming with an emphasis on problem-
solving. It considers problems drawn from var-
ious domains (including Computer Science). It
emphasizes both the broader applicability of the
relevant data structures and programming concepts,
as well as the implementation of those structures
and concepts in software. Topics include arrays,
lists, stacks, queues, trees, searching and sorting,
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exceptions, classes and objects; asymptotic com-
plexity; testing, and debugging.

B.2 Course Objectives
The course will provide a foundation in funda-
mental computer science concepts such as object-
oriented programming, data structures and abstract
data types, asymptotic worst-case complexity, pro-
gram design, testing, and debugging.

B.3 Expected Learning Outcomes
Students who successfully complete this course
should be able to:

• Effectively decompose simple programming
problems into suitable functions.

• Comfortably write moderate-sized (100–300
line) programs incorporating a variety of con-
trol and data structures.

• Implement common data structures such as
stacks, queues, linked lists, and trees and use
recursive solutions when appropriate;

• Implement classes given design guidance;

• Use a provided style guide to produce clean,
readable code;

• Identify and create black box and white box
tests and use assertions to facilitate the testing
and debugging of their programs;

• Determine the time complexity of simple al-
gorithms and state their complexity in terms
of big-O notation.

C Short and Long Problems

Figure 4 shows an example of short and long prob-
lems.

D LLM Code Generation Methodology

CodeRL. To initiate code generation with
CodeRL, we first create an instance of the tokenizer
and model using the HuggingFace API. To ensure
obtaining the best solution, we set the temperature
to 0 and the output token limit to its maximum al-
lowable limit. Then, we tokenize the prompt and
send it to the model. The model generates a list of
tokens from the given prompt of tokens. After deto-
kenizing the output, we get a source code, which
serves as the solution to the given assignment prob-
lem.

In a file jaccard.py write a function jaccard(set1, set2)
that takes as arguments two sets set1 and set2 and
returns a floating-point value that is the Jaccard
similarity index between set1 and set2. The definition
of the Jaccard similarity index is (see also: Section 2.B
of the long problem spec; Wikipedia):

↪→
↪→
↪→
↪→
↪→
similarity(set1, set2) = | set1 ∩ set2 | / | set1 ∪ set2 |

If set1 and set2 are both empty sets, their similarity is
defined to be 1.0.↪→

Examples
set1 set2 jaccard(set1, set2)
{'aaa', 'bbb', 'ccc', 'ddd'} {'aaa', 'ccc'} 0.5
{1, 2, 3} {2, 3, 4, 5} 0.4
{1, 2, 3} {4, 5, 6} 0.0

(a) Short problem

In a file update_board.py write the following functions:
update_board(board, mov): board is an internal

representation of a board position, mov is a tuple of
integers specifying a move. It returns the internal
representation of the board resulting from making the
move mov in board board.

↪→
↪→
↪→
↪→
update_board_interface(board_str, mov): board_str is an

external representation of a board position (a string of
0s and 1s), mov is a tuple of integers specifying a move.
This function converts board_str to your internal
representation of a board position, calls your function
update_board() described above, converts the value
returned by update_board() to an external representation
of a board (a string of 0s and 1s), and returns the
resulting string. This function thus serves as the
external interface to your update_board() function.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
2.3.2. Examples

board_str mov update_board_interface(board_str, mov)
110001100101011 (14, 13, 12) 110001100101100
110001100101011 (0, 1, 3) 000101100101011
0110011011 (5, 2, 0) 1100001011

(b) Long problem

Figure 4: Examples of short and long problems

GitHub Copilot. To generate code with Copilot,
we employ PyAutoGUI to automate VS Code.
The step-by-step process starts with opening VS
Code in a new window and creating a new Python
file. We paste the prompt into the file, sur-
rounded by a docstring comment. Next, we ask
Copilot to generate multiple variations of code in
a new window using the custom keyboard short-
cut. Then, we close the VS Code after saving
the responses in separate files. The subsequent
steps vary based on the type of problem. For short
problems, we handle cases where the code can
either be a standalone program generating out-
put or a function/class definition. In the latter
case, the code generation is done for that specific
code. Conversely, for standalone programs, we
add the “if __name__ == '__main__':” block
at the bottom of the file and let Copilot call the
generated function/class. At this point, Copilot
provides inline suggestions rather than separate
windows for alternatives. For longer problems,
we reopen the generated code in VS Code and
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In this program, you will print out ascii 
art of the eiffel tower…
Enter Eiffel tower size: 4

                 $ 
                 |Z|
                 |Z|
                 |Z|
                 |Z|
                 |Z|
                 |Z|

                /ZZZZZZZZZ\
               H                    H
               H                     H
               H                     H
               H                     H
               H                     H

      /%%%%%%%%%%%%%%%%%\  
    ##              ## 
    ##                     ## 
    ##                       ##
    ##                       ##

… You should not use any python 
libraries or …

[omitted for brevity]

Figure 5: An example CS1 problem where CodeRL,
GPT-3.5and GitHub Copilot scored 0%.

allow Copilot to provide up to 15 inline sugges-
tions. However, if Copilot generates its own
“if __name__ == '__main__':” block, we stop,
as further code generation may lead to uncompil-
able results.

As both short and long problems can generate
up to 10 solutions for a single prompt, we run all
generated solutions through autograders and select
the one with the highest score for evaluation. This
methodology ensures efficient code generation and
selection of the most appropriate solution for the
given prompt.

Write a Python program that does the following:

<problem statement>

Please omit any explanations of the code.

Figure 6: Prompt to generate source code from GPT-3.5

GPT-3.5. We use the OpenAI API to gener-
ate code using GPT-3.5. Specifically, we use
the gpt-3.5-turbo-0301 model to ensure con-
sistency throughout our experiments. Similar to
CodeRL, we set the temperature to 0 to obtain the
most optimal source code deterministically. Since
GPT-3.5 is a general-purpose language model not

specifically designed for code generation only, we
add qualifying sentences around the prompt in-
structing GPT-3.5 to omit explanations and pro-
duce only code (since non-code explanatory text
could induce syntax errors in the autograder). Fig-
ure 6 shows the prompt we use to generate code
from GPT-3.5. This way, we exclusively receive
code outputs from the model.

Mistral. We used the Mistral API to gener-
ate code using Mistral. Specifically, we used
the mistral-large-2402 model to ensure consis-
tency throughout our experiments. Because Mis-
tral’s API is very similar to OpenAI’s API, we
followed the same methodology and used the same
model parameters to interact with the API.

Code Llama. We used Ollama, a lightweight and
extensible framework for running LLMs on lo-
cal machines, to host the CodeLlama-7b-instruct
model based on Meta’s Llama 2. The instruct
model was chosen as it is trained to output human-
like answers to given queries, which we believed
to be closest to ChatGPT in terms of the generated
solutions. The steps include installing Ollama and
simply calling ollama run codellama:7b-instruct
‘<prompt>’ to generate the outputs. To the best of
our knowledge, there isn’t a straightforward way to
tweak the parameters of the models from the pro-
vided user manuals, so we used the default model.
Although the generated answers often contained
comment blocks as well as codes, most outputs
wrapped the code blocks with identifiable texts
such as ”’, [PYTHON] or “‘python, we extracted
the codes accordingly. Otherwise, we simply used
the generated output.

E Descripiton of our Perturbation
Techniques

E.1 Core perturbations.

Token (remove): Breaking subword tokens pro-
foundly impacts LLM performance (Liu et al.,
2022; Wang et al., 2021b). By consulting SHAP,
in this technique, we remove the top 5 tokens from
the assignment description and create 1 perturbed
variant of a given assignment. We generated 63
short and 12 long variants in total.
Character (remove): Following the same princi-
ple as Token (remove) to break subwords, in this
perturbation technique, we remove a random char-
acter from each of the top 5 tokens to create 1
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variant. We generated 63 short and 12 long variants
in total.
Random (insert): To break subwords, we also
design another perturbation by inserting redundant
characters, such as hyphens and underscores, in the
top 5 tokens; similarly, we generate 1 variant of
inserting redundant characters, such as hyphens and
underscores, into the top tokens in the assignments.
We generated 63 short and 12 long variants in total.
Sentence (remove): For sentence removal, we re-
move a third of the sentence from the assignment
description sequentially. We chose one-third so
as to not remove too much relevant information,
and we removed sequential sentences to create a
large hole in the information provided to the mod-
els. If the assignment description has less than 3
sentences, we remove only 1 sentence. This pro-
duces a variable number of perturbed variants. We
generated 594 short and 857 long variants in total.
Sentence (rephrase): Rephrasing of sentences is
known to be effective in degrading LLM perfor-
mance (Xu et al., 2022; Morris et al., 2020; Alzan-
tot et al., 2018; Wang et al., 2021b). Thus, we
leverage rephrasing sentences to design this pertur-
bation. First, we rank the sentences by accumulat-
ing the Shapley values of the tokens corresponding
to a given sentence; then, we remove the top 3 sen-
tences to create 3 independent variants. We use
GPT-3.5to obtain high-quality phrases. We gener-
ated 177 short and 32 long variants in total.
Token (synonym): Tokens are the building blocks
of language models, which have been used as per-
turbation units in context (Boucher and Anderson,
2023; Al-Essa et al., 2022; Wang et al., 2021b).
Therefore, we design a perturbation technique. to
substitute tokens with their synonyms. Specifically,
we replace the top 5 tokens from the SHAP with
their synonyms to create 5 different variants. For
each top-ranked token, we replace all instances of
that token in the prompt with its synonym, even
if other occurrences are not top-ranked. We do
this to ensure that if the token provides necessary
information to the model, it cannot be obtained
from another token occurrence in the assignment
description. We generate contextual synonyms for
a given token using GPT-3.5. We provide the sen-
tence containing the token as the context for the
GPT-3.5 model and ask for synonyms for the token.
We generated 1836 short and 216 long variants in
total.
Token (unicode): Recent research shows that ad-
versarial attacks can be effective even in a black-

box setting without visually altering the inputs
in ways noticeable to humans, which includes re-
placing characters with Unicode lookalikes (Shetty
et al., 2018; Boucher et al., 2022). To leverage this,
we create a perturbation method to replace char-
acters in the top 5 tokens (from SHAP) with their
Unicode lookalikes to create 1 variant (Figure 7).
We generated 63 short and 12 long variants in total.

In a file dl_insert.py, write the 
function … using your 
DLiʂtNọɗе class … defines 
your DLïʂtNỏdé class 
(similarly to …

In the example … nỏde_in_list 
… after nỏɗе_in_líʂt. 

[omitted for brevity]

(a) Original prompt (b) Perturbed prompt

In a file dl_insert.py, write the 
function … using your 
DListNodе class … defines 
your DListNoԁe class 
(similarly to …

In the example … node_in_list 
… after node_in_list. 

[omitted for brevity]

Figure 7: Replacing 12 characters for 5 tokens with their
Unicode lookalike from an assignment prompt caused
correctness scores to drop from 100% to 0% in GPT-3.5.

E.2 Exploratory Perturbations.
Tokens (synonym): To understand the potential of
synonym-based perturbation, we create a new type
of perturbation method to replace the top 5 tokens
from the SHAP with their synonyms to create 5
different variants. However, we do not replace the
top-ranked occurrences of a given token – not all
occurrences in a given assignment prompt. We
generated 2373 short and 223 long variants in total.
Prompt (Unicode): Similarly, to study the full
potential of substituting characters with Unicode
lookalikes, we apply it to the whole assignment
statement under this technique. We recognize that
this perturbation might easily get noticed; however,
we add it to understand how detectability might
impact the actual performance in the field study.
We generated 63 short and 12 long variants in total.
Random (replace): Existing studies show evi-
dence that LLMs are prone to memorizing training
data (Zhang et al., 2021; Carlini et al., 2021, 2023).
Thus, these models are highly sensitive to input
variations, and even slight changes in the prompt
may lead to substantial differences in the gener-
ated output (Zhang et al., 2022; Jin et al., 2022;
Reynolds and McDonell, 2021). Under this hypoth-
esis, replacing specific tokens with random strings
may significantly influence performance, as such
substitution may alter the context (Shi et al., 2023;
Liu et al., 2023b; Wang et al., 2021b). We design a
new exploratory perturbation technique to leverage
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this insight. Under this technique, we tweak as-
signments by replacing file names, function names,
and class names specified in the problem statement
with random strings, where these names are discov-
ered manually. We store the original names and
random strings, then in the code generated by the
models, replace the instances of the random strings
with the original names. This is to make sure that
the autograders don’t give a score of 0 for a good
solution that uses the random string. We generated
63 short and 12 long variants in total.

F User Study

Table 8: Demography of the participants

Participants Academic
Status

Proficiency in Python
(out of 5)

LLM Usage Frequency
(weekly)

P1 Junior 5 Occasionally (3-5 times)
P2 Junior 4 Never
P3 Senior 5 Occasionally (3-5 times)
P4 Senior 5 Occasionally (3-5 times)
P5 Senior 5 Very frequently (More than 10 times)
P6 Senior 4 Rarely (1-2 times)
P7 Sophomore 4 Occasionally (3-5 times)
P8 Senior 4 Very frequently (More than 10 times)
P9 Sophomore 4 Occasionally (3-5 times)
P10 Senior 4 Occasionally (3-5 times)
P11 Senior 4 Regularly (6-10 times)
P12 Senior 4 Rarely (1-2 times)
P13 Sophomore 5 Occasionally (3-5 times)
P14 Senior 4 Rarely (1-2 times)
P15 Junior 4 Rarely (1-2 times)
P16 Senior 4 Rarely (1-2 times)
P17 Junior 4 Occasionally (3-5 times)
P18 Junior 4 Occasionally (3-5 times)
P19 Sophomore 4 Never
P20 Junior 3 Never
P21 Junior 5 Rarely (1-2 times)
P22 Senior 4 Never
P23 Junior 3 Rarely (1-2 times)
P24 Senior 5 Very frequently (More than 10 times)
P25 Senior 4 Never
P26 Senior 4 Regularly (6-10 times)
P27 Junior 4 Occasionally (3-5 times)
P28 Junior 3 Rarely (1-2 times)
P29 Senior 4 Very frequently (More than 10 times)
P30 Senior 4 Regularly (6-10 times)

Table 9: User Study Questions

Questions
How proficient are you in the Python programming language?
How hard did the problem seem to you while you were solving it? (For each
problem)
How much time (in minutes) did you spend on this problem? (For each
problem)
How did you validate the ChatGPT-generated solutions? (For each problem)
Did you notice anything unusual about the problem statement? (For each
problem)
How did you avoid the “unusualness” in the problem statement while solving
the problem? (For each problem)
On average, how many hours do you dedicate to coding or problem-solving
per week?
How often do you utilize ChatGPT or any other Large Language Model to
solve problems on a weekly basis, on average?
What other Large Language Models do you use or previously used?

F.1 Description of the thematic analysis

This approach consists of multiple stages. First,
we familiarize ourselves with the collected data.

Table 10: Distributions of the perturbation techniques
and the problems in the user study

Perturbations #Participants
Prompt (original) 18 Problems # Participants
Character (remove) 12 p1 22
Token (unicode) 13 p2 17
Tokens (remove) 7 p3 13
Sentences (rephrase) 3 p4 13
Sentences (remove) 10 p5 13
Prompt (unicode) 16 p6 12
Random (replace) 11

We manually go through 50% (15 out of 30) re-
sponses in this stage. This allows us to perform
inductive coding to identify potential codes for fur-
ther analysis. In the second stage, two authors
generated 16 initial codes based on their familiarity
with the data. These codes are data-driven and help
organize information into meaningful units. Two
authors assign codes to the participants’ responses
to the specific questions. This coding stage is done
manually. To address disagreements, the authors
facilitated a consensus-based resolution while com-
bining their coding assignments. Consensus-based
resolution is considered important in qualitative
studies to produce meaningful insights. In our case,
there were 4 disagreements between the two raters
while labeling all 30 participant’s data. After that,
one of the authors reviews the students’ responses
and corresponding conversations with ChatGPT to
get the most information and update the coding.
This step is iterative until saturation. We consider
the coding to be saturated if no new code is as-
signed to the responses. Lastly, the other author
validates the final coding to avoid potential bias.
In the third stage, after coding the data, we start
searching for themes by bringing together material
under the same codes. This involves considering
how codes may form broader themes that are orga-
nized hierarchically. In the fourth stage, we review
and refine the potential themes.
Codebook for neutralizing perturbations:

• Update the given problem statement

• Rely on ChatGPT to avoid any perturbation

• Did not notice anything “unusualness”

• Rewrite the whole solution manually as the ChatGPT-
generated solution is incorrect

• Rewrite a part of the solution manually

Themes and codes for validation:

• Inspecting the generated code

– Inspect the generated code without running
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Figure 8: Average correctness score of the ChatGPT
model checkpoints on the user study problems for the
perturbation techniques.

– Inspect the generated code by running
– Use given test cases
– Use manually created test cases
– Use ChatGPT-generated test cases
– Validate the solution using ChatGPT
– Compare to the manually written code

• Fixing the generated code

– Fix the code manually
– Fix the code using ChatGPT

• Verdict about the correctness

– Correct solution from ChatGPT
– Incorrect solution from ChatGPT

G Research Participant Agreement

G.1 Voluntary Participation

You are being asked to participate in a research
study. Your participation in this research study is
voluntary. You may choose to voluntarily discon-
tinue participation in the study at any time without
penalty, even after starting the survey. This doc-
ument contains important information about this
study and what to expect if you decide to partic-
ipate. Please consider the information carefully.
Feel free to ask questions before deciding whether
to participate.

Through this study, we will understand how well
we can solve CS1 and CS2-level programming
tasks using AI tools such as ChatGPT. The sur-
vey consists of three CS introductory assignment
problems for each student. For each problem, you
have to solve it using ChatGPT and then answer the
follow-up questions. We estimate that the whole
process will take around 45-60 minutes. You are
free to take the survey anywhere you choose. You
will be emailed the survey to complete, and you

will need to provide your email address in the sur-
vey.

By signing up you are agreeing that you took
CS1 and CS2. You will proceed with the study
once the verification of your historical enrollment
in the CS1 and CS2 courses is confirmed with the
moderator of the CS undergraduate listserv (Mar-
tin Marquez, Director of Academic and Support
Services, CS). Education records used by this re-
search project are education records as defined and
protected by the Family Educational Rights and
Privacy Act (FERPA). FERPA is a federal law that
protects the privacy of student education records.
Your consent gives the researcher permission to
access the records identified above for research
purposes.

G.2 Risks for the Participants
1. Social risk: A minor risk is the potential of

loss of confidentiality because the form asks
for your email address. Google Forms au-
tomatically collects email addresses for the
survey, so the email address will be attached
to the survey responses.

2. Economic risk: An economic risk may be
that you complete the vast majority of the
survey, but we cannot reward any cash, and
so you lose some leisure time with no cash
reward.

3. Psychological risk: A psychological risk may
be that you may get fatigued while solving the
given problems.

However, the risks here are largely minimal. The
analysis considers the survey responses as a whole
and does not investigate one specific survey re-
sponse. That said, your email address will be re-
moved before the analysis of the surveys after you
collect your reward (details below).

G.3 Incentive
You will receive a $20 Amazon e-gift card for com-
pleting the survey in full. To receive your $20
award, please contact the Anonymized author. He
will then check that you have completed the survey
in full using your email and arrange the payment.
You must collect your reward within one month of
completing the survey. For any compensation you
receive, we are required to obtain identifiable infor-
mation such as your name and address for financial
compliance purposes. However, your name will
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Figure 9: The vertical axis lists the most frequent validation strategies, while the horizontal axis represents
participants. Each cell’s value, capped at 3, indicates the number of times a specific code was applied to a
participant’s response across three problems. The color gradient ranges from bright yellow (indicating 0 occurrences)
to dark blue (indicating 3 occurrences).
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Figure 10: Number of occurrences of handling strategies
for each perturbation technique.

not be used in any report or analysis of the survey
results. Identifiable research data will be stored on
a password-secured local lab computer accessible
only to the research project members.

G.4 Confidentiality of Data

Your information may be used for future research or
shared with another researcher for future research
studies without additional consent. In addition,
your email addresses will be deleted from the re-
sponse spreadsheets, which will be stored on a
password-secured local server computer accessible
only by the research team members. The form con-
taining the list of student emails that signed up to
participate will be deleted once all surveys are com-
plete. Once the entire research project is complete
and the conference paper is published, anyone can
view the results of the survey by referring to the
conference website. The conference at which this

paper will be accepted cannot be guaranteed at this
moment.

The information that you provide in the study
will be handled confidentially. However, there may
be circumstances where this information must be
released or shared as required by law. The Insti-
tutional Review Board may review the research
records for monitoring purposes.

For questions, concerns, or complaints about the
study, you may contact the Anonymized author. By
completing the entire survey, you are allowing your
responses to be used for research purposes.

G.5 Instructions to the Participants
1. Create a free ChatGPT (3.5) account if you

don’t have any.

2. Each problem comes with a problem state-
ment (shared via email). Create a separate
chat window in ChatGPT to solve each prob-
lem.

3. After solving each problem, you have to an-
swer the corresponding survey questions.

4. You also have to give the shareable link of the
chat from ChatGPT for each problem. (Chat-
GPT Shared Links FAQ)

5. Don’t delete the chats until you receive an
email from us about the deletion step.
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https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq
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