
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4757–4769
November 12-16, 2024 ©2024 Association for Computational Linguistics

Bayesian Calibration of Win Rate Estimation with LLM Evaluators

Yicheng Gao*1 Gonghan Xu∗1 Zhe Wang1 Arman Cohan1

1Yale University
{charlie.gao, gonghan.xu, zhe.wang.zw439, arman.cohan}@yale.edu

Abstract

Recent advances in large language models
(LLMs) show the potential of using LLMs as
evaluators for assessing the quality of text gen-
erations from LLMs. However, applying LLM
evaluators naively to compare different systems
can lead to unreliable results due to the inac-
curacy and intrinsic bias of LLM evaluators.
In order to mitigate this problem, we propose
two calibration methods, Bayesian Win-Rate
Sampling (BWRS) and Bayesian Dawid-Skene,
both of which leverage Bayesian inference to
more accurately infer the true win rate of gen-
erative language models. We empirically vali-
date our methods on six datasets covering story
generation, summarization, and instruction fol-
lowing tasks. We show that both our methods
are effective in improving the accuracy of win
rate estimation using LLMs as evaluators, offer-
ing a promising direction for reliable automatic
text quality evaluation.

1 Introduction

Evaluating the quality of AI-generated text has
been a longstanding and evolving challenge in NLP.
In recent years, this challenge has become increas-
ingly crucial due to the growing interest in the field
of generative AI. While human judgment is still
considered the most reliable form of assessment,
common automatic approaches to evaluating qual-
ity of AI-generated text include heuristic-based
evaluation metrics (Papineni et al., 2002; Lin, 2004;
Pillutla et al., 2021), model-based evaluation met-
rics (Zhang et al., 2019; Fabbri et al., 2022; Zha
et al., 2023; Chen and Eger, 2023), and recently,
LLM-based evaluations (Kim et al., 2024a,b; Wang
et al., 2024). Due to their low cost and high corre-
lation with human preferences, LLM-based eval-
uations are receiving an increasing amount of at-
tention. Most previous studies that apply LLM
evaluators (Chiang and Lee, 2023a,b; Dubois et al.,

*Equal contribution

2024; Kim et al., 2024a,b; Wang et al., 2024) at-
tempt to improve the agreement between LLM
evaluators and human preference by training ex-
pert models for evaluation or improving prompting
strategies. However, such methods often either re-
quire compute-expensive finetuning, or suffer from
common problems of LLM evaluators such as posi-
tion bias (Wang et al., 2023b), self-preference, and
more (Koo et al., 2023). Besides, as we will dis-
cuss in Section 3.2, directly applying a non-perfect
LLM evaluator will result in a bias problem in the
estimation of win rate.

In this paper, we attempt to address these chal-
lenges by proposing two methods, BWRS and
Bayesian Dawid-Skene. Our methods leverage
Bayesian inference to infer the true win rate of
one text generator against another using evaluation
results of LLM evaluators and incorporating op-
tional prior knowledge about human preferences.
By employing these methodologies, we observe a
closer alignment between LLM-generated evalua-
tions and human judgment. 1

The contribution of this paper is threefold:

• We identify the bias problem in win rate esti-
mation with LLM evaluators.

• We conduct exploratory study on mitigating
this bias with Bayesian inference. Specifically,
we propose BWRS and Bayesian Dawid-
Skene, both of which are shown effective in
calibrating win rate estimation given LLM
evaluation results, and optionally, some hu-
man evaluation results.

• We publish our LLM evaluation annotations
to facilitate future study in LLM-based evalu-
ation.

1The code and data used in our experiments
are available at https://github.com/yale-nlp/
bay-calibration-llm-evaluators under Apache 2.0
license.

4757

https://github.com/yale-nlp/bay-calibration-llm-evaluators
https://github.com/yale-nlp/bay-calibration-llm-evaluators

2 Related work

LLM as evaluators A line of research in LLM-
based evaluation evaluated the performance of
LLM evaluators and proposed methods to improve
them. Some works applied various prompting tech-
niques to improve the accuracy of LLM evaluation,
including chain of thought (Liu et al., 2023a), eval-
uation with explanation (Chiang and Lee, 2023b),
multi-LLM discussion (Chan et al., 2023; Li et al.,
2023), and calibration with human expert (Liu et al.,
2023b). Some other works (Wang et al., 2024; Kim
et al., 2024a,b) trained expert models in evaluation.
As for evaluating the general capability of LLM
evaluators, most previous studies (Liu et al., 2023a;
Chiang and Lee, 2023a,b; Dubois et al., 2024) used
correlation coefficients such as Pearson’s correla-
tion or Kendall’s tau to measure the preference of
different LLM evaluators compared with human
evaluators.

On the application side, LLM evaluators are of-
ten applied to build LLM rankings. (Dubois et al.,
2024) proposed a simple LLM evaluation frame-
work by looking at the win rate decided by GPT-4
evaluators on a large number of texts generated
by the two generators under the same generation
prompts. Auto-Arena(Zhao et al., 2024) used LLM
judge agents to determine the winner of each LLM
pair. However, as we’ll discuss in Section 3.2, these
methods can lead to biased win rate estimations,
especially when the LLM evaluators do not align
well enough with human preferences.

Annotation models In the field of crowdsourced
annotations, a line of research focuses on simultane-
ously modeling the accuracy of individual annota-
tors and determining the true labels of tasks. These
works mostly target aggregating crowdsourced data
and improving data quality in case of non-expert or
adversarial annotators. Dawid-Skene (Dawid and
Skene, 1979) is the first model proposed to consider
individual annotator error rates by using maximum
likelihood estimation to infer true labels from anno-
tators with different accuracies. Since then, many
other models (Albert and Dodd, 2004; Carpenter,
2008; Whitehill et al., 2009; Kim and Ghahramani,
2012; Hovy et al., 2013; Passonneau and Carpenter,
2014; Zhang et al., 2016) were developed to im-
prove performance and efficiency. These methods
were originally proposed to model the accuracy of
human annotators, in our paper we instead apply
them to model LLM evaluators.

3 Methods

In this section, we first formalize the problem of
applying LLMs as evaluators. We then point out
the bias problem associated with directly apply-
ing LLM evaluator results, and then propose our
methods to address this problem.

3.1 Problem formalization
3.1.1 True win rate and observed win rate
Consider two LLMs as text generators (LLM gen-
erators) G0 and G1. Let Σ be the set of all possible
inputs to the text generators, and let Ω be the set
of all possible outputs given the inputs from Σ.
We can then define the LLMs as two functions
G0 : Σ → Ω and G1 : Σ → Ω. Additionally, let
PΣ be a probability distribution on Σ that denotes
the possibility of each input to appear, let σ ∼ PΣ

be a random input.
Let H : Ω×Ω → {0, 1} be the average human

evaluator function, which assesses the relative
quality of two outputs. H(y0, y1) = 0 indicates
that the output y0 is preferred over y1 by an aver-
age human expert, and H(y0, y1) = 1 indicates the
opposite. Let Te : Ω × Ω → {0, 1} be the LLM
evaluator function, which represents the prefer-
ence of a certain LLM evaluator e. Let P be a
probability measure that encapsulates the stochas-
tic nature of σ, G1, G2, H , and Te.

Given the notations above, we define the follow-
ing variables:

Definition 1 (True win rate). The true win rate p
is defined as:

p ≜ P (H(G0(σ), G1(σ)) = 0) (1)

Definition 2 (Observed win rate). The observed
win rate k of an LLM evaluator e is defined as:

ke ≜ P (Te(G0(σ), G1(σ)) = 0) (2)

Intuitively, the true win rate p is the probability
that G0 will generate a “truly better” output than
G1 when they are given the same, arbitrary input,
where “truly better” means being regarded as “bet-
ter” by a human expert on average. Similarly, the
observed win rate k is the probability that G0 will
be evaluated by an LLM evaluator as generating
a better output than G1 when they are given the
same, arbitrary input.

Due to the complexity of the stochasticity in p
and ke, it is unrealistic to derive them analytically.
However, given a large number of input-output

4758

pairs evaluated by human and LLM evaluators, we
can approximate p and ke empirically. We formal-
ize it as follows.

Assume n is a large number. Then for n out-
puts y(0)i (i ∈ [n]) generated by G0 and n outputs
y
(1)
i (i ∈ [n]) generated by G1 given the same n

inputs of interest, we let a human evaluator h and
the LLM evaluator e of interest carry out n com-
parison tasks, where the i-th comparison task is
between y

(0)
i and y

(1)
i . Then the true win rate p

and the observed win rate ke can be empirically
approximated with

p̂ =
1

n

n∑

i=1

[
1−Hh(y

(0)
i , y

(1)
i)

]
(3)

k̂e =
1

n

n∑

i=1

[
1− Te(y

(0)
i , y

(1)
i)

]
(4)

where Hh : Ω×Ω → {0, 1} is the human evaluator
function of a specific human evaluator h (or an
aggregation of multiple human evaluators). Note
that in our experiments, in order to make sure that
p̂ is an accurate estimator of p, we assume that
the preference of h is representative of an average
human expert evaluator.

3.1.2 Evaluator accuracy
We also define two variables qe0 (true positive eval-
uation accuracy) and qe1 (true negative evalua-
tion accuracy) associated with an LLM evaluator
e2. Given two arbitrary outputs generated under
the same arbitrary input where the first output is
evaluated as “better” than the second one by an av-
erage human expert, qe0 is defined as the conditional
probability that e will give the same evaluation as
an average human expert. In other words, we have

qe0 ≜ P (Te(G0(σ), G1(σ)) = 0 |
H(G0(σ), G1(σ)) = 0) (5)

where the random element σ ∈ Σ and probabil-
ity measure P follow the same notions as in the
definitions of p and k. Similarly, we have

qe1 ≜ P (Te(G0(σ), G1(σ)) = 1 |
H(G0(σ), G1(σ)) = 1) (6)

Empirically, we can approximate qe0 and qe1 with

2For simplicity, we will use “evaluator accuracies” when
we refer to qe0 and qe1 together.

q̂e0 =

n∑
i=1

1

[
Te(y

(0)
i , y

(1)
i) = Hh(y

(0)
i , y

(1)
i) = 0

]

∑n
i=1 1(Hh(y

(0)
i , y

(1)
i) = 0)

(7)
where 1(·) is the indicator function. Similarly, we
have

q̂e1 =

n∑
i=1

1

[
Te(y

(0)
i , y

(1)
i) = Hh(y

(0)
i , y

(1)
i) = 1

]

∑n
i=1 1(Hh(y

(0)
i , y

(1)
i) = 1)

(8)

3.1.3 Win rate estimation
As we discussed in Section 2, the true win rate p
can be used as a metric to compare various genera-
tive LLMs. Specifically, for two generative LLMs
G0 and G1, G0 outperforms G1 when p > 0.5.
Conversely, G1 outperforms G0 when p < 0.5.
Furthermore, the absolute value of p signifies the
degree of superiority of one LLM to another. Given
a list of LLMs Γ = [Ga, Gb, ...] of interest and a
certain baseline generative LLM G, we can use the
p values of G with respect to each generator in Γ
to compare the LLMs in Γ (1 vs. n comparison).
Therefore, it is a meaningful question to derive an
accurate estimation of p. This is the essential goal
of this paper.

3.2 Estimation by observed win rate
A simple approach employed by prior work
(Dubois et al., 2024) to approximate p is to directly
apply the observed win rate ke. Here we show that
this approach suffers from a bias problem when the
evaluator accuracies are not high enough.

By the Law of Total Probability we have

ke =P (Te(G0(σ), G1(σ)) = 0)

=P (H(G0(σ), G1(σ)) = 0) · qe0+
P (H(G0(σ), G1(σ)) = 1) · (1− qe1)

=pqe0 + (1− p)(1− qe1) (9)

Therefore, ke has the following value of bias:

|ke − p| =|pqe0 + (1− p)(1− qe1)− p|
=|pqe0 + pqe1 − 2p− qe1 + 1| (10)

We can see that ke = p if (though not only if)
qe0 = qe1 = 1, which is typically not the case for any
non-perfect LLM evaluator. In order to fix this bias
problem, we propose the following two methods to
improve the accuracy in the estimation of p.

4759

Figure 1: Illustration of our pipeline and previous work. The “calibration” part of our pipeline indicates one of
BWRS or Bayesian Dawid-Skene.

3.3 Bayesian Win Rate Sampling
First, we propose a sampling-based algorithm,
Bayesian Win Rate Sampling (BWRS), which is
shown in Algorithm 1. The intuition of the BWRS
algorithm is that, given an LLM evaluator e and
a dataset D = {(y(0)i , y

(1)
i), i ∈ [n]} containing

outputs generated by G0 and G1 with respect to
the same set of inputs, we first apply e to generate
its annotations {Te(y

(0)
i , y

(1)
i), i ∈ [n]} on D, and

apply Equation 4 to approximate ke. Next, assume
we have access to some human annotations, either
on a small fraction of D or on a similar dataset F ,
then we are able to approximate qe0 and qe1 using
Equation 7 and 8. Finally, we apply the following
equation rearranged from Equation 9:

p =
ke + qe1 − 1

qe0 + qe1 − 1
(11)

given the assumption that qe0 + qe1 ̸= 1. 3 We
can use the approximated values of ke, qe0, and qe1
to infer one sample of p, which characterizes the
relative performance between G0 and G1.

Note that there is still one key difference between
the intuition above and our actual implementation
described in Algorithm 1. In our implementation,
instead of estimating ke, q

e
0, q

e
1 directly using Equa-

tions 4, 7, 8, we use Bayesian inference and apply
Beta-Bernoulli models to estimate the posterior
distributions for ke, qe0, and qe1. We then obtain
N (10000 in our case) samples of p from these

3In practice, though this assumption is satisfied under most
cases, some values of evaluator accuracies might cause sam-
pling failure. Please refer to Limitations for details.

distributions using Equation 11 and apply Kernel
Density Estimation (KDE) on all the p samples to
approximate the distribution of p, and estimate the
value of p using the mean p̂mean or mode p̂mode

of this distribution. The purpose of applying a
Bayesian setting is to incorporate the uncertainty
of ke, qe0, q

e
1 into consideration, and also facilitate

the usage of prior knowledge on evaluator accura-
cies, which will be discussed in Section 4.3.

3.4 Bayesian Dawid-Skene model

The vanilla Dawid-Skene model (Dawid and
Skene, 1979) is optimized with the Expectation-
Maximization (EM) algorithm. Following (Paun
et al., 2018), we instead use a Bayesian Dawid-
Skene model with E evaluators. The pseudocode
of our model is shown in Model 1. The parameters
in this model include αp, βp, αq0 , βq0 , αq1 , andβq1 .
We initialize the distribution of p with a uniform
distribution, and thus αp, βp are initialized as 1.
The initialization of the other parameters will be
discussed in Section 4.3. We apply the evaluation
results of LLM evaluator e as observations tei , and
use Hamiltonian Monte Carlo (HMC) sampling to
fit the model and sample from the posterior distri-
bution of p. Similar to BWRS, we use the posterior
mean (p̂mean) and posterior mode (p̂mode) as two
estimators of p. In order to improve sampling effi-
ciency, we employ NUTS sampler (Hoffman and
Gelman, 2011) and the Binary Gibbs-Metropolis
sampler implemented in PyMC (Oriol et al., 2023).
We tune and sample from the model with 4 chains,
with 10000 tuning steps and 10000 sampling steps

4760

Algorithm 1 Bayesian Win Rate Sampling (BWRS) algorithm

1: Input: Dataset without human annotation: D = {(y(0)
i , y

(1)
i), i ∈ [n]}; similar dataset with human annotation (e.g.

the OOD set): F = {(z(0)i , z
(1)
i), i ∈ [m]}; annotation by LLM evaluator e on D: De = {Te(y

(0)
i , y

(1)
i), i ∈ [n]};

annotation by LLM evaluator e on F : Fe = {Te(z
(0)
i , z

(1)
i), i ∈ [m]}; annotation by human evaluator h on F : Fh =

{Hh(z
(0)
i , z

(1)
i), i ∈ [m]}; Number of samples drawn for Bayesian inference: N

2: Output: An estimation of the true win rate p
3: ▷ Total number of data points on F with either human evaluation result (0 or 1)
4: n0 = |{(z(0)i , z

(1)
i) ∈ F : Hh(z

(0)
i , z

(1)
i) = 0}|

5: n1 = |{(z(0)i , z
(1)
i) ∈ F : Hh(z

(0)
i , z

(1)
i) = 1}|

6: ▷ Number of correct judgements by e on F

7: s0 = |{(z(0)i , z
(1)
i) ∈ F : Hh(z

(0)
i , z

(1)
i) = Te(z

(0)
i , z

(1)
i) = 0}|

8: s1 = |{(z(0)i , z
(1)
i) ∈ F : Hh(z

(0)
i , z

(1)
i) = Te(z

(0)
i , z

(1)
i) = 1}|

9: nk = |D|
10: sk = |{(y(0)

i , y
(1)
i) ∈ D : Te(y

(0)
i , y

(1)
i) = 0}|

11: for i = 1, 2, ..., N do
12: ▷ Estimated evaluator accuracies
13: Draw qe0 ∼ Beta(s0 + 1, n0 − s0 + 1)
14: Draw qe1 ∼ Beta(s1 + 1, n1 − s1 + 1)
15: ▷ Observed win rate
16: Draw ke ∼ Beta(sk + 1, nk − sk + 1)

17: Derive the i-th sample pi =
ke+qe1−1

qe0+qe1−1
, append to sample list

18: end for
19: return mean (p̂mean) or mode (p̂mode) of KDE({p1, p2, ..., pN})

Model 1 Bayesian Dawid-Skene model for two-
class problems

1: ▷ Prior class prevalence
2: Draw p ∼ Beta(αp, βp)
3: for e = 1 to E do
4: ▷ Evaluator accuracies
5: Draw qe0 ∼ Beta(αq0 , βq0)
6: Draw qe1 ∼ Beta(αq1 , βq1)
7: end for
8: for i = 1 to n do
9: ▷ Ground truth labels

10: Draw hi ∼ Bernoulli(p)
11: for e = 1 to E do
12: ▷ Predicted labels
13: if hi = 1 then
14: Draw tei ∼ Bernoulli(qe1)
15: else
16: Draw tei ∼ Bernoulli(1− qe0)
17: end if
18: end for
19: end for

on each chain. On an AMD EPYC 7763 proces-
sor, comparing each generator pair takes around 10
minutes.

4 Experiment Settings

4.1 Datasets

The datasets we use in the experiments are HANNA
(Chhun et al., 2022), OpenMEVA-MANS (Guan
et al., 2021), SummEval (Fabbri et al., 2021),
LLMBar (Zeng et al., 2024), MT-Bench (Zheng
et al., 2023), and LLMEval2 (Zhang et al., 2023),
covering tasks of story generation (HANNA,

OpenMEVA-MANS), summarization (SummEval),
and instruction following (the other three). All of
them provide machine-generated content with hu-
man annotations. For MT-Bench and LLMEval2,
we used the smaller, curated versions prepared
by the authors of the LLMBar paper (Zeng et al.,
2024). For the three instruction following datasets,
since they are presented as a list of (input, output1,
output2, human preference) tuples without speci-
fying or fixing the output generators, we simulate
two generators based on these datasets by randomly
attributing 80% of the human-preferred outputs to
the first (simulative) generator and rest 20% to the
second such that the true win rate between them is
80%. The choice of the 80%-20% ratio is arbitrary.

A detailed description about each dataset can be
found in Appendix A.

4.2 Evaluator settings

For HANNA, OpenMEVA-MANS, and SummEval,
we prompt a set of LLM evaluators to compare
the outputs of generator models in the datasets.
Specifically, we employ GPT-3.5-turbo-0125 (Ope-
nAI, 2023) and Gemini-1.0-Pro (Team, 2024) as
the evaluator models for our experiments. GPT-3.5
has been proved to have positive correlation with
human annotations (Chiang and Lee, 2023a; Wang
et al., 2023a), while Gemini-1.0-Pro’s performance
on meta-evaluation have not yet been widely stud-
ied in previous works. For each output pair, we

4761

prompted each LLM evaluator to rate the two out-
puts that are based on the same input and generated
by two different generator models. For each LLM
evaluator, we used three prompting strategies in-
cluding Score-only, Rate-explain, and Analyze-rate
following (Chiang and Lee, 2023b). For LLMBar,
MT-Bench, LLMEval2, the LLM evaluation work
has already been carried out in (Zeng et al., 2024).
For these three datasets, we selected the best LLM
evaluators among the many ones used, including
evaluators based on GPT-4, PaLM 2, etc. for our
experiments. More details regarding the specific
LLM evaluator modes used for each dataset can be
found in Appendix B.

4.3 Win rate estimation

After obtaining the human evaluation and LLM
evaluation data, we apply BWRS (Section 3.3) and
Bayesian Dawid-Skene model (Section 3.4) to each
dataset described above. Additionally, we calcu-
late the observed win rate (k) using Equation 4
averaged over the results of all LLM evaluators
combined. The error of estimating p with the ob-
served win rate, i.e. |k − p|, acts as a baseline
that shows the aggregated performance of the LLM
evaluators applied without any calibration.

In order to further study the effectiveness of each
estimation method, we also explore their perfor-
mance given the following three different sources
of human evaluation results. For simplicity, we
refer to these human evaluation results as priors,
since they act as prior knowledge of human prefer-
ences in our methods.

No prior4. We assume no prior knowledge of
q, and only depend on the Dawid-Skene model to
estimate the accuracy of each evaluator. In this case,
we initialize the parameters of evaluator accuracies
in Model 1 with αq0 = αq1 = 2, βq0 = βq1 = 1,
which is a beta distribution skewed towards higher
q0 and q1 values, because we expect our evaluators
to generally perform better than random guessing
such that q0 > 0.5 and q1 > 0.5.

In-distribution prior. We assume that we have
access to human evaluations on a subset of all out-
put pairs generated by the two generators of interest.
In BWRS, these human evaluation results are used
as Fh in Algorithm 1 to obtain an estimate of each
LLM evaluator’s accuracies q0, q1. In the Bayesian
Dawid-Skene model, they are instead used as ob-

4The no prior setting is not applicable for BWRS, since
BWRS requires informative priors of evaluator accuracies to
be accurate.

servations (hi in Model 1), while αq0 , βq0 , αq1 , and
βq1 are initialized in the same way as in the no prior
setting. We refer to the ratio of human-evaluated
output pairs over the entire dataset as prior data ra-
tio. In our experiments, we try 10 different values
of prior data ratio (0.1, 0.2, ..., 1.0) and compare
the results.

Out-of-distribution (OOD) prior. We assume
that we have access to human evaluations on some
other datasets beyond comparing the two genera-
tors of interest. These human evaluation results
are also used to calculate priors for q0 and q1. In
our experiments, we use the generator pair in the
dataset that has the closest observed win rate with
the compared generators. For BWRS, these pri-
ors are used as Fe and Fh in Algorithm 1. For
the Bayesian Dawid-Skene model, with the in-
distribution prior setting, the priors are used as
observations of ground truth labels hi in Model 1.
For the OOD prior setting, they are instead used to
derive a prior distribution of the evaluator accura-
cies so that the model won’t be affected as much
by the distribution shift of evaluator accuracies on
different generator models. Specifically, we use a
Beta-Bernoulli model similar to the ones we used
in BWRS. The only difference is that we normal-
ize the Beta parameters to have a mean value of
1 in order to prevent over-confident priors. Con-
cretely, we initialize the distributions of qe0 and qe1
in Model 1 for each evaluator e as follows:

n0 =|{(z(0)i , z
(1)
i) ∈ OOD : Hh(z

(0)
i , z

(1)
i) = 0}|

n1 =|{(z(0)i , z
(1)
i) ∈ OOD : Hh(z

(0)
i , z

(1)
i) = 1}|

s0 = |{(z(0)i , z
(1)
i) ∈ OOD :

Hh(z
(0)
i , z

(1)
i) = Te(z

(0)
i , z

(1)
i) = 0}|

s1 = |{(z(0)i , z
(1)
i) ∈ OOD :

Hh(z
(0)
i , z

(1)
i) = Te(z

(0)
i , z

(1)
i) = 1}|

qe0 ∼Beta(
2s0 + 2

n0 + 2
,
2n0 − 2s0 + 2

n0 + 2
) (12)

qe1 ∼Beta(
2s1 + 2

n1 + 2
,
2n1 − 2s1 + 2

n1 + 2
) (13)

where OOD is the OOD set (dataset F) we use,
the term n0 + 2 and n1 + 2 on the denominator of
Equation 12 and 13 are both normalization terms
as described above.

4762

Evaluator model Prompt template q0 q1 |q0 − q1| Overall Accuracy

Gemini-1.0-Pro Score-only 0.782 0.526 0.256 0.649
Analyze-rate 0.802 0.428 0.374 0.607
Rate-explain 0.760 0.512 0.248 0.631

GPT-3.5 Score-only 0.700 0.653 0.047 0.676
Analyze-rate 0.657 0.677 0.020 0.667
Rate-explain 0.699 0.655 0.044 0.676

Table 1: Overall average evaluator accuracies across all pair-wise comparisons across all of HANNA, OpenMEVA-
MANS, and SummEval. Best performance on each column is marked with bold font.

Dataset Method Prior setting |p̂mean − p| |p̂mode − p|
HANNA Observed win rate (baseline) / 0.079 0.079

Bayesian Dawid-Skene No prior 0.129 0.132
Bayesian Dawid-Skene OOD prior 0.084 0.081

BWRS OOD prior 0.129 0.095

OpenMEVA-MANS Observed win rate (baseline) / 0.065 0.065
Bayesian Dawid-Skene No prior 0.065 0.065
Bayesian Dawid-Skene OOD prior 0.034 0.033

BWRS OOD prior 0.064 0.102

SummEval Observed win rate (baseline) / 0.167 0.167
Bayesian Dawid-Skene No prior 0.125 0.123
Bayesian Dawid-Skene OOD prior 0.115 0.110

BWRS OOD prior 0.112 0.112

Table 2: Results of win rate estimation with no prior on HANNA, OpenMEVA-MANS, and SummEval. All results
are averaged over ten repetitive runs over all six evaluator modes given in Table 1. The best estimator for each
dataset is marked with bold font.

5 Results

In this section, we first analyze the evaluator accu-
racies on our datasets, and then list the results of
our experiments, including win rate estimation with
no prior, OOD prior, and in-distribution prior. We
show that both our methods are able to effectively
calibrate the estimation of win rate given good es-
timations of evaluator accuracies. We also show
that even with no or OOD knowledge of human
preference, our methods are still able to perform
well overall.

5.1 Evaluator accuracies
For the three non-instruction following datasets
(HANNA, OpenMEVA-MANS, SummEval) on
which we carry out LLM evaluation by ourselves,
the average accuracies of LLM evaluators are
shown in Table 1. The overall accuracy is de-
fined as the proportion of all pair-wise comparisons
where the LLM evaluation aligns with human eval-
uation. For “all pairwise comparisons,” we actually
mean the “1 vs. n” comparisons where the GPT-
2 text generator is compared to all the other text
generators in the dataset. We employ this “1 vs.
n” comparison strategy because the corresponding
“n vs. n” strategy is much more costly in terms of

computation time and budget. We can see that:

• In terms of overall accuracy, there is not a
significant difference (>5%) between the three
prompt templates.

• There is a significant difference between q0
and q1 even though we applied the swap-and-
sum strategy (see Appendix A). This can be
attributed to the correlation between evalua-
tor accuracy and the difference between the
generators’ capabilities. When one generator
is significantly better than the other, it is eas-
ier for the LLM evaluator to identify cases
where the better generator does better, and
harder when the better generator does worse.
Also, Gemini-1.0-Pro evaluators suffer from
this problem more significantly than GPT-3.5
evaluators. This shows the necessity of mod-
eling q0 and q1 separately for each evaluator
when comparing two generators.

For the instruction following datasets (LLMBar,
LLMEval2, MT-Bench), the overall evaluator accu-
racies are given in the LLMBar paper (Zeng et al.,
2024), where the overall evaluation accuracies are
generally above 70% for the evaluator modes we
use.

4763

Dataset Method Prior setting |p̂mean − p| |p̂mode − p|
LLMBar Observed win rate (baseline) / 0.142 0.142

Bayesian Dawid-Skene No prior 0.140 0.138

LLMEval2 Observed win rate (baseline) / 0.178 0.178
Bayesian Dawid-Skene No prior 0.157 0.156

MT-Bench Observed win rate (baseline) / 0.162 0.162
Bayesian Dawid-Skene No prior 0.190 0.188

Table 3: Results of win rate estimation with no prior on the three instruction following datasets. All results are
averaged over ten repetitive runs over all evaluator modes. The variance of all runs are insignificant (< 10−2). The
best estimator for each dataset is marked with bold font.

(a) Bayesian Dawid-Skene (b) BWRS

Figure 2: Win rate estimation error with various proportions of the original data used for in-distribution prior
measurement. The results are averaged over all generator pairs over all evaluator modes. The mean and variance of
all results are calculated over ten repetitive runs. The variance of k values in the three instruction following datasets
are results of randomly assigning outputs to two simulative generators, as described in Section 4.1

5.2 Win rate estimation results

The results of win rate estimation with no prior and
OOD prior on HANNA, OpenMEVA-MANS, and
SummEval are shown in Table 2. We can observe
that:

• The mode estimator in Bayesian Dawid-Skene
with OOD prior is the overall best estimator.
In this setting, estimation of p is more accu-
rate than baseline (k) in all datasets except
HANNA.

• The Bayesian Dawid-Skene model with OOD
prior is more accurate than the model with
no prior. This shows that the OOD prior is
able to provide some useful information on
the accuracy of each evaluator, which helps
the Bayesian model converge to a better result.

The results of win rate estimation with no prior
on LLMBar, LLMEval2, and MT-Bench are shown
in Table 3. Note that OOD prior is not applicable
for these instruction following datasets due to the
absence of relevant data to act as the OOD set. We

can see that the mode estimator in Bayesian Dawid-
Skene with no prior outperforms the baseline in all
datasets except MT-Bench.

The results of BWRS and Bayesian Dawid-
Skene with in-distribution prior are shown in Figure
2. We can observe the following:

• As prior data ratio increases, win rate estima-
tion accuracy of both BWRS and Bayesian
Dawid-Skene improves. This enhancement
arises because having more human annota-
tions for in-distribution data allows for a more
precise assessment of evaluator accuracies and
consequently leads to a more accurate estima-
tion of the true win rate p. This shows that
our methods will indeed offer a more accurate
estimation of the true win rate p if we have
good estimations of q0 and q1.

• The mode estimator shows consistently better
performance compared with the mean estima-
tor and k.

• The proportion of human evaluation data
needed to ensure improvement of the true win

4764

rate estimation varies for each dataset due to
the internal variance of evaluator accuracies.
Generally, a prior data ratio of 30% would
be sufficient for both Bayesian Dawid-Skene
and BWRS, with one exception (BWRS for
OpenMEVA-MANS).

6 Conclusion

In this paper, we identified the bias problem in
win rate estimation using non-perfect LLM eval-
uators, and proposed two methods, BWRS and
Bayesian Dawid-Skene, in order to address this
issue. We then obtained LLM evaluation results
on six datasets, and used these results to exam-
ine the effectiveness of our methods empirically.
Our results show that both BWRS and Bayesian
Dawid-Skene can effectively reduce the error in
win rate estimation, especially given good approxi-
mations on evaluator accuracies. We also showed
that even without in-distribution prior knowledge
of human preferences, our methods are still able
to effectively calibrate the estimation of win rate
under most cases. The effectiveness of our methods
manifests the possibility to calibrate the estimation
of win rate in a post-hoc manner after LLM eval-
uations are completed, and also enlightens future
study on applying annotation models for accurate
win rate estimation using LLM evaluators.

Limitations

There are some limitations of our work. First, due
to budget limit, for the non-instruction following
datasets, we only examined our methods with GPT-
3.5 and Gemini-1.0-Pro as LLM evaluators. Al-
though we did incorporate more advanced LLM
evaluators such as GPT-4 and PaLM 2 on the in-
struction following datasets, it would be illumi-
nating to examine how more advanced evaluator
models would affect our methods’ performance on
the non-instruction following datasets.

Second, the performance of both methods with
OOD prior largely depends on the quality of OOD
data. Specifically, when there is a large difference
between evaluator accuracies on the OOD set and
on the original dataset, our methods may produce
highly-biased results. Therefore, in cases where
human evaluation results on datasets with similar
observed win-rates are absent, we would recom-
mend against using OOD prior.

This paper is an exploratory study on adjusting
bias of LLM evaluators. Besides resolving the

limitations above, the exploration in this field could
also be extended in the following aspects:

• Applying more complex annotator models.
As discussed in Section 2, the Dawid-Skene
model is the earliest annotator model pro-
posed, and several improvements have been
proposed since then. These improved methods
can lead to potentially more accurate estima-
tions of win rate.

• Introducing more robust methods. The perfor-
mance of our proposed methods is contingent
upon the accuracy of LLM evaluators. Con-
cretely, from Equation 11 we know that

0 < p < 1 ⇔
{
1− qe1 < ke < qe0, qe0 + qe1 > 1

qe0 < ke < 1− qe1, qe0 + qe1 < 1

(14)

We can see that, in order to make sure p ∈
[0, 1], the evaluator accuracies qe0 and qe1 must
satisfy one of the conditions in Equation 14.
In cases where neither condition is satisfied,
our methods can become unstable, and is
prone to produce p distributions with high
bias and/or variance. We leave it for future
research to propose methods that work well
for LLM evaluators with low or unstable ac-
curacies.

References
Paul S Albert and Lori E Dodd. 2004. A cautionary note

on the robustness of latent class models for estimating
diagnostic error without a gold standard. Biometrics,
60(2):427–435.

Bob Carpenter. 2008. Multilevel bayesian models of
categorical data annotation. Unpublished manuscript,
17(122):45–50.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2023. Chateval: Towards better llm-based evaluators
through multi-agent debate.

Yanran Chen and Steffen Eger. 2023. Menli: Robust
evaluation metrics from natural language inference.

Cyril Chhun, Pierre Colombo, Fabian M. Suchanek,
and Chloé Clavel. 2022. Of human criteria and au-
tomatic metrics: A benchmark of the evaluation of
story generation. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 5794–5836, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

4765

http://arxiv.org/abs/2308.07201
http://arxiv.org/abs/2308.07201
http://arxiv.org/abs/2208.07316
http://arxiv.org/abs/2208.07316
https://aclanthology.org/2022.coling-1.509
https://aclanthology.org/2022.coling-1.509
https://aclanthology.org/2022.coling-1.509

Cheng-Han Chiang and Hung-yi Lee. 2023a. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631, Toronto,
Canada. Association for Computational Linguistics.

Cheng-Han Chiang and Hung-yi Lee. 2023b. A closer
look into using large language models for automatic
evaluation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 8928–
8942, Singapore. Association for Computational Lin-
guistics.

Alexander Philip Dawid and Allan M Skene. 1979.
Maximum likelihood estimation of observer error-
rates using the em algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics),
28(1):20–28.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2024. Alpaca-
farm: A simulation framework for methods that learn
from human feedback.

Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
Caiming Xiong. 2022. QAFactEval: Improved QA-
based factual consistency evaluation for summariza-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 2587–2601, Seattle, United States. Asso-
ciation for Computational Linguistics.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating Summariza-
tion Evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Jian Guan, Zhexin Zhang, Zhuoer Feng, Zitao Liu, Wen-
biao Ding, Xiaoxi Mao, Changjie Fan, and Minlie
Huang. 2021. OpenMEVA: A benchmark for evaluat-
ing open-ended story generation metrics. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6394–6407, Online.
Association for Computational Linguistics.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, page 1693–1701, Cam-
bridge, MA, USA. MIT Press.

Matthew D. Hoffman and Andrew Gelman. 2011. The
no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1120–1130, Atlanta, Georgia.
Association for Computational Linguistics.

Hyun-Chul Kim and Zoubin Ghahramani. 2012.
Bayesian classifier combination. In Proceedings of
the Fifteenth International Conference on Artificial
Intelligence and Statistics, volume 22 of Proceedings
of Machine Learning Research, pages 619–627, La
Palma, Canary Islands. PMLR.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, and
Minjoon Seo. 2024a. Prometheus: Inducing fine-
grained evaluation capability in language models.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024b. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park,
Zae Myung Kim, and Dongyeop Kang. 2023. Bench-
marking cognitive biases in large language models as
evaluators.

Ruosen Li, Teerth Patel, and Xinya Du. 2023. Prd: Peer
rank and discussion improve large language model
based evaluations.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023a. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, and Qi Zhang. 2023b. Calibrating llm-
based evaluator.

OpenAI. 2023. Chatgpt. Large language model.

Abril-Pla Oriol, Andreani Virgile, Carroll Colin, Dong
Larry, Fonnesbeck Christopher J., Kochurov Maxim,
Kumar Ravin, Lao Jupeng, Luhmann Christian C.,
Martin Osvaldo A., Osthege Michael, Vieira Ricardo,
Wiecki Thomas, and Zinkov Robert. 2023. Pymc:

4766

https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.findings-emnlp.599
https://doi.org/10.18653/v1/2023.findings-emnlp.599
https://doi.org/10.18653/v1/2023.findings-emnlp.599
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.18653/v1/2022.naacl-main.187
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2021.acl-long.500
https://doi.org/10.18653/v1/2021.acl-long.500
http://arxiv.org/abs/1111.4246
http://arxiv.org/abs/1111.4246
http://arxiv.org/abs/1111.4246
https://aclanthology.org/N13-1132
https://aclanthology.org/N13-1132
https://proceedings.mlr.press/v22/kim12.html
http://arxiv.org/abs/2310.08491
http://arxiv.org/abs/2310.08491
http://arxiv.org/abs/2405.01535
http://arxiv.org/abs/2405.01535
http://arxiv.org/abs/2405.01535
http://arxiv.org/abs/2309.17012
http://arxiv.org/abs/2309.17012
http://arxiv.org/abs/2309.17012
http://arxiv.org/abs/2307.02762
http://arxiv.org/abs/2307.02762
http://arxiv.org/abs/2307.02762
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
http://arxiv.org/abs/2309.13308
http://arxiv.org/abs/2309.13308
https://chat.openai.com/chat
https://doi.org/10.7717/peerj-cs.1516

A modern and comprehensive probabilistic program-
ming framework in python. PeerJ Computer Science,
9:e1516.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

Rebecca J. Passonneau and Bob Carpenter. 2014. The
benefits of a model of annotation. Transactions of
the Association for Computational Linguistics, 2:311–
326.

Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk
Hovy, Udo Kruschwitz, and Massimo Poesio. 2018.
Comparing Bayesian models of annotation. Transac-
tions of the Association for Computational Linguis-
tics, 6:571–585.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816–4828. Cur-
ran Associates, Inc.

Gemini Team. 2024. Gemini: A family of highly capa-
ble multimodal models.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu,
and Jie Zhou. 2023a. Is ChatGPT a good NLG evalu-
ator? a preliminary study. In Proceedings of the 4th
New Frontiers in Summarization Workshop, pages
1–11, Singapore. Association for Computational Lin-
guistics.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023b. Large language models are not
fair evaluators.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang,
Cunxiang Wang, Hao Chen, Chaoya Jiang, Rui Xie,
Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and
Yue Zhang. 2024. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier
Movellan, and Paul Ruvolo. 2009. Whose vote
should count more: Optimal integration of labels
from labelers of unknown expertise. In Advances in
Neural Information Processing Systems, volume 22.
Curran Associates, Inc.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. AlignScore: Evaluating factual consistency
with a unified alignment function. In Proceedings

of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11328–11348, Toronto, Canada. Association
for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with bert. ArXiv,
abs/1904.09675.

Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv,
Tingwen Liu, Fei Huang, Hongbo Xu, and Yongbin
Li. 2023. Wider and deeper llm networks are fairer
llm evaluators.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I
Jordan. 2016. Spectral methods meet em: A provably
optimal algorithm for crowdsourcing. Journal of
Machine Learning Research, 17(102):1–44.

Ruochen Zhao, Wenxuan Zhang, Yew Ken Chia, Deli
Zhao, and Lidong Bing. 2024. Auto arena of llms:
Automating llm evaluations with agent peer-battles
and committee discussions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

A Dataset details

HANNA (Chhun et al., 2022) includes 1056 sto-
ries annotated by human raters with a 5-point Likert
scale on 6 criteria: Relevance, Coherence, Empa-
thy, Surprise, Engagement, and Complexity. These
1056 stories are based on 96 story prompts from
the WritingPrompts (Fan et al., 2018) dataset. For
each story prompt, HANNA collects 11 stories gen-
erated by 10 different generation models and a hu-
man, respectively. For our purpose of comparing
automatic text generation systems, we did not use
the stories written by humans in our experiments.

OpenMEVA-MANS (Guan et al., 2021) is a
sub-dataset within the OpenMEVA dataset. It con-
tains 1000 stories generated by 5 generation models
based on 200 prompts from WritingPrompts (Fan
et al., 2018). The overall quality of each story is
rated by five humans on a 5-point Likert scale.

SummEval (Fabbri et al., 2021) includes 1600
summaries annotated by human expert annotators
with a 5-point Likert scale on 4 criteria: coher-
ence, consistency, fluency, and relevance. These
1600 summaries are based on 100 source articles
from the CNN/DailyMail dataset (Hermann et al.,
2015). For each source article, SummEval collects
16 summaries generated respectively by 16 differ-
ent automatic summary generation systems. Each

4767

https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1162/tacl_a_00185
https://doi.org/10.1162/tacl_a_00185
https://doi.org/10.1162/tacl_a_00040
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/v1/2023.newsum-1.1
https://doi.org/10.18653/v1/2023.newsum-1.1
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2305.17926
http://arxiv.org/abs/2306.05087
http://arxiv.org/abs/2306.05087
https://proceedings.neurips.cc/paper_files/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
http://arxiv.org/abs/2310.07641
http://arxiv.org/abs/2310.07641
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634
https://api.semanticscholar.org/CorpusID:127986044
https://api.semanticscholar.org/CorpusID:127986044
http://arxiv.org/abs/2308.01862
http://arxiv.org/abs/2308.01862
http://arxiv.org/abs/2405.20267
http://arxiv.org/abs/2405.20267
http://arxiv.org/abs/2405.20267
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

summary is scored by three human expert annota-
tors.

LLMBar (Zeng et al., 2024) consists of 419
instances, each containing an instruction paired
with two outputs: one that faithfully follows the
instruction and another that deviates from it but
may possess superficially appealing qualities. The
dataset is divided into two main parts: the Nat-
ural set, which includes instances from existing
human-preference datasets that have been filtered
and modified to ensure objective preferences, and
the Adversarial set, which contains outputs crafted
to mislead evaluators by emphasizing superficial
qualities. LLMBar aims to provide a more rigorous
and objective evaluation of LLM evaluators com-
pared to previous benchmarks, achieving a high
human agreement rate of 94% (Zeng et al., 2024).

MT-Bench (Zheng et al., 2023) comprises 80
questions and answers to these questions gener-
ated by six models. For each question and each
pair of models, an evaluation task was constructed,
totaling 1200 tasks. The actual dataset that we
used is a subset of the original MT-Bench dataset
curated by the authors of (Zeng et al., 2024), to con-
struct which they labelled a human-preferred an-
swer for each task using majority vote, removed all
the “tie” instances, and then randomly sampled 200
instances. We found five instances of this curated
subset repeated themselves once, so we further re-
moved these repeated ones and used the remaining
195 instances for our experiments.

LLMEval2 (Zhang et al., 2023), similar to MT-
Bench, is a question answering dataset where each
instance comprises a question and two answers to
that question. It consists of 2553 instances, each an-
notated with human preferences. The actual dataset
that we used is a subset of the original LLMEval2

dataset (Zhang et al., 2023) curated by the authors
of (Zeng et al., 2024), to construct which they re-
moved all the “tie” instances and then randomly
sampled 200 instances.

For each dataset with multiple human evalua-
tions on each piece of generated text, we average
the human evaluation scores as the final human
evaluation score for each piece of text.

B Evaluator setup details

We prepared prompt templates into which the input
and the two outputs would be inserted. Specifically,
we used the following three prompting strategies
following (Chiang and Lee, 2023b).

The Score-only prompting strategy asks the
LLM evaluator to only output the attribute scores
of the generated texts without any further explana-
tions.

The Rate-explain prompting strategy asks the
LLM evaluator to rate the generated texts first and
then provide an explanation for its ratings.

The Analyze-rate prompting strategy asks the
LLM evaluator to first analyze the generated texts
and then give the ratings for them.

Additionally, it has been reported that LLM
evaluators suffer from position bias (Wang et al.,
2023b), meaning that their decisions are often
falsely correlated with the order of presenting the
compared texts. In order to address this problem,
we employ a straightforward swap-and-sum strat-
egy inspired by the LLMBar paper (Zeng et al.,
2024). For each pair of outputs to be compared,
we query the LLM evaluator twice with the origi-
nal and swapped ordering of the outputs. We then
sum the scores given by the LLM evaluator in the
two queries and choose the generated text with the
higher total score as the LLM-evaluated winner. In
cases where the total score is even for both outputs,
we consider their quality to be equal, and randomly
select one as the winner.

The details of the LLM evaluator modes used by
our experiments can be found in Tables 4 and 5. For
the prompting templates used for the three instruc-
tion following datasets shown in Table 5, please
refer to the LLMBar paper (Zeng et al., 2024) for
detailed explanations.

4768

Dataset Evaluator model Prompt template

HANNA GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-1.0-Pro Score-only
Rate-explain
Analyze-rate

OpenMEVA-MANS GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-1.0-Pro Score-only
Rate-explain
Analyze-rate

SummEval GPT-3.5 Turbo Score-only
Rate-explain
Analyze-rate

Gemini-1.0-Pro Score-only
Rate-explain
Analyze-rate

Table 4: LLM evaluator modes used for the story generation and summarization datasets in our experiments.

Dataset Evaluator model Prompt template

LLMBar GPT-4 CoT
Metrics

Metrics Reference
Reference

Swap
Swap CoT

Vanilla
Vanilla NoRules

PaLM 2 Metrics Reference
Reference

Swap
Swap CoT

Vanilla
Vanilla NoRules

LLMEval2 ChatGPT Metrics Reference
Vanilla NoRules

GPT-4 Metrics Reference
Vanilla NoRules

Llama 2 Metrics Reference
Vanilla NoRules

PaLM 2 Metrics Reference
Vanilla NoRules

MT-Bench ChatGPT Metrics Reference
Vanilla NoRules

GPT-4 Metrics Reference
Vanilla NoRules

Llama 2 Metrics Reference
Vanilla NoRules

PaLM 2 Metrics Reference
Vanilla NoRules

Table 5: LLM evaluator modes used for the instruction following datasets in our experiments.

4769

