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Abstract
The tool-use Large Language Models (LLMs)
that integrate with external Python interpreters
have significantly enhanced mathematical rea-
soning capabilities for open-source LLMs,
while tool-free methods chose another track:
augmenting math reasoning data. However,
a great method to integrate the above two re-
search paths and combine their advantages re-
mains to be explored. In this work, we firstly in-
clude new math questions via multi-perspective
data augmenting methods and then synthesize
code-nested solutions to them. The open LLMs
(e.g., Llama-2) are finetuned on the augmented
dataset to get the resulting models, MuMath-
Code (µ-Math-Code). During the inference
phase, our MuMath-Code generates code and
interacts with the external python interpreter to
get the execution results. Therefore, MuMath-
Code leverages the advantages of both the ex-
ternal tool and data augmentation. To fully
leverage the advantages of our augmented data,
we propose a two-stage training strategy: In
Stage-1, we finetune Llama-2 on pure CoT
data to get an intermediate model, which then
is trained on the code-nested data in Stage-
2 to get the resulting MuMath-Code. Our
MuMath-Code-7B achieves 83.8% on GSM8K
and 52.4% on MATH, while MuMath-Code-
70B model achieves new state-of-the-art per-
formance among open methods—achieving
90.7% on GSM8K and 55.1% on MATH. Ex-
tensive experiments validate the combination
of tool use and data augmentation, as well as
our two-stage training strategy. We release
the proposed dataset along with the associated
code for public use: https://github.com/
youweihao-tal/MuMath-Code.

1 Introduction

In Natural Language Processing (NLP), Large
Language Models (LLMs) (Radford et al., 2019;
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Figure 1: The comparison between our MuMath-Code
and other state-of-the-art tool-use LLMs. MuMath-
Code exhibits a substantial improvement in perfor-
mance on both GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b), relative to the previ-
ous approaches.

Brown et al., 2020; Raffel et al., 2023) espe-
cially the proprietary ones such as GPT-4 (Ope-
nAI, 2023a) and Claude-3 (Anthropic, 2024) have
demonstrated superiority in a variety of tasks, e.g.,
text classification (Wang et al., 2018; Devlin et al.,
2019; Min et al., 2022; Jiang et al., 2023b), auto-
mated coding (Chen et al., 2021; Luo et al., 2023b),
instructions following (Longpre et al., 2023), and
math problem solving (Chowdhery et al., 2022;
Lewkowycz et al., 2022; Anil et al., 2023; Fu et al.,
2023a). Among these tasks, the capability to han-
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dle math problems stands as a typical and criti-
cal criterion for the evaluation of different LLMs.
However, a significant performance disparity is ob-
served between open-source LLMs, for instance,
LLaMA (Touvron et al., 2023a,b), and their propri-
etary counterparts, when it comes to mathematical
reasoning ability.

In recent years, many scholarly publications
have been directed towards improving the mathe-
matical proficiency of LLMs, which can be catego-
rized into two distinct research trajectories: those
that purely rely on natural language reasoning and
those that incorporate external tools. The former
methods are tool-free, mainly depends on data aug-
mentation to enhance the models’ mathematical
reasoning capability, while the second trajectory
(namely tool-use LLMs) are often coupled with
external Python interpreters. From the perspective
of knowledge distillation (Huang et al., 2022; Li
et al., 2022; Magister et al., 2023; Ho et al., 2023;
Fu et al., 2023b; Shridhar et al., 2023), both main-
stream approaches transfer math reasoning abilities
from the powerful teacher models (for instance,
GPT-4) to the inferior open foundation models.

The tool-free methods synthesize a large number
of new math problems and corresponding solutions,
taking the original training math QA pairs as the ini-
tial data seeds. Scaling law theoretically provides
the basis for the ongoing improvement of LLMs’
performance by constantly incorporating new train-
ing data. Representative approaches are RFT (Yuan
et al., 2023), MetaMath (Yu et al., 2023), Wizard-
Math (Luo et al., 2023a), MuggleMath (Li et al.,
2023), MuMath (You et al., 2024), etc. As for
the second trajectory, code executors substantially
enhance LLMs in particularly challenging com-
putational and logical tasks, thereby alleviating
the problem-solving burden on them. This tool-
use category is exemplified by PAL (Gao et al.,
2023), PoT (Chen et al., 2023a), MAmmoTH (Yue
et al., 2023), ToRA (Gou et al., 2023) and Math-
Coder (Wang et al., 2023).

Although the aforementioned research paths
have been individually successful, to date, few
methods have been developed that amalgamate
their respective advantages. In this paper, we pro-
pose a novel method that integrates tool usage with
data augmentation to synthesize a large amount
of multi-perspective mathematical questions and
solutions (we employ the augmenting methods in-
troduced in a previous work MuMath (You et al.,
2024)). Specifically, we utilize proprietary LLMs

(like GPT-4) to generate Python code while synthe-
sizing new solutions to math problems, and then
fine-tune the open-source models (e.g., LLaMA)
on the augmented dataset. The resulting model,
MuMath-Code, is thus equipped with the ability
to write code for math problem solving. During
the inference phase, our MuMath-Code can gen-
erates both CoT (Wei et al., 2022) reasoning texts
and Python code blocks. These code blocks are
then extracted and executed by an external Python
interpreter, and the execution results are returned
to MuMath-Code for subsequent rounds of CoT
reasoning or code generation until the final result
is obtained or the maximum number of execution
rounds is reached.

The multi-perspective mathematical question
set comprises questions augmented via rephras-
ing (Yu et al., 2023), alteration (Li et al., 2023;
You et al., 2024), FOBAR (Jiang et al., 2023a),
BF-Trans (You et al., 2024), besides those from
the original training sets. Regarding the solutions
nested with Python code, we leverage a general
pattern like the ones used in ToRA (Gou et al.,
2023) and MathCoder (Wang et al., 2023): CoT-
PoT interleaving. However, we propose prefix CoT,
code debugging and pseudo-answer guidance filter-
ing to improve the consistency and quality of our
augmented solutions. The prefix CoT is a thought-
ful analysis in pure natural language before code
generation, making the LLMs consider this anal-
ysis while generating all the subsequent content,
which thus are helpful for the models to learn the
whole solution. Besides, we prompt GPT-4 to de-
bug and correct the inexecutable code when re-
questing the solutions, and we keep the faulty code
since this process of verification and correction can
help boost the models’ coding proficiency. Further-
more, for those synthesized questions via alteration,
which lack ground truth answers as filtering guid-
ance, we choose the majority-voting answers as
the pseudo-answers. This process can increase the
correctness of the generated solutions and thus im-
prove the data quality generally. We name the pro-
posed dataset as MuMath-Code-Data and denote
it as Dµ-code.

Moreover, previous tool-use LLMs for math are
derived by directly finetuning on code-nested data,
which thus fail to fully harness the intrinsic nat-
ural language reasoning capability of the LLMs
themselves. Different from the other tool-use meth-
ods, we design a two-stage training strategy to
better combine the advantages of data augmenta-
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tion and external code execution. The first stage is
to enhance the models’ pure language mathemat-
ical reasoning, where the largest (751K) dataset
proposed in MuMath (here called MuMath-Data
and denoted as Dµ) is utilized to finetune LLaMA,
and get an intermediate model, MuMath. In the
second stage, we continue finetuning MuMath on
MuMath-Code-Data to equip the model with the
ability to write code for solving math problems.
The resulting model, MuMath-Code, is thus can
be prompted to leverage the Python interpreter to
execute its generated code for securing the desir-
able outputs at inference time.

Our contributions are summarized as follows:
• We construct a multi-perspective augmenta-

tion dataset with code-nested solutions for
math problem solving, called MuMath-Code-
Data.

• We design a two-stage training strategy to
equip the open LLMs with pure language rea-
soning and math related code generation ca-
pabilities, respectively.

• The obtained model, MuMath-Code, achieves
new state-of-the-art performance among open
LLMs across the in-domain math reasoning
datasets as well as the out-of-domain ones.
MuMath-Code-7B have 83.8% on GSM8K
and 52.4% on MATH, while MuMath-Code-
70B has achieved 90.7% on GSM8K and
55.1% on MATH.

2 Related Work

2.1 Tool-Free LLMs for Math
Rejection Sampling-based Fine-Tuning (RFT, Yuan
et al., 2023) only augments the solutions via re-
jection sampling to collect a variety of different
reasoning paths. Since RFT does not introduce
new math questions, the diversity of the augmented
dataset is quite low, which limits the performance
improvement of the finetuned models. With the aim
of incorporating a broader spectrum of questions,
MetaMath (Yu et al., 2023) employs rephrasing,
Self-Verification (SV, Weng et al., 2023) and FO-
BAR (Jiang et al., 2023a) to generate new questions.
Ideally speaking, like the original questions, there
are also ground truth answers for filtering solutions
to these augmented questions. To bring in more di-
verse data, WizardMath (Xu et al., 2023; Luo et al.,
2023a) and MuggleMath (Li et al., 2023) choose
to create totally new questions via evolution or di-
rectional modification (changing numbers, adding

conditions, increasing complexity, etc.) based on
the seed questions. These altered questions have
no ground truth answers, thus lacking a criterion to
filter their corresponding synthesized solutions.

Furthermore, MuMath (You et al., 2024) lever-
ages some of the aforementioned methods, and
additionally proposes BF-Trans and expression re-
placement (etc.) to perform comprehensive aug-
mentation, thus constructing a multi-perspective
math question set with much greater diversity. For
improving data quality, majority sampling serves
as the filtering rule for the synthesized solutions
to those new questions without deterministically
known answers. Instead of solution filtering, a con-
temporary work, Xwin-Math (Li et al., 2024), em-
ploys verification with solution requesting during
question synthesis, thereby improving the solvabil-
ity of the questions and the correctness of the an-
swers. Since there is no restriction on the direction
of question modification, Xwin-Math theoretically
offers a wider variety of diverse synthesized data.
Balancing the efficacy and the ease of replication,
in this paper the proposed MuMath-Code opts to
employ the question augmentation from MuMath,
although it is orthogonal to any other augmentation
methods.

Nevertheless, as probabilistic models, LLMs in-
herently have limitations in logical reasoning and
numerical computation. Thus, to improve the accu-
racy of mathematical problem-solving while rely-
ing solely on the capabilities of LLMs necessitates
the utilization of a substantially larger dataset com-
pared to tool-use methods.

2.2 Tool-Use LLMs for Math
Another research trajectory highlights the synergy
between LLMs and external tools. Pioneering ef-
forts along this include the Program-aided Lan-
guage model (PAL, Gao et al., 2023) and Pro-
gram of Thought (PoT, Chen et al., 2023a). More-
over, MAmmoTH (Yue et al., 2023) integrates both
CoT and PoT in a coarse-grained fashion (each
sample corresponds to only one of these two pos-
sible solution types), enabling flexible inference
where the finetuned models may adopt different
methods for different questions. Different from
MAmmoTH, ToRA (Gou et al., 2023) interleaves
python code blocks and natural language reason-
ing parts over multiple turns for a same solution,
which offers a more flexible combination of CoT
and PoT. However, neither MAmmoTH nor ToRA
employs query augmentation, thereby narrowing
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the range of math questions, which in effect, limits
the problem-solving capabilities that can be ac-
quired. Wang et al. propose a contemporaneous
work with ToRA, MathCoder (Wang et al., 2023),
where each solution is also organized in an inter-
leaved manner. Besides, they introduce interpola-
tion problems to mitigate the disparity in difficulty
level between GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021c). Hence, like our
MuMath-Code, MathCoder is also an amalgama-
tion of tool usage and math question augmentation,
although the new questions it introduces are com-
paratively narrow in scope and limited in diversity.

Similar to ToRA and MathCoder, we also con-
struct such solutions that intertwine Python code
with pure language reasoning text to adaptably
combine LLMs with external code executing tools.
However, we propose prefix CoT, code debug-
ging, and pseudo-answer guidance filtering to fur-
ther enrich the solutions and improve their cor-
rectness. Additionally, different from MathCoder,
the question augmentation we utilize are multi-
perspective, thus offering greater diversity and ex-
posing the model to a broader scope of novel ques-
tions, thereby significantly enhancing the model’s
generalization capabilities.

3 Methodology

We employ the augmented questions from Mu-
Math (You et al., 2024), detailed in Appendix A,
and synthesize code-nested solutions to them. To
help the models better learn such solutions with
multi-turn code generation, code execution and
pure natural language reasoning, we propose prefix
CoT, code debugging, and pseudo-answer guidance
filtering to augment the quality of the synthetic data,
as well as a two-stage training strategy. Figure 2
delineates the overall pipeline.

3.1 MuMath-Code-Data

To facilitate the interaction with the python inter-
preter, we synthesize the code-nested solutions for
the models to learn, each consisting of multi-turn
code generation, code execution and pure natural
language reasoning.

Specifically, for each question from Q, we
prompt proprietary LLMs to request solutions each
with at least one block of code, which is then ex-
tracted and passed to the external interpreter for
execution. Every execution result is appended to
the preceding content, right after the corresponding

code block. If the code execution fails, we append
a prompt to actively debug, using all the previous
content as a whole new prompt to request the cor-
rected code, which we then extract and execute
again. By iterating this process multiple times, we
obtain a reasoning path comprising code, execution
outcomes and natural language analysis. This rea-
soning path is similar to that of MathCoder (Wang
et al., 2023) and ToRA (Gou et al., 2023), but the
differences lie in the use of our proposed prefix
CoT, code debugging, and pseudo-answer guidance
filtering, which will be elaborated on in this section.
We marked MuMath-Data-Code as Dµ-code.

Prefix CoT We have observed that before gen-
erating code, a thorough pure natural language
analysis is helpful for the models’ performance.
Therefore, we deliberately add a thoughtful CoT
reasoning before code writing. The request prompt
used is “Analyze the question; list some knowledge
points related to the question and beneficial for
problem solving”.

Code Debugging Several research studies (Gou
et al., 2023; An et al., 2024; Liao et al., 2024)
have shown that the use of error correction and
verification data can improve the mathematical rea-
soning capabilities of LLMs. Therefore, we intro-
duce an error correction process for our augmented
dataset. Specifically, while constructing a solution,
if the generated code fails to execute, we append a
prompt “The code above has encountered a prob-
lem. Now point out its mistakes and then correct
them.” for GPT-4 to debug the code and write new
code until the executable code is obtained, or the
maximum number of requests is reached. The fail-
ing code and error information are kept to equip the
finetuned models with self-debugging ability (Chen
et al., 2023b), and thus enhance their coding profi-
ciency for solving math problems.

Pseudo-Answer Guidance Filtering In
MuMath-Data, we employ majority sampling
to filter solutions. This provides us with
pseudo-answers for the augmented questions
corresponding no reference answers, which can
also be employed for MuMath-Code-Data to select
solutions. This approach improves the correctness
of the synthesized solutions, thereby leading
to an enhancement in the overall quality of the
augmented data.

To sum up, we mark the i-th CoT (pure natu-
ral language reasoning) part as ci; the i-th python
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Figure 2: Illustration of our proposed method. The foundation model is first trained through an initial stage, resulting
in an intermediary model that possesses more powerful math reasoning capability. This intermediary model is then
further trained on the proposed dataset to learn code generation and tool interaction, leading to the final model,
MuMath-Code.

code part is marked as pi, which always begins
with ```python and ends with ```; the i-th code
execution output is denoted as oi, beginning with
```output and ending with ```. To formalize, one
resulting solution s is defined as follows:

s =
( n−1⊕

i=1

cipioi

)
cn

= c1p1o1c2p2o2...cn−1pn−1on−1cn,

(1)

where
⊕

stands for the concatenation of all the
turns, and n is the number of CoT parts. See Ap-
pendix D for an example.

3.2 Two-Stage Training

Stage-1 The first stage training is on MuMath-
Data (see Appendix B), where the models concen-
trate on learning the capability of pure CoT math
reasoning. The learning target is as follows:

L1 = −Eq,s∼Dµ
[ l∑

t=1

logP
(
xt|q, x<t;θ

)]
, (2)

where the solution s = (x1, x2, ..., xl) contains l
tokens, and θ is the model parameter.

This training stage endows the models with a
fairly strong mathematical reasoning capability,
which can be seen as an preliminary task for the
second stage learning.

Stage-2 The second stage training is on MuMath-
Code-Data, where the models concentrate on PoT-
CoT interleaved data to learn how to interact with
an external tool (i.e., the Python interpreter). We
mask the loss of the outputs from the code execu-
tion, which should not be learned by the models.
The learning target is:

L2 =

− Eq,s∼Dµ-code

[ n∑

i=1

logP
(
cipi|q,

i−1⊕

j=1

cjpjoj ;θ
)]
,

(3)

where pn = ∅. The training process at Stage-2 is
consistent with the inference, so we do not need
to consider the issue of catastrophic forgetting (re-
garding the natural language reasoning in Stage-1).
At inference time, after being given a mathematical
problem, the finetuned model needs to generate
code for problem solving, and then an external in-
terpreter executes the code and returns the result
for the model to continue generating. Therefore,
Stage-2 training simulates the above inference pro-
cess by masking out the losses of the execution
outputs.

4 Experiments

4.1 Experimental Setup

Datasets Our seed datasets for synthesis are
the training sets of two popular math reasoning
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benchmarks: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b). GSM8K con-
tains elementary school math problems, comprising
7,473 training instances and 1,319 test instances;
while MATH encompasses math competition prob-
lems at the high school level with 7,500 training
samples and 5,000 for test.

We take the MuMath (You et al., 2024) dataset
(750K) as our Dµ for Stage-1 training, and the
MuMath augmented question set Q are utilized to
construct Dµ-code for Stage-2; in Q, we request
15 solutions for each question that originates from
GSM8K and 30 for MATH-related ones, and then
perform filtering to get 30K samples for each ques-
tion subset, making 600K in total.

For evaluation, we select GSM8K and MATH
test sets as the in-domain benchmarks, while GSM-
Hard (Gao et al., 2023), SVAMP (Patel et al., 2021),
TabMWP (Lu et al., 2023), ASDIV (Miao et al.,
2020) and SingleEQ, SingleOP, AddSub, and Mul-
tiArith (Koncel-Kedziorski et al., 2016) as the out-
of-domain ones (to see the generalization ability of
our models).

Implementation Details Our study utilizes
LLaMA-2 (7B, 13B and 70B) (Touvron et al.,
2023b) and CodeLlama (7B, 13B, 34B, and
70B) (Rozière et al., 2023) as the foundation mod-
els for full-parameter finetuning, corresponding
to MuMath-Code-L and MuMath-Code-CL as the
resulting models. We employ AdamW as the op-
timizer and a cosine learning rate scheduler with
a 0.03 warmup ratio. Across all the models and
both stages, we train 3 epochs with a 128 global
batch size. All the models except for LLaMA-70B
and CodeLlama-70B are trained using the Deep-
speed framework, while those two 70B models are
trained using Megatron for the sake of speed. The
hardware we use are NVIDIA H800 GPUs.

4.2 Comparison Results

As shown in Table 1, the comparison experiment of
our models with the current state-of-the-art demon-
strates that our approach consistently achieves su-
perior performance across all scales of open-source
models on all the datasets. Notably, our MuMath-
Code-L 7B model has attained a test accuracy of
83.8 on the GSM8K, and MuMath-Code-CL 7B
has reached a score of 52.4 on MATH. These out-
comes surpass many 70B open-source baselines
and even some proprietary LLMs. Additionally,
our MuMath-Code-CL 34B and 70B achieve 55.0+

on MATH, two impressive results considering that
they are accomplished by leveraging data augmen-
tation techniques based on the original training set
without the incorporation of extensive additional
mathematical corpora for pre-training.

There are some noteworthy findings from the ex-
perimental statistics presented in the table, such
as the performance of MuMath-Code-CL 13B
on MATH, registering at 53.1, which is only
marginally higher than that of MuMath-Code-CL
7B, which stands at 52.4. Moreover, the MuMath-
Code-CL 34B’s performance on MATH, scoring at
55.0, is very close to that of the MuMath-Code-CL
70B, which records a score of 55.1. We specu-
late that this may be attributed to the phenomenon
where, beyond a certain threshold of data volume,
the advantages conferred by increased model size
may be diminished or even offset by the benefits
derived from the expanded dataset. Additionally,
variations in the training frameworks may also con-
tribute to the observed discrepancy between the
performances of MuMath-Code-CL 34B and 70B.

Moreover, despite without finetuning on GSM-
Hard, SVAMP, TabMWP, ASDiv and MAWPS
(MAWPS results are averaged over Singleeq, Sin-
gleop, Addsub, and MultArith, following ToRA),
MuMath-Code still significantly outperforms the
other sate-of-the-art open-source methods, which
demonstrates the strong generalizability of our
models.

4.3 Effectiveness of the Two-Stage Training
Strategy

MuMath-Code is derived from a two-stage train-
ing process that enhances the model’s pure natural
language reasoning capabilities and the ability to
generate code and interact with external tools. In
this section, we validate the efficacy of this bifur-
cated training strategy. Unless otherwise specified,
all ablation experiments presented in this paper are
conducted on 7B models, for the sake of time effi-
ciency. We have designed a comparative evaluation
of model performances for two-stage and one-stage
training strategies. The two-stage training referred
to here is as described in Section 3.2, which in-
volves continuing training from the checkpoints
of the first stage (the MuMath models). The one-
stage training, directly applies the second stage of
training on the base models. Table 2 illustrates the
performance comparison of models derived from
both strategies across different data volumes, re-
vealing that training solely onDµ-code is worse than

4775



Model GSM8K MATH GSM-Hard SVAMP TabMWP ASDiv MAWPS
closed-source LLMs

Claude-3 Opus (Anthropic, 2024) 95.0 60.1 - - - -
GPT-4 (OpenAI, 2023b) 92.0 42.5 64.7 93.1 67.1 91.3 97.6
GPT-4 (PAL) 94.2 51.8 77.6 94.8 95.9 92.6 97.7
GPT-3.5 (OpenAI, 2023a) 80.8 35.5 55.9 83.0 69.1 87.3 94.6
GPT-3.5 (PAL) 78.6 38.7 67.6 77.8 79.9 81.0 89.4

tool-free open LLMs
7B

LLaMA-2 (Touvron et al., 2023b) 13.3 4.1 7.8 38.0 31.1 50.7 60.9
LLaMA-2 SFT (Touvron et al., 2023b) 41.3 7.2 16.1 31.9 27.8 47.4 60.0
WizardMath (Luo et al., 2023a) 54.9 10.7 20.6 57.3 38.1 59.1 73.7
MetaMath (Yu et al., 2023) 66.5 19.8 - - - - -
MuggleMath (Li et al., 2023) 68.4 - - - - - -
MuMath (You et al., 2024) 70.9 22.0 - 76.8 - 93.6 87.3

13B
LLaMA-2 (Touvron et al., 2023b) 24.3 6.3 13.6 43.1 39.5 56.3 70.4
LLaMA-2 SFT (Touvron et al., 2023b) 51.1 9.2 22.3 46.3 35.8 58.6 75.0
WizardMath (Luo et al., 2023a) 63.9 14.0 28.4 64.3 46.7 65.8 79.7
MetaMath (Yu et al., 2023) 72.3 22.4 - - - - -
MuggleMath (Li et al., 2023) 74 - - - - - -
MuMath (You et al., 2024) 76.4 25.3 - - - - -

70B
LLaMA-2 (Touvron et al., 2023b) 57.8 14.4 36.0 73.6 57.5 76.0 92.4
LLaMA-2 SFT (Touvron et al., 2023b) 69.3 14.9 39.0 64.0 53.0 71.3 84.8
WizardMath (Luo et al., 2023a) 81.6 22.7 50.3 80.0 49.8 76.2 86.2
MetaMath(Yu et al., 2023) 82.3 26.6 - - - - -
MuggleMath (Li et al., 2023) 82.3 - - - - - -
MuMath (You et al., 2024) 84.5 32.2 - 87.6 - 96.6 92.0

tool-use open LLMs
7B

MAmmoTH (Yue et al., 2023) 53.6 31.5 - 67.7 - - -
MAmmoTH-Coder 59.4 33.4 - 71.4 - - -
CodeLLama (PAL) (Rozière et al., 2023) 34.0 16.6 33.6 59.0 47.3 61.4 79.6
MathCoder-L (Wang et al., 2023) 64.2 23.3 - 71.5 - - -
MathCoder-CL (Wang et al., 2023) 67.8 30.2 - 70.7 - - -
ToRA (Gou et al., 2023) 68.8 40.1 54.6 68.2 42.4 73.9 88.8
ToRA-Code (Gou et al., 2023) 72.6 44.6 56.0 70.4 51.6 78.7 91.3
MuMath-Code-L 83.8 48.8 70.5 87.6 65.6 86.2 94.7
MuMath-Code-CL 82.6 52.4 70.6 88.1 66.9 87.4 95.3

13B
MAmmoTH (Yue et al., 2023) 62.0 34.2 - 72.4 - - -
MAmmoTH-Coder(Yue et al., 2023) 64.7 36.3 - 73.7 - - -
CodeLlama (PAL) (Rozière et al., 2023) 39.9 19.9 39.0 62.4 59.5 65.3 86.0
MathCoder-L (Wang et al., 2023) 72.6 29.9 - 76.9 - - -
MathCoder-CL (Wang et al., 2023) 74.1 35.9 - 78.0 - - -
ToRA (Gou et al., 2023) 72.7 43.0 57.3 72.9 47.2 77.2 91.3
ToRA-Code (Gou et al., 2023) 75.8 48.1 60.5 75.7 65.4 81.4 92.5
MuMath-Code-L 84.3 49.9 70.6 87.9 64.9 86.4 94.9
MuMath-Code-CL 84.6 53.1 70.8 86.8 67.2 85.2 95

34B
CodeLLaMa (PAL) (Rozière et al., 2023) 53.3 23.9 49.4 71.0 63.1 72.4 91.5
MAmmoTH-Coder (Yue et al., 2023) 72.7 43.6 - 84.3 - - -
MathCoder-CL (Wang et al., 2023) 81.7 45.2 - 82.5 - - -
ToRA (Gou et al., 2023) 80.7 50.8 63.7 80.5 70.5 84.2 93.3
MuMath-Code-CL 87.6 55.0 68.8 91.4 74.9 87.9 92.9

70B
LLaMA-2 (PAL) 55.2 18.3 50.0 74.6 59.5 71.9 92.8
MAmmoTH (Yue et al., 2023) 76.9 41.8 - 82.4 - - -
MathCoder-L (Wang et al., 2023) 83.9 45.1 - 84.9 - - -
ToRA (Gou et al., 2023) 84.3 49.7 67.2 82.7 74.0 86.8 93.8
MuMath-Code-L 90.7 52.8 68.6 93 74 88.4 95.4
MuMath-Code-CL 89.5 55.1 70.1 92.9 77.4 87.9 94.7

Table 1: Comparison of the state-of-the-art methods on various datasets. For the tool-use open LLMs, the best
results are bolded and the second best underlined among the same scale models tested on the same datasets.
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Inference Training Strategy
LLaMA CodeLlama

GSM8K MATH GSM8K MATH

Tool free
Dmeta 66.5 19.8 - -

Dxwin 66.6 17.4 - -

Dµ 79.1 30.0 80.4 32.2

Tool use

Dµ-code 81.2 46.2 81 49.8

Dµ +Dµ-code 82.7 47.1 81.3 49.1

Dmeta +Dµ-code 81.9 46.8 - -

Dmeta → Dµ-code 82.3 47.4 - -

Dxwin → Dµ-code 82.0 47.2 - -

Dµ → Dµ-code 83.8 48.8 82.6 52.4

Table 2: A two-stage training strategy improves the
models’ performance, as opposed to a single-stage train-
ing.

Sythesized Solutions LLaMA CodeLlama
GSM8K MATH GSM8K MATH

w all 83.8 48.8 82.6 52.4
w/o prefix CoT 81.3 47.5 81.8 49.4

w/o code debugging 82 47.1 82.1 52.1
w/o either 81.0 46.8 81.3 49.0

Table 3: Ablation studies show both prefix CoT and
code debugging have played a role in enhancing the
performance of our MuMath-Code models.

the two-stage training. Furthermore, by merging
the training data from both stages into a single
dataset for one-stage training, we observe that the
outcomes are still not as favorable as those obtained
from two separate training stages.

To further validate the effectiveness of our two-
stage training strategy, we select MetaMath (Yu
et al., 2023) and Xwin-Math (Team, 2023) 7B
models as the initial checkpoints for Stage-2 train-
ing, emulating the scenario where relevant datasets
were employed during the first stage (Considering
the unavailability of the most recent models and
dataset proposed in (Li et al., 2024), we opt to
utilize Xwin-Math-7B-V1.0 detailed in the corre-
sponding GitHub repository). Table 2 illustrates
that models fine-tuned from MetaMath and Xwin-
Math checkpoints on Dµ-code (two-stage) outper-
form the one directly trained from Llama (single-
stage), verifying the efficacy and transferability of
a two-stage training strategy as well as the compat-
ibility of our Dµ-code with different first-stage CoT
datasets.

4.4 Ablation Studies

To verify our proposed prefix CoT and code de-
bugging, we respectively modify the solutions in

Data Size Pseudo-Answer LLaMA CodeLlama
GSM8K MATH GSM8K MATH

30K w 65.4 33.4 67.3 38.5
w/o 65.9 32.4 67.6 36.9

60K w 71.4 37.6 73.4 42.7
w/o 71.2 36.6 72.3 40.4

90K w 75.1 39.3 75.2 44.5
w/o 74.8 37.9 74.2 41.9

120K w 76.1 40.7 76.9 45.7
w/o 74.6 40.3 75.9 43.6

150K w 77.8 42.7 76.8 46
w/o 75.8 41.5 76.4 45

180K w 77.3 43.5 78.5 47.3
w/o 76.7 42.7 77.7 46.5

Table 4: Pseudo-answer guidance filtering consistently
improves the performances of the models finetuned on
datasets of various sizes.

Dµ-code via two distinct approaches: the first ap-
proach involves the removal of the prefix CoT,
thereby eliminating the detailed preliminary anal-
ysis and directly begining with code writing; the
second approach consists of retaining only the final
and successfully executed code and omitting all
the other inexecutable code before as well as the
corresponding debugging process. The results of
this ablation study are presented in Table 3, which
demonstrates that the exclusion of either the prefix
CoT or code debugging leads to a decline in the
models’ test accuracy. This emphatically under-
scores the significance of a thorough analysis prior
to code writing and the code mistake correction
process for the models’ learning.

Moreover, we conduct another ablation experi-
ment on pseudo-answer guidance filtering. In Sec-
tion 3.1, we note that pseudo-answers are suitable
for synthetic questions that lack a definitive cor-
rect answer, namely those in Qalter and Qreplace.
In MuMath, majority voting is utilized to assign
pseudo-answers to these questions. These pseudo-
answers are then also employed to filter the data for
Dµ-code in the second training stage. As illustrated
in Table 4, fine-tuning the model with data filtered
through this pseudo-answer technique proves to
be more beneficial than solutions obtained through
directly random sampling. This trend holds across
data volumes ranging from 30K to 180K.

4.5 Transferability to Multi-Choice Math
Task

To see the transferability of our MuMath-Code
models to math tasks other than QA, we con-
duct another comparison experiment on MMLU-
Math (Hendrycks et al., 2021a) and AquA-
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Model MMLU-Math AQuA-RAT

7B Parameter Models

Llama-2 29.8 30.3

WizardMath 31.1 26.3

Code-Llama (PoT) 26.9 24.0

MuMath-Code-CL 39.2 32.8

Table 5: Comparison results on MMLU-Math and
AQuA-RAT test sets. The results indicate our MuMath-
Code shows good transferability to other math-related
tasks (note that we did not specifically finetune on such
data).

RAT (Ling et al., 2017), two math-related multi-
choice datasets. Table 5 illustrates that although
without specifically being finetuned for the multi-
choice math task, MuMath-Code still shows good
performance on such data, demonstrating the trans-
ferability of our model to other math-related tasks
for its innerly improved math reasoning capability.

5 Conclusion

In this paper, we propose a multi-perspective
and code integrated math reasoning dataset called
MuMath-Code-Data, where each solution contains
multi-turn code generation, code execution and
pure natural language analysis (CoT). Through
a two-stage training strategy, our MuMath-Code
models outperforms the state-of-the-art open meth-
ods and even some powerful proprietary ones
across different scales on the in-domain reason-
ing datasets (i.e., GSM8K and MATH) as well as
those out-of-domain ones. Additionally, ablation
studies demonstrates the effectiveness of our three
novel methods for the data synthesis: prefix CoT,
code debugging and pseudo-answer guidance filter-
ing. Our work represents a new attempt at integrat-
ing mathematical question augmentation (tool-free)
with code generation and execution (tool-use) to
enhance the mathematical reasoning capabilities
of LLMs, and we hope it can inspire subsequent
research endeavors.

Limitations

Our work is limited by the capabilities of the LLMs
used to synthesize new math reasoning data. More-
over, currently our method is not capable of solving
proof problems, as we have not trained on relevant
data. We plan to study this area in the next step to
further enhance the capability of our models.
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A Question Synthesis

A.1 MuMath Augmented Questions

The original questions from the training
sets of GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) are taken as
the seed question set Qoriginal. The question
augmenting methods employed in MuMath are
conducted on this seed set, which are briefly
concluded as follows:

(1) Rephrasing Rewrite a text while keeping the
original meaning unchanged. Based on the fact that
a rephrased question holds the same meaning as
the original one, the final answer of it should also
be the same. We denote the rephrased question set
as Qrephrase.

(2) Question Alteration There are five manners
to alter the original questions, like changing num-
bers and adding more conditions, concluded in
MuggleMath (Li et al., 2023). The resultant ques-
tion set created via alteration is referred to as
Qalter = Qalter1 ∪ Qalter2 ∪ Qalter3 ∪ Qalter4 ∪
Qalter5. Besides, Expression Replacement, pro-
posed in MuMath, firstly get the expressions of the
solution to an original question, then change the
calculation operators within them. Based on the
changed expressions, a new question is asked to
generate. Qreplace represents the question set pro-
duced by this augmentation technique. Note that
Qalter and Qreplace correspond no definitely cor-
rect answers due to modifications in the questions’
intrinsic meanings.

(3) FOBAR Following Jiang et al. (2023a), we
mask a certain condition in an initial question by
substituting it with “X", and meanwhile give the
answer to the original question as a new condition,
thereby creating a reverse question that seeks to
determine the value of the unknown X. Qfobar is
utilized to mark the FOBAR question set.

(4) BF-Trans Backward-Forward Transforma-
tion (BF-Trans), proposed in MuMath, aims to
construct such backward questions that can be an-
swered through direct reasoning, bypassing the ne-
cessity of solving equations to find the unknown
variables (thus resemble the data sampled from
the original distribution). For a certain question-
answer pair, BF-Trans firstly utilize FOBAR to
transform the original question into a backward
one; secondly, we rephrase the FOBAR question

into a new form where the masked value is re-
quested directly instead of employing an unknown
variable X, resulting in a “secondary forward” ques-
tion which we called BF-Trans question. The set
of these BF-Trans questions is marked as Qbf .

To sum up, all the 10 aforementioned subsets
(5 in Qalter) constitute the resulting question set
Q = Qoriginal ∪ Qrephrase ∪ Qalter ∪ Qreplace ∪
Qfobar ∪Qbf . Based on Q, we generate 2 datasets
called MuMath-Data and MuMath-Code-Data,
emphasizing pure natural language mathematical
reasoning and tool interaction via code generation,
respectively.

B MuMath-Data

MuMath-Data (denoted as Dµ) is just the largest
dataset from MuMath, which contains about 750K
samples with pure CoT reasoning solutions to ques-
tions in Q.

Majority Sampling As is introduced in the paper
of MuMath, for Qalter and Qreplace whose each
question has no reference answer, majority sam-
pling is utilized to filter all the randomly gener-
ated solutions and only those solutions with the
majority answers are kept. In other words, each
majority answer serves as a pseudo-answer to the
corresponding question.

C MuMath-Code-Data

In Dµ-code, the libraries such as sympy, numpy,
scipy and cvxpy are frequently used, and the num-
ber of code lines for each problem ranges from 9
to 119 (max rounds).

As for those synthesized questions without
ground truth answers, there are inevitably wrong
solutions, though we perform majority voting to
enhance the data quality. We have conducted qual-
ity evaluation on the synthesized dataset, where
we randomly sample 100 QA pairs for GSM8K-
augmented dataset (hard to review MATH’s) and
after manually reviewing we find 95 of them are
correct (quite good).

Cost We have synthesized a total of approxi-
mately 1.2 billion tokens from GPT-4 (about 440M
for GSM8K and 760M for MATH), and the dataset
has been open-sourced for the community to use.
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D Examples

Example D.1: MuMath-Code-Data QA Pair

Question:
What is the smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when
divided by 3, and a remainder of 2 when divided by 5?

Solution
We need to find a positive integer solution for the system of linear congruences. We can use the Chinese
Remainder Theorem to solve this system. The Chinese Remainder Theorem states that for any system
of equations like this, there exists a solution. Let’s find the solution using sympy’s solve_congruence
function.

```python

from sympy.ntheory.modular import solve_congruence
def smallest_number():

congruences = [(’1’, ’4’), (’1’, ’3’), (’2’, ’5’)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
ValueError: 1 is not an integer
```
The code above has encountered a problem. Now point out its mistakes and then correct them.
Mistake:
The error is in the format of the input to the function ‘solve_congruence‘. The function is expecting
tuples of the format ‘(remainder, modulus)‘, but the inputs need to be integers, not strings.

Correction:
Let’s modify the code to convert the strings to integers.

```python
def smallest_number():

congruences = [(1, 4), (1, 3), (2, 5)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
NameError: name ’solve_congruence’ is not defined
```
The code above has encountered a problem. Now point out its mistakes and then correct them.
Mistake:
The error is that the ‘solve_congruence‘ function is not defined. It should be imported from the ‘sympy‘
module before it can be used.
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Correction:
Let’s modify the code to import the ‘solve_congruence‘ function from the ‘sympy‘ module.

```python
from sympy.ntheory.modular import solve_congruence

def smallest_number():
congruences = [(1, 4), (1, 3), (2, 5)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
37
```
The smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when divided
by 3, and a remainder of 2 when divided by 5 is $\\boxed{37}$.

E Additional Experimental Results

E.1 Two-Stage Training

Dµ-code Training Strategy
LLaMA CodeLlama

GSM8K MATH GSM8K MATH

100K
Dµ-code 69.7 36.1 72.4 41

Dµ → Dµ-code 77.1 41.5 80.3 46.1

200K
Dµ-code 76.2 41.4 78.3 44.2

Dµ → Dµ-code 80.4 46 80.7 49.1

300K
Dµ-code 77.1 43.7 78.2 46.8

Dµ → Dµ-code 79.5 46.4 83.2 50.2

400K
Dµ-code 78 44.3 79 47.8

Dµ → Dµ-code 81.6 48.5 81.9 50.9

500K
Dµ-code 79.8 45.7 80.2 48.9

Dµ → Dµ-code 82.8 48.7 82.6 52.2

600K
Dµ-code 81.2 46.2 81 49.8

Dµ → Dµ-code 83.8 48.8 82.6 52.4

Table 6: We vary the data volumes of Dµ-code. It is observed that training solely on Dµ-code is consistently inferior
to the two-stage training across all data volumes.

E.2 Scaling Study

The scaling experiments for various subsets of the MuMath-Code-Data are depicted in Figure 3. These
curves represent the performance changes of models trained on different data subsets with respect to the
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(a) Test on GSM8K (b) Test on MATH

Figure 3: Scaling all the subsets of MuMath-Code-Data. The models undergo a single stage (only Stage-2) of
training.

(a) Test on GSM8K (b) Test on MATH

Figure 4: Scaling all the subsets of MuMath-Code-Data. Initially, the model has already been finetuned on MuMath-
Data (thus two-stage training results). It is observable that the curves show very similar trends to those in Figure 3.

number of samples. The base model is LLaMA 7B and it is directly trained on the subsets of Dµ-code
(single-stage training). It is evident that with the increase in data volume, all subsets continuously
contribute to the enhancement of the models’ performance, and the curves still do not show saturation.
This indicates that employing our methodology allows for the continued addition of data to further improve
the LLMs’ mathematical reasoning capabilities. For the two-stage scenario where the initial model is an
intermediate checkpoint from Stage-1, please see Figure 4.
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