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Abstract

With contributions from the open-source com-
munity, a vast amount of instruction tuning
(IT) data has emerged. Given the significant
resource allocation required for training and
evaluating models, it is advantageous to have
an efficient method for selecting high-quality
IT data. However, existing methods for instruc-
tion data selection have limitations such as re-
lying on fragile external APIs, being affected
by biases in GPT models, or reducing the di-
versity of the selected instruction dataset. In
this paper, we propose an industrial-friendly,
expert-aligned and diversity-preserved instruc-
tion data selection method: Clustering and
Ranking (CaR). CaR employs a two-step pro-
cess: first, it ranks instruction pairs using a
high-accuracy (84.25%) scoring model aligned
with expert preferences; second, it preserves
dataset diversity through clustering. In our
experiment, CaR efficiently selected a mere
1.96% of Alpaca’s IT data, yet the resulting Al-
paCaR model surpassed Alpaca’s performance
by an average of 32.1% in GPT-4 evaluations.
Moreover, we find that data selecting is a con-
sistent paradigm whether the pre-trained model
is more capable or the model parameters scal-
ing up. Our approach employs compact models
with 550M parameters and incurs just 11.2%
of the financial outlay of current methods, en-
hancing its industrial deployability.

1 Introduction

Language Models (LMs) acquire the capability to
follow instructions through Instruction Tuning (IT)
(Radford et al., 2019; Brown et al., 2020; Zhang
et al., 2023), which aligns Large Language Mod-
els (LLMs) with critical human standards such
as security, privacy, and legal compliance. Self-
instruct proposes a novel methodology that utilizes
LMs to construct IT datasets (Wang et al., 2022),
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Figure 1: Compares the performance of the proposed
AlpaCaR model to established baseline models over
four test sets. Our AlpaCaR achieves the best model
performance with the smallest amount of instruction
tuning data.

greatly improving the efficiency of instruction gen-
eration. Alpaca leveraged a similar strategy (Taori
et al., 2023), utilizing text-davinci-003 to con-
struct the Alpaca_52k dataset, and subsequent IT
on LLaMA-7B model (Touvron et al., 2023) led to
the creation of Alpaca.

Despite these advancements, the quality of in-
structions remains paramount over their quantity.
Zhou et al. (2023) carefully curated 1,000 instruc-
tions, ensuring data quality and diversity by hu-
man being, resulting in LIMA model significantly
outperforming the Alpaca. Nevertheless, creating
high-quality instruction sets through manual anno-
tation is both time-consuming and labor-intensive
(Chiang et al., 2023). A promising approach to mit-
igate this challenge involves filtering a small subset
of high-quality and diverse instructions from the
vast amounts of existing instruction data.

Alpagasus (Chen et al., 2023) introduced a
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IQS CometInstruct GPT-4 GPT-3.5
84.25% 72.44% 63.19% 57.48%
78.12% 45.00% 65.00% 56.25%

Table 1: Accuracy of the IQS, CometInstruct and GPT
models on test sets. Reflecting the alignment of the
model with human preferences in the task of Instruction
Pairs Quality Estimation. The second row presents re-
sults for instruction pairs sourced from the IQE test set,
while the third row shows acc on instruction pairs from
Vicuna_80, demonstrating the models’ generalization to
other distributions, see more details in Appendix C.1.
The IQS and CometInstruct model were fine-tuned as
described in Appendix C.2, while the GPT model used
prompts referenced in the Appendix B.2.

straightforward yet effective method that utilizes
GPT-3.5-Turbo to filter roughly 9k instructions,
surpassing Alpaca’s performance. However, this
approach overlooks data diversity, and GPT’s evalu-
ations rated 17.3% instruction pairs generated by
text-davinci-003 above 4.5 and 74.9% above
4.0, demonstrating GPT’s self-enhancement bias
Zheng et al. (2023), rendering it unsuitable for as-
sessing instructions generated by models within
the same series. Therefore, more authentic human
preferences should be used to filter instruction sets.
Moreover, relying on fragile and expensive exter-
nal GPT APIs limits Alpagasus in industrial de-
ployment, especially in low-computation resource
scenarios.

In this work, we propose an effective and ef-
ficient method for selecting instruction pairs —
Clustering and Ranking (CaR). CaR consists of
two steps. The first is ranking through quality
estimation on instruction pairs, where an expert-
aligned scoring model (with 550M parameters
only) achieves an accuracy of 84.25% with expert
preferences. Then, a clustering step ensures the
overall diversity of the dataset, minimizing poten-
tial capability gaps. Our contributions are summa-
rized as follows:

• We introduce Instruction Pair Quality Esti-
mation (IQE), a new stage before IT process
which aims to use the assessment results of
instruction datasets as an aid for the actual
fine-tuning of language models and evaluation
on benchmarks, reducing the time and com-
putational expenses for model performance
validation in IT process by over 90%.

• We propose a novel quality evaluation
paradigm for IT dataset that is independent

of external APIs and aligns well with human
experts’ preferences. As shown in Table 1,
our small Instruction pair Quality Scoring
(IQS) model, compared to GPT-4, achieves
a 21.05% improvement in aligning with hu-
man preferences for data quality.

• We propose CaR, an instruction selection
method that aligns with expert insights and
preserves diversity, showcasing significant en-
hancements in model performance and train-
ing efficiency. As shown in Fig. 1, CaR uses
a small model to filter high-quality instruction
data, achieving an average performance ex-
ceeding Alpaca by about 13.3% to 32.8% on
the Alpaca_52k dataset using only a 1.96%
subset of instructions. This implies a reduc-
tion of 98% in training time and resources.

• In section 5, experiments found that the data
selecting paradigm is effective even with more
adequate pre-training (LLaMA 1–LLaMA 3)
or model parameter scaling (7B–30B). How-
ever, data selecting methods at higher data
quality, such as Alpaca-GPT4 (Peng et al.,
2023), are still challenging.

In addition, we released our code and models to
facilitate future research and industrial endeavors1.

2 Method

2.1 Motivation

Our work is motivated by the challenges of data
quality in instruction tuning and the limitations of
existing approaches.

From Quality Estimation to Instruction Pair
Quality Estimation. Quality estimation is a cru-
cial task in machine translation (MT), enabling the
assessment of MT models’ effectiveness and the
selection of high-quality translations for specific
purposes, such as manual post-editing. Similarly,
LLMs’ IT process faces the challenge of rapidly
shifting from rare to abundant instruction pairs with
inconsistent quality. Ensuring the quality of IT
datasets presents a significant challenge, necessitat-
ing adjustments to the pre-trained model, executing
inference on test datasets, and undergoing evalua-
tion by LLM or human annotators. These processes
are not only time-intensive but also demand con-
siderable computational resources. To address this,

1https://github.com/IronBeliever/CaR
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we propose a paradigm shift from evaluating model
performance to assessing IT datasets via IQE. Our
goal is to perform a coarse screening of a large
number of instructions using IQE, followed by re-
fining and selecting the optimal LLM with minimal
datasets to reduce the overall computational cost
associated with instruction filtering and verifica-
tion.

GPT as a Judge Exhibits Systematic Bias. Re-
searchers often use GPT preferences as a proxy
for human preferences in scenarios requiring hu-
man feedback, due to time and cost considerations
(Zhou et al., 2023; Rafailov et al., 2023; Dubois
et al., 2023; Lee et al., 2023). However, GPT-4 has
been shown to exhibit systemic biases in its eval-
uations, including positional bias, verbosity bias,
and self-enhancement bias (Zheng et al., 2024a;
Wang et al., 2023a). While researchers generally
view Alpaca 52k as needing improvement (Alpaca-
DataCleaned 2 ; Liu et al., 2023b), GPT’s evalua-
tions rated 9k instruction pairs above 4.5 and 39k
above 4.0. Introducing more realistic human prefer-
ences for instruction filtering could further enhance
model performance.

Instruction Diversity Inspires LLMs’ Multi-
tasks Capability. Recent studies have high-
lighted the importance of data diversity in im-
proving the performance of LLMs (Zhou et al.,
2023; Chen et al., 2023). Dong et al. (2023) found
that combining training data from various tasks
boosts LLMs’ performance in low-resource scenar-
ios. Inspired by these findings, we posit that inte-
grating instructions from different tasks enhances
LLMs’ capabilities in low-resource settings. Con-
sequently, ensuring the diversity of the IT dataset
is paramount, particularly when dealing with large-
scale models and limited high-quality data for each
task.

2.2 Clustering and Ranking Method

Considering the aforementioned motivations, we
propose a straightforward yet effective data selec-
tion framework, Cluster and Ranking, which in-
tegrates the dimensions of quality and diversity.
Inspired by Zhou et al. (2023)’s work, we first se-
lect a subset that ensures the retention of a large
number of high-quality instructions, then supple-
ment a small number of high-quality instructions
from each cluster to enhance data diversity while

2https://github.com/gururise/AlpacaDataCleaned

preserving instruction quality. As illustrated in Fig.
2, the framework begins by evaluating the entire
dataset using the IQS model, assigning a scorei
to each instruction pairi. Subsequently, the clus-
ter model is employed to partition all candidate
instruction pairs into k clusters. Finally, all instruc-
tion pairs are sorted based on their scores, and the
top n1 pairs are selected; Within each cluster, the
top n2 pairs are chosen based on their scores. The
resulting high-quality sub-dataset with preserved
diversity is curated by deduplicating n1 + k ∗ n2

pairs of instructions and is intended for the training
of AlpaCaR.

Sections 2.3 and 2.4 provide a comprehensive
discussion of the ranking and clustering method-
ologies implemented in CaR.

2.3 Single Instruction Pair Quality Estimation
To explore the IQE task, we adapt the Comet frame-
work (Rei et al., 2020) and develop a suitable frame-
work for leveraging expert preference. Our training
data is derived from expert-revised dataset (Liu
et al., 2023b), consisting of 3,751 instruction pairs
from Alpaca_52k that were refined by linguistic
experts to enhance fluency, accuracy, and seman-
tic coherence between questions and responses.
We categorize unedited instructions and responses
from text-davinci-003 as GPT Preference, and
expert-revised instructions as Expert Preference.
To enable the model to discern features across these
categories, we curated 2,541 markedly distinct in-
structions from the expert-revised dataset, ensuring
an edit distance above a small threshold. These
instruction pairs are then randomly allocated them
into training, validation, and test sets following an
8:1:1 distribution.

Initially, we experimented with the translation
ranking model architecture from the Comet frame-
work to leverage the paired annotations in expert-
revised better. In Fig. 10 (left), Cometinstruct op-
timizes the model using instruction and input as
anchors, minimizing semantic distance to human-
preferred responses while maximizing distance to
GPT-generated outputs. This approach achieves
72.44% accuracy on the test set but fails to fully
leverage the improvements about Input made by
experts. To address this, as illustrated in Fig. 10
(right), we retained the pre-trained XLM-RoBERTa
large in Cometinstruct and directly concatenated
the instruction pair components to train the IQS
model. As shown in Table 1, our IQS model out-
performs GPT-3.5 (version: GPT-3.5-Turbo) and
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Cluster Model

Instruction Quality Scoring Model
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Figure 2: An overview of Cluster and Ranking (CaR) method. Unlike directly training Alpaca with the entire
Alpaca_52k dataset, CaR first uses the IQS model to score all instructions (brown arrow). Then it selects the top
n1 instructions ranked by quality. Next, a clustering model (violet arrow) groups all instructions into k clusters,
selecting n2 from each. These are concatenated and deduplicated to form a diverse, high-quality sub-dataset for
training AlpaCaR.

GPT-4 (version: GPT-4-1106-preview). Further
analysis reveals that GPT-4 favors original instruc-
tions in 62.2% of incorrect cases, showing that even
advanced GPT models often prefer GPT-aligned in-
structions. Additionally, GPT-4 struggles to recog-
nize nuanced semantic changes made by experts in
37.8% of incorrect cases, revealing its difficulty in
recognizing expert and nuanced semantic changes
with minimal adjustments. Despite GPT-4’s strong
alignment with human preferences in most general
tasks, its subpar performance on the expert-revised
dataset highlights a subtle gap between expert pref-
erences and GPT preferences.

2.4 Diversity

Within the instruction filtering framework, it is
imperative to filter out a minimal subset of data
from a vast array of instructions, resulting in a lim-
ited number of instructions per task. In such low-
resource scenarios, Dong et al. (2023) has demon-
strated that blending training data from various
tasks enhances the LLMs’ proficiency across differ-
ent abilities. Intuitively, by assigning a task label
to each instruction pair, we can preserve instruc-
tion pairs associated with a broader range of tasks,
thereby facilitating cross-task instruction synergy
and enhancing model performance. To determine
task labels for instruction pairs, we evaluated man-
ual labeling, classification models, and clustering
models, selecting clustering for our study. Manual
labeling, though more accurate, is labor-intensive

and less adaptable to various datasets. We hypothe-
size that instruction pairs within the same task are
semantically close, allowing their distribution to
be learned via classification models. Nonetheless,
such models may struggle with flexibility when
faced with out-of-domain data.

To enhance the method’s versatility, we opted
for an unsupervised clustering-based approach to
preserve data diversity. A clustering algorithm can
identify semantically close instruction pairs and
form clusters for different tasks. Moreover, this
choice allows for efficient adaptation to different
datasets without retraining from scratch by form-
ing new clusters when encountering out-of-domain
instruction pairs.

Regarding the clustering methodology, we em-
ploy the k-Means algorithm. Initially, a sentence-
transformers model is used to map sentences to a
384-dimensional dense vector space. Subsequently,
semantic features are PCA-reduced to retain 95%
of dimensions. Finally, by setting the number of
clusters as k =

√
n/2, all 52k instruction pairs

are clustered into 161 clusters. The diversity of the
instruction sub-dataset is maintained by adjusting
the quantity of instruction pairs within each cluster.

3 Experimental Setup

To compare AlpaCaR with other models, we obtain
a single response for each test set sample using
a fixed prompt (Taori et al., 2023). Judge LLMs
are then compare responses generated by LLMs
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Method Num Size PandaLM Vicuna CoachLM Self-instruct

WS↑ WR↑ QS↑ WS↑ WR↑ QS↑ WS↑ WR↑ QS↑ WS↑ WR↑ QS↑

Alpaca-PandaLM 52k 7B 1.224 49.4% 72.9% 0.288 8.8% 20.0% 0.867 28.7% 58.0% 1.075 42.9% 64.7%
Alpaca-cleaned 52k 7B 1.276 53.5% 74.1% 0.300 8.8% 21.3% 0.953 35.3% 60.0% 1.083 42.5% 65.9%
Vicuna 70k 7B 1.276 53.5% 74.1% 0.688 17.5% 51.3% 0.787 23.3% 55.3% 0.877 25.8% 61.9%
Alpaca 52k 7B 1.341 54.1% 80.0% 0.363 11.3% 25.0% 0.913 32.7% 58.7% 1.139 42.9% 71.0%
Alpagasus 9k 7B 1.324 54.1% 78.2% 0.463 13.8% 32.5% 0.807 25.3% 55.3% 1.123 44.4% 67.9%
AlpaCaR 1k 7B 1.594 70.6% 88.8% 0.813 27.5% 53.8% 1.020 37.3% 64.7% 1.448 61.9% 82.9%

Alpaca 52k 13B 1.365 56.5% 80.0% 0.363 8.8% 27.5% 0.940 30.7% 63.3% 1.155 45.2% 70.2%
Alpagasus 9k 13B 1.347 54.7% 80.0% 0.338 6.3% 27.5% 0.880 28.0% 60.0% 1.230 48.4% 74.6%
AlpaCaR 1k 13B 1.535 65.9% 87.6% 1.025 37.5% 65.0% 1.153 44.0% 71.3% 1.357 56.3% 79.4%

Alpaca 52k 30B 1.276 50.0% 77.6% 0.425 11.3% 31.3% 0.900 28.0% 62.0% 1.155 43.7% 71.8%
Alpagasus 9k 30B 1.382 57.1% 81.2% 0.438 8.8% 35.0% 0.920 30.0% 62.0% 1.214 46.8% 74.6%
AlpaCaR 1k 30B 1.553 67.1% 88.2% 0.950 28.8% 66.3% 1.120 43.3% 68.7% 1.377 57.1% 80.6%

Table 2: Comparative analysis of AlpaCaR and existing methods in the primary experiment. Winning rates are
determined relative to the reference responses of the test sets, providing a quantitative measure of performance.

against each other or human reference responses,
identifying their preferred responses. PandaLM,
GPT-4 and human are used as judge, yielding con-
sistent evaluation conclusions.

3.1 Test Datasets

To avoid confusion arising from the similarity
in naming between models and datasets, we use
the format “ModelName_DatasetSize” to repre-
sent datasets. Following previous methodolo-
gies, we assess four datasets: Self-instruct_252
(Li et al., 2023b), Vicuna_80 (Chiang et al.,
2023), PandaLM_170 (Wang et al., 2023b), and
CoachLM_150 (Liu et al., 2023b). This approach
covers a broader range of instructions, minimizing
evaluation bias.

3.2 Generations

For each test instruction, a single response is gen-
erated from each baseline model using LLaMA-
Factory’s default settings (Zheng et al., 2024b):
temperature=0.95, top_p=0.7, top_k=50, no beam
search, and a maximum token length to 512.

3.3 Evaluate Metrics

For each sample, the judge model receives a single
instruction and two candidate responses. It labels
the winning response or a tie if both stand out sig-
nificantly. To address potential bias of LLM judges
preferring specific positions, we tested the results
twice by swapping the response order and define
the final judgment based on:

• win : win twice, or win once and tie once
• lose : lose twice, or lose once and tie once
• tie : tie twice, or win once and lose once

We compute three types of winning rates: (1)
WS, a winning score formulated as WS=1 +
#win−#lose

#all . (2) WR, which considers wins cases

and is given by WR= #win
#all , where #all is the

number of test set samples; (3) QS, a quality score
that measures the ratio of responses reaching the
reference level, formulated as QS= #win+#tie

#all .
Evaluation Approach: (1) GPT-4 Turbo, cur-

rently the most powerful LLM widely used to re-
place manual responses quality assessments, with
prompts designed by Chiang et al. (2023). How-
ever, this method faces limitations due to API
dependency and inherent biases. (2) PandaLM,
an open-source evaluation model that can be de-
ployed locally, providing efficient LLM assess-
ments (Wang et al., 2023b). Trained on 300k sam-
ples using GPT-3.5, it effectively mitigates biases
and achieves 88.3% of GPT-4’s evaluation capabil-
ity. (3) Human, three experts with an average of
12.57 years of experience independently conducted
comparisons based on the criteria in Appendix E
After comprehensive consideration, we use the eval-
uation results of PandaLM to measure the model’s
instruction-following ability in most experiments,
while some key principal experiments utilize GPT-
4 and human for assessment. The prompt for GPT-
4’s evaluation is designed by Chiang et al. (2023),
as detailed in the Appendix B.1.

4 Results and Analysis

In this section, we compared AlpaCaR with base-
line models, including Alpaca, Alpaca-PandaLM,
Alpaca-cleaned, Alpagasus, and Vicuna. We repli-
cated all baseline models at a 7B scale and demon-
strated the superiority of AlpaCaR at 13B and 30B
scales.
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Figure 3: Consistency between IQS scores and the per-
formance of LLMs.

4.1 Comparison with Baselines

We conduct a comparative analysis of two estab-
lished baseline LLMs, Alpaca and Vicuna, which
were fine-tuned using 52,000 text instructions
through text-davinci-003 and 70,000 ChatGPT di-
alogues, respectively. Furthermore, we explore
three models that advance upon Alpaca: Alpaca-
PandaLM and Alpaca-cleaned, which employ in-
structional enhancement methods, and Alpagasus,
which incorporates an instruction filtering method.
All models were trained with identical hyperparam-
eter settings. As delineated in Table 2, AlpaCaR,
at the 7B scale, outperforms not only the foun-
dational models of Alpaca and Vicuna but also
Alpaca-PandaLM, Alpaca-cleaned, and Alpaga-
sus. Overall, AlpaCaR achieves significant per-
formance improvements over Alpaca across the 7B,
13B, and 30B scales, validating the efficacy of the
CaR method. The notable performance gains of
AlpaCaR, accomplished with reduced data usage
compared to Alpagasus, underscore the importance
of leveraging high-quality human preferences and
data diversity in enhancing model performance.

4.2 Reliability of IQE Results

To verify whether the IQE results genuinely reflect
the performance of LLMs after IT, we examined the
correlation between scores given by the IQS model
and the performance of fine-tuned LLMs on test
sets. Given that Alpagasus obtained 9k instructions
rated above 4.5 using GPT-3.5-Turbo, we simi-
larly selected the top 9k instructions ranked by IQS
model and Comet model. We then calculated the
average score for the three IT sub-datasets using the
IQS model, fine-tuned LLaMA-7B, and tested its
performance by averaging models’ winning scores
on four datasets against reference. As illustrated
in Fig. 3, the average IQS score and the fine-tuned
model’s performance are generally consistent, in-
dicating that IQE results can approximately reflect
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Figure 5: Performances with varying n2.

the performance of LLMs after fine-tuning.

4.3 Ablation Study

Quality Dimension. To illustrate the significance
of data quality, we employed the IQS model’s score
to rank 52,000 instructions. Subsequently, we ex-
tracted subsets of the top 1,000, 2,000 and up to
42,000 instructions to train LLaMA-7B. In Fig. 4,
the horizontal axis represents the size of instruc-
tion dataset, where a higher count signifies more
instructions of relatively lower quality, while the
vertical axis shows the winning score relative to
Alpaca. The results indicate that models trained
with selected data generally surpass the one trained
with the entire dataset. As more instructions of rel-
atively lower quality are included, the performance
of the LLM generally declines. Remarkably, the
model approaches its optimal performance with a
mere 1,000 high-quality IT data. Therefore, in the
CaR method, we select n1 = 1000 instructions to
ensure the chosen IT sub-dataset is of high quality.

Selection of n2: Trade-off between Quantity and
Quality. We compared the number of samples
selected from each cluster after k-means clustering.
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Method Vicuna Self-instruct

WS↑ WR↑ QS↑ WS↑ WR↑ QS↑

40× 4 0.625 20.0% 31.3% 1.226 48.4% 61.3%
80× 2 0.600 18.8% 30.0% 1.290 52.4% 64.5%
160× 1 0.688 23.8% 34.4% 1.365 59.5% 68.3%

Table 3: Ablation on Diversity: Models with more
diverse instruction sets perform better. (160× 1 means
1 highest IQS-scored sample per 160 clusters)

7B 13B 30B
0.6

0.8

1.0

1.2

Alpaca Random AlpacaCaR

Figure 6: Compare AlpaCaR with baselines, including
Alpaca and randomly selected 1k instructions.

Fig. 5 demonstrates that, compared to using only
1k high-quality data selected by IQS model, the
CaR method enhances performance when a small
number of samples (up to 5) are selected from each
cluster. Selecting too many samples can negatively
impact the overall quality of the IT sub-dataset and
the performance of the LLMs. Moreover, the CaR
method achieves nearly optimal performance by
selecting n2 = 1 sample from each cluster, thus
enhancing the diversity of the IT sub-dataset.

Importance of Diversity. An ideal IT dataset
should encompass a rich variety of data, but deter-
mining the optimal number of instructions per clus-
ter required for the model to effectively correspond
to the task remains a challenge. We designed exper-
iments to demonstrate the importance of diversity
and explore values of n2, the trade-off between the
number and quality of samples per cluster.

Designing strict ablation experiments in this con-
text is challenging due to the difficulty in ensuring
consistent instruction set quality while maintaining
the same number of instructions. To explore this,
we established three experimental groups with in-
creasing diversity (baseline: reference response).
In Table 3, the winning rates on the Self-Instruct
and Vicuna test sets show that models with more
diverse instruction sets perform better.
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Figure 7: GPT-4 result on Vicuna_80 dataset: AlpaCaR
vs. Alpaca.

4.4 Compare with Random & GPT-4 Result

Fig. 6 presents the results of ablation experiments,
revealing that randomly selecting 1,017 instruction
pairs from 52k dataset leads to a decrease in model
performance compared to Alpaca. In contrast,
the instruction pairs selected by the CaR method
show significant improvements at 7B (29.8%), 13B
(32.7%), and 30B (33.1%) scales.

Furthermore, to address cost considerations, we
employed GPT-4’s evaluation framework exclu-
sively on four datasets to compare AlpaCaR against
Alpaca. As depicted in Fig. 7 and elaborated upon
in Appendix D, GPT-4 exhibited similar evaluative
outcomes: AlpaCaR outperformed baseline in the
majority of instances, thereby substantiating the ef-
ficacy of the CaR method. Employing CaR, which
involves selecting 1.96% of the dataset, has proven
to yield superior preferences across a variety of
parameter scales.

4.5 Human Evaluation

We have formulated detailed evaluation criteria,
covering seven aspects: fluency, relevance, correct-
ness, consistency, satisfaction, informativeness and
security, which are further categorized into 27 pri-
mary and 58 secondary classifications. Additional
details are provided in Appendix E.

We compared AlpaCaR 30B vs. Alpaca 30B on
Vicuna_80 test set. The human evaluation results
demonstrated that AlpaCaR performed at least as
well as Alpaca across all categories and was pre-
ferred by language experts in the vast majority of
cases. The specific results are shown in Table 4.

Table 7 in Appendix F displays case study from
the math category. We found that under strict eval-
uation criteria, experts believed that neither model
provided the correct final answer, resulting in a
tie. However, a more detailed analysis reveals that
AlpaCaR utilized CoT to explore the correct rea-
soning steps, although errors occurred after certain
steps. In contrast, Alpaca simply provided a con-
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Category win lose tie WS↑

Writing 8 1 1 1.700
Roleplay 5 0 5 1.500
Common-sense 9 0 1 1.900
Fermi 7 2 1 1.500
Counterfactual 7 0 3 1.700
Coding 3 3 1 1.000
Math 0 0 3 1.000
Generic 6 0 4 1.600
Knowledge 7 2 1 1.500
Total 52 8 20 1.550

Table 4: Human evaluation results on Vicuna_80 dataset:
AlpaCaR_30B vs. Alpaca_30B.

Method Vicuna Self-instruct

WS↑ WR↑ QS↑ WS↑ WR↑ QS↑

Alpaca 0.338 10.00% 16.88% 1.206 45.63% 60.32%
mixed-181k 0.875 28.80% 43.75% 1.349 52.38% 67.46%
CaR_50k 1.113 33.75% 55.62% 1.500 63.89% 75.00%

Table 5: CaR is a stable and effective framework even
on larger datasets

fusingly incorrect answer. We hypothesize that the
IQS model has learned experts’ preferences for de-
tailed reasoning processes presented in the training
data. Consequently, during subset selection, the
IQS model favors instruction pairs that showcase
meticulous reasoning, resulting in the fine-tuned
AlpaCaR exhibiting more comprehensive thought
processes in the form of CoT reasoning.

4.6 Larger Instruction Tuning Datasets

To further explore the performance of CaR in more
massive and complex datasets, we conducted ad-
ditional experiments on even larger instruction
datasets. Following recent work (Du et al., 2023;
Liu et al., 2023a), we combined five instruction tun-
ing datasets, including Alpaca, Dolly_v2 (Conover
et al., 2023), Alpaca-evol-instruct (Xu et al., 2023),
HC3 (Guo et al., 2023), and LIMA (Zhou et al.,
2023), to obtain a large-mixed-dataset containing
181,253 instructions. Then we used CaR to fil-
ter the large-mixed dataset and obtained CaR_50k
containing 50k instructions.

Table 5 shows that the model fine-tuned on 50k
instructions selected by CaR outperforms Alpaca
at the same number of instructions using LLaMA 2
7B as the base pre-trained model. In addition, the
model fine-tuned using CaR_50k outperforms the
one using mixed-181k instruction tuning dataset.

This illustrates that the bottleneck of Alpaca
is not that pre-trained LLaMA cannot learn more
knowledge from more instructions, but rather that

Method Selection Training Total
Alpaca 0$ 733.35$ 733.35$
Alpagasus 12.66$ 104.18$ 116.84$
AlpaCaR 0.02$ 13.07$ 13.09$

Table 6: Cost comparison of 30B scale.

the limited quality of instruction dataset restricts
the model’s performance. It also demonstrates that
CaR is a stable and effective framework even on
larger datasets. CaR framework can filter 50k high-
quality instructions from 181k instruction pairs to
get stronger model performances with less training
overheads.

4.7 Cost Comparison

Here, we compare the computational costs of Al-
paCaR, Alpaca, and Alpagasus, focusing on in-
struction evaluation and full parameter fine-tuning
at the 30B scale, as detailed in Table 6. For in-
struction evaluation using an API-based method,
we refer to the official pricing 3, while for model
training or inference, we consider the rental costs
of GPUs 4. In summary, training AlpaCaR sig-
nificantly saves both time and costs, compared to
Alpaca or Alpagasus.

5 Is the Benefit Derived from Data
Selecting Universally Applicable?

Filtering a high quality instruction sub-dataset to
supervised fine-tuning LLaMA 1 significantly re-
duces computational cost and effectively improves
LLM performances. More crucially, it is essential
to ascertain whether data screening constitutes a
consistent paradigm for performance enhancement,
particularly as pre-trained model become increas-
ingly powerful and model parameters scaling up.
In this section, we used the average WS on Vi-
cuna_80 and Self-instruct_252 test set to explore
the generalization of data selection.

A consistent paradigm when pre-training is
more adequate? Base pre-trained LLMs ac-
quire knowledge through pre-training. LLaMA
1, LLaMA 2, and LLaMA 3 were pre-trained us-
ing 1T, 2.4T, and 15T tokens, respectively. When
pre-trained models exhibit strong capabilities, can
they discern the quality of fine-tuning instructions,
rendering instruction selecting redundant? To in-
vestigate this, we employed LLaMA 1 7B, LLaMA

3https://openai.com/pricing
4https://www.leadergpu.com/
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Figure 8: Impact of data selection as pre-trained model
become more powerful.
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Figure 9: Impact of data selection as models parameters
or instruction quality increase.

2 7B, and LLaMA 3 8B pre-trained models, com-
paring fine-tuning using the full dataset or subsets
filtered by GPT-3.5 Turbo or CaR. Fig. 8 shows the
results on Alpaca_52k and Dolly_15k IT datasets.
The findings suggest that even as base pre-trained
LLMs become more powerful, models fine-tuned
on filtered data surpass those trained on full in-
structions. LLaMA 3 8B is more susceptible to
low-quality instructions, impeding its ability to fol-
low instructions in downstream tasks.

A consistent paradigm when model size scal-
ing up? Many new capabilities and phenomena
emerge as the model parameters scaling up. Thus
another question is whether instruction tuning data
selection is still important as the parameters in-
crease. We experimented the performance of the
model fine-tuned by full versus selected instruc-
tions at the 7B-30B scale, due to limited computa-
tional conditions. As shown on the left side of Fig.
9 (left), The horizontal direction showed no sig-
nificant improvement in model performance even
as the model size increased. However, the vertical
direction showed that the model performs better
using instructions selected by GPT-3.5 or CaR at
all scales.

A consistent paradigm when instructions qual-
ity improves? Alpaca-GPT4 (Peng et al., 2023)
contains instruction generated by GPT-4 using Al-
paca prompts, which quality significantly improved

compared to Alpaca. Distinguishing high-quality
instructions remains a challenge when instruction
quality generally improves. As depicted in Fig.
9 (right), models trained by CaR-selected instruc-
tions are inferior to full instructions. We argue that
the IQS model cannot significantly discriminate
instruction quality in such a high-quality data dis-
tribution, so randomly filtering instructions caused
performance degradation similar to Fig. 6. A simi-
lar phenomenon occurs when using LLMs to select
instructions. Qwen1.5-110B-chat and Qwen-max
scored more than 1,800 of the 2,000 instructions
in the Alpaca-GPT4 dataset as perfect score, in-
dicating that the quality of the evaluated instruc-
tions in this situation approaching the boundaries
of the LLMs’ capabilities. So data selecting meth-
ods at higher data quality are still challenging,
and maybe gradient-based (Xia et al., 2024) or in-
context learning-based (Li et al., 2023c) methods
demonstrate greater potential.

6 Conclusion

In this paper, we focus on exploring and resolv-
ing the issue of instruction selection during su-
pervised fine-tuning stage. We introduce the CaR
method and examine two perspectives that are war-
rant considered: (1) Evaluating instruction quality
using more authentic human preferences: models
trained with data annotated by linguistic experts
show higher agreement rates and the selected in-
structions lead to better-performing models. (2)
Instruction diversity inspires LLMs’ stronger capa-
bility: Under our selection framework, preserving
a small number of instructions for different tasks
through cluster improves model performance. Ex-
perimental results show that fine-tuning LLaMA
(ranging from 7B to 30B parameters) with a 1.96%
subset of instructions selected by CaR outperforms
models trained on full datasets or data selected by
GPT. Moreover, data selecting methods using GPT-
family or CaR is a consistent paradigm whether
the pre-trained model is more capable or the model
parameters scaling up, while those at higher data
quality are still challenging. Additionally, our ap-
proach can be deployed locally without relying on
APIs, thereby enabling a more efficient instruction
selection approach in low-computation resource
environments.
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7 Limitation

Despite the outstanding performance of CaR across
multiple test sets, its experiments were confined
to filtering on only several datasets. The diverse
formats of different open-source instruction sets
pose challenges for the academic community inter-
ested in instruction filtering tasks. In the future, we
plan to validate the effectiveness of CaR on more
datasets such as WizardLM_evol_instruct_70k (Xu
et al., 2023). Moreover, while CaR is primarily
used for single-turn dialogue instruction filtering,
exploring its application in multi-turn dialogue in-
struction filtering presents an attractive direction
for future research.

8 Potential Risk & Ethical Consideration

We reveal the following potential risks of our re-
search based on ethical considerations:

1. Quality of instruction data: While the pro-
posed method aims to select high-quality in-
struction data, there is still a risk that the se-
lected subset may not fully represent the diver-
sity and complexity of the entire dataset. This
could potentially lead to biased or incomplete
training of models and cause adverse social
impact.

2. Bias and fairness: As with any AI research,
there is a need to ensure fairness and miti-
gate biases. The selection process and scoring
model used in CaR should be carefully moni-
tored to prevent any unintentional biases, such
as favoring certain types of instructions or ex-
cluding underrepresented groups.

3. Industrial deployment and responsible use: As
the method is designed for industrial scenar-
ios, it is important to consider the responsi-
ble use of the developed models. Ensuring
that the models are not used for unethical
purposes or harmful applications is crucial.
Additionally, monitoring and addressing any
unintended consequences or biases that may
emerge during deployment should be a prior-
ity.

9 Acknoledgement

This work was supported in part by the National
Science Foundation of China (No.62276056), the
Natural Science Foundation of Liaoning Province

of China (2022-KF-16-01), the Fundamental Re-
search Funds for the Central Universities (Nos.
N2216016 and N2316002), the Yunnan Fundamen-
tal Research Projects (No. 202401BC070021), and
the Program of Introducing Talents of Discipline
to Universities, Plan 111 (No.B16009).

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anasta-
sios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E
Gonzalez, et al. 2024. Chatbot arena: An open plat-
form for evaluating llms by human preference. arXiv
preprint arXiv:2403.04132.

Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan
Wang. 2016. Data cleaning: Overview and emerg-
ing challenges. In Proceedings of the 2016 inter-
national conference on management of data, pages
2201–2206.

Mike Conover, Matt Hayes, Ankit Mathur, Xiangrui
Meng, Jianwei Xie, Jun Wan, Sam Shah, Ali Gh-
odsi, Patrick Wendell, Matei Zaharia, et al. 2023.
Free dolly: Introducing the world’s first truly open
instruction-tuned llm.

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng-
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv
preprint arXiv:2310.05492.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. arXiv preprint arXiv:2311.15653.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. 2023. Al-
pacafarm: A simulation framework for methods

473

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


that learn from human feedback. arXiv preprint
arXiv:2305.14387.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Mustafa Hajij, Ghada Zamzmi, Karthikeyan Natesan
Ramamurthy, and Aldo Guzman Saenz. 2021. Data-
centric ai requires rethinking data notion. arXiv
preprint arXiv:2110.02491.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan,
Hai Zhao, and Pengfei Liu. 2023a. Generative
judge for evaluating alignment. arXiv preprint
arXiv:2310.05470.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, et al. 2023c. One shot
learning as instruction data prospector for large lan-
guage models. arXiv preprint arXiv:2312.10302.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023a. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Xiaoyong Liu and W Bruce Croft. 2004. Cluster-based
retrieval using language models. In Proceedings of
the 27th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 186–193.

Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wen-
bing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao
Zhang, Min Zhang, et al. 2023b. Automatic instruc-
tion optimization for open-source llm instruction tun-
ing. arXiv preprint arXiv:2311.13246.

Mohammad Motamedi, Nikolay Sakharnykh, and Tim
Kaldewey. 2021. A data-centric approach for training
deep neural networks with less data. arXiv preprint
arXiv:2110.03613.

Yongyu Mu, Abudurexiti Reheman, Zhiquan Cao,
Yuchun Fan, Bei Li, Yinqiao Li, Tong Xiao, Chun-
liang Zhang, and Jingbo Zhu. 2023. Augmenting
large language model translators via translation mem-
ories. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 10287–10299,
Toronto, Canada. Association for Computational Lin-
guistics.

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry
Winograd, et al. 1999. The pagerank citation ranking:
Bringing order to the web.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin,
Hong Cheng, and Tianyi Wu. 2009. Rankclus: in-
tegrating clustering with ranking for heterogeneous
information network analysis. In Proceedings of the
12th international conference on extending database
technology: advances in database technology, pages
565–576.

Hongyin Tang, Xingwu Sun, Beihong Jin, Jingang
Wang, Fuzheng Zhang, and Wei Wu. 2021. Improv-
ing document representations by generating pseudo
query embeddings for dense retrieval. arXiv preprint
arXiv:2105.03599.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023a. Large language models are not fair evaluators.
arXiv preprint arXiv:2305.17926.

474

https://doi.org/10.18653/v1/2023.findings-acl.653
https://doi.org/10.18653/v1/2023.findings-acl.653
https://doi.org/10.18653/v1/2023.findings-acl.653
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023b.
Pandalm: An automatic evaluation benchmark for
llm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Zhiqiang Yuan, Junwei Liu, Qiancheng Zi, Ming-
wei Liu, Xin Peng, and Yiling Lou. 2023. Eval-
uating instruction-tuned large language models on
code comprehension and generation. arXiv preprint
arXiv:2308.01240.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan
Yang, Zhimeng Jiang, Shaochen Zhong, and Xia Hu.
2023. Data-centric artificial intelligence: A survey.
arXiv preprint arXiv:2303.10158.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024a.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYan-
han YeYanhan, and Zheyan Luo. 2024b. LlamaFac-
tory: Unified efficient fine-tuning of 100+ language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 400–410,
Bangkok, Thailand. Association for Computational
Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

A Related work

Quality Estimation and Comet framework.
Quality estimation is a pivotal task in machine
translation, involving scoring or ranking transla-
tion results to select higher-quality data. Comet
(Rei et al., 2020) leverages input and reference
translations to accurately assess translation quality,
employing two architectures: the Estimator model
and the Translation Ranking model. The Estima-
tor model directly predicts quality scores for each
evaluation instance, while the Translation Ranking
model learns parameters from paired evaluation
data to predict reasonable quality scores.

Algorithm - Data Lifecycle. In the modern era
of deep learning, high-quality data has become
the cornerstone for training robust and effective
models. Over the past decade, there has been a
growing emphasis on the collection and curation
of superior data (Chu et al., 2016; Motamedi et al.,
2021). The emergence of data-centric AI has un-
derscored the belief that data quality is as crucial as
algorithmic advancements within the AI/ML life-
cycle (Hajij et al., 2021; Zha et al., 2023). This
paradigm shift has been particularly evident since
the introduction of the Transformer architecture
(Vaswani et al., 2017), which has revolutionized
the field of language modeling. Rather than focus-
ing on disruptive innovations in model structure,
researchers have concentrated on leveraging the
effectiveness of the Transformer architecture by
stacking transformer blocks to create more potent
models. Additionally, significant improvements in
model performance have been achieved through
the construction of task-specific datasets and the
enhancement of data quality (Zhou et al., 2023;
Chen et al., 2023; Li et al., 2023c).

Futher perspective of clustering and ranking.
Many domains have employed methods similar to
clustering and ranking. In information retrieval,
Google extensively utilizes the PageRank algo-
rithm (Page et al., 1999) to calculate the importance
of hyperlinks between webpages. Liu et al. devel-
oped a cluster-based retrieval model by construct-
ing language models for clusters (Liu and Croft,
2004), combining documents within the same clus-
ter and searching/ranking clusters based on query
generation likelihood. Tang et al. enhanced the
Bi-encoder’s performance in dense information re-
trieval tasks by using clustering algorithms to gener-
ate "pseudo-query embeddings" (Tang et al., 2021).
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Selecting suitable data for LLM inference is cru-
cial in the RAG field, as discussed by Yuan et al.
(2023) and Mu et al. (2023), who explore methods
for finding appropriate demonstrations to improve
LLM performance. In the network domain, Sun
et al. introduced the RankClus framework (Sun
et al., 2009), which integrates clustering and rank-
ing methods to strengthen heterogeneous informa-
tion network analysis.

Evaluation of LLMs. Evaluating the open-
domain instruction-following capabilities of LLMs
presents a significant challenge. Currently, the pre-
vailing approach involves employing human evalu-
ators or GPT-4 to compare the inference response
of different models. Consequently, recent studies,
including PandaLM (Wang et al., 2023b), Vicuna
(Chiang et al., 2023), CoachLM (Liu et al., 2023b),
and Self-Instruct (Wang et al., 2022), have curated
and provided their own instruction sets to evaluate
instruction-finetuned LLMs. Additionally, leader-
boards such as MT-Bench (Zheng et al., 2024a),
Alpaca-Eval (Dubois et al., 2023), and Chatbot
Arena (Chiang et al., 2024) have been established
to measure the instruction-following abilities of
these models. PandaLM (Wang et al., 2023b) and
Auto-J (Li et al., 2023a) efforts focus on training
LLMs to provide more impartial and accurate eval-
uations. By leveraging these latest advancements,
we aim to evaluate our model’s performance us-
ing human-generated instruction sets, ensuring a
comprehensive and rigorous assessment of its ca-
pabilities in following open-ended instructions.

B Evaluate Prompts

B.1 IQE Prompt

[The Start of Assistant A’s Instruction and Answer]
{Instruction pair 1}
[The End of Assistant A’s Instruction and Answer]
[The Start of Assistant B’s Instruction and Answer]
{Instruction pair 2}
[The End of Assistant B’s Instruction and Answer]
[System]
We would like to request your feedback on the per-
formance of two AI assistants in response to the user
question displayed above. Please rate the helpfulness,
relevance, accuracy, level of details of their responses.
Each assistant receives an overall score on a scale of
1 to 10, where a higher score indicates better overall
performance. Please first output a single line containing
only two values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by a space.
In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential
bias and ensuring that the order in which the responses
were presented does not affect your judgment.

B.2 Response Comparison Prompt

[Question]
{Instruction}
[The Start of Assistant 1’s Answer]
{Response 1}
[The End of Assistant 1’s Answer]
[The Start of Assistant 2’s Answer]
{Response 2}
[The End of Assistant 2’s Answer]
[System]
Please act as an impartial judge and evaluate the qual-
ity of the responses provided by two AI assistants to
the user question displayed below. You should choose
the assistant that follows the user’s instructions and an-
swers the user’s question better. Your evaluation should
consider factors such as the helpfulness, relevance, ac-
curacy, depth, creativity, and level of detail of their
responses. Begin your evaluation by comparing the
two responses and provide a short explanation. Avoid
any positional biases and ensure that the order in which
the responses were presented does not influence your
decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names
of the assistants. Be as objective as possible. After
providing your explanation, output your final verdict by
strictly following this format: “[[A]]” if assistant A is
better, “[[B]]” if assistant B is better, and “[[C]]” for a
tie.

C Specifics about Instruction Quality
Estimation

C.1 Evaluation Metric of IQE

The second row of Table 1 presents results for in-
struction pairs sourced from the IQE test set, which
are instructions revised by language expert. The
third row shows accuracy on instruction pairs from
Vicuna_80, demonstrating the models’ generaliza-
tion to other distributions. The instructions are
provided by the dataset, while language experts
evaluates the quality of two responses generated by
different models, establishing the ground truth la-
bels. In the calculation of accuracy, if the absolute
difference between the scores of two responses is
less than 0.01 assigned by IQS or CometInstruct,
the outcome is considered a “Tie”.

C.2 Model Architecture of IQS and
Cometinstruct

In the IQE task, the IQS model and Comet model
correspond to the Estimator model architecture
and Translation Ranking model architecture in the
Comet framework, respectively. As shown in Fig.
10, The Cometinstruction model concatenates in-
structions with input to form anchors. It then feeds
pairs of better and worse responses into the model.
Finally, the model is trained using a triplet margin
loss function to distinguish between the superior
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Figure 10: Detailed architecture of Cometinstruct model(left) and Instruction pair quality scoring model(right).
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Figure 11: GPT-4 result on CoachLM_150 dataset: Al-
paCaR vs. Alpaca.
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Figure 12: GPT-4 result on Self-instruct_252 dataset:
AlpaCaR vs. Alpaca.
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Figure 13: GPT-4 result on Pandalm_170 dataset: Al-
paCaR vs. Alpaca.

and inferior responses. The IQS model concate-
nates instruction pairs and then trains the model
using Mean Squared Error as the loss function.

D More Results about GPT-4 Evaluations

As illustrated in Fig. 11, 12, 13. Baseline: refer-
ence responses.

E Specifics about Human Evaluation
Criteria

• Fluency
– Redundancy: verbose repetition (>=2)
– Redundancy: extraneous content clutter
– Missing: incomplete response
– Error: syntax & semantics issues
– Errors: word & symbol errors

• Relevance
– Irrelevant
– Incorrect understanding of object / personality /

relationship
– Poor compliance

• Correctness
– Incorrect answer to the question
– Incorrect derivation process

• Consistency
– Intrasentence consistency
– Contextual consistency
– Content Logical Consistency
– Query response consistency

• Satisfaction
– Unclear views, no precise conclusions given (ad-

vice / recommendations)
– Insufficiently organized and comprehensive con-

tent
– Poor extensibility, almost a carbon copy of the

query information, lack of embellishments
– Lack of emotional feedback
– Not careful enough to reply
– Biases in characterization and speaker tone
– Overly subjective and unsubstantiated
– Some of the recommendations are ineffective, ir-

relevant to the issue or lack specific advice and
assistance

– Indeed a problem, but a subjective experience
problem that is hard to describe

• Informativeness
– Missing interpretive information
– Lack of richness

• Security
– Minor or moderate security violations
– Serious security violations
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Instruction Input AlpaCaR_30B Alpaca_30B Human
evaluation

Given that f(x) = 5xˆ3 -
2x + 3, find the value
of f(2).

\ The value of f(2) = 5(2)ˆ3 - 2(2) + 3
= 5(8) - 4 + 3 = 44. The value of f(2) is 3. Tie

Solve for x in the
equation 3x + 10 = 5(x
- 2).

\

The equation 3x + 10 =
5(x - 2) can be rearranged to solve for x.
First, subtract 5(x - 2) from both sides
to get 3x - 5x + 10 = 5(x - 2) - 5x + 10.
Then, x = 5.

x = 7 Tie

If the endpoints of a
line segment are (2,
-2) and (10, 4), what is
the length of the
segment?

\

The length of the line segment can be found
using the formula for the distance between
two points:
d =

√
(x2 - x1)2 + (y2 - y1)2

In this case, x2 = 10, x1 = 2, y2 = 4, and y1 = -2.
Plugging these numbers into the formula, we get
d =

√
(10 - 2)2 + (4 - (-2))2

Similarly, we can calculate the length of the line
segment using the Pythagorean-
Pythagorean-Circles Theorem:
d =

√
(x2 + y2)

In this case, x2 = 10, y2 = 4, so
d =

√
(10 + 4) = 5.

Therefore, the length of the line segment is 5.

The length of the
line segment is 8. Tie

Table 7: Case study of LLMs responses in vicuna_80 math category.

F Case study

As illustrated in Table 7.

G Profile of Involved Language Experts

To ensure a comprehensive and rigorous human
evaluation of LLM abilities, we established a col-
laboration with the language service center of a
prominent international corporation. We recruited
a team of highly educated, multilingual language
experts with diverse skills in translation, localiza-
tion, writing, and testing, who dedicated their full-
time efforts to this task. Specifically, three experts
possessing an average experience of 12.57 years,
are responsible for conducting a human evaluation
of AlpaCaR and other LLMs.

H Discussion of CaR framework

Selecting top-n ranked samples for each cluster
is indeed an intuitive and interesting idea that
integrates the two steps of clustering and rank-
ing. We have also experimented with this set-
ting in our early research. However, a challenge
arises when the predefined number of clusters k =√
Numberinstructions/2 = 161 is used. When top-

n is small, the resulting dataset size is insufficient
for the model to achieve good instruction-following
capacity. Conversely, when top-n is large, it intro-
duces more low-quality instruction pairs, which
negatively impacts the performance of LLMs. An

Top-n Vicuna Self-instruct

WS↑ WR↑ QS↑ WS↑ WR↑ QS↑

10 1.188 55.00% 90.00% 1.230 45.63% 77.38%
20 1.375 51.25% 83.75% 1.167 42.86% 73.81%
30 1.300 57.50% 85.00% 1.111 38.49% 72.62%
CaR(ours) 1.475 58.75% 88.75% 1.310 51.98% 78.97%

Table 8: Discussion of CaR framework: k × top-n v.s.
n1 + k ×n2

early version of our experimental results (baseline:
Alpaca 52k) is shown in Table 8.

The experimental results indicate that this com-
binatorial approach performs less effectively than
treating the two components separately. Our idea
is to additionally and separately extract the top n1

instructions using only the ranking step to ensure
that most high-quality instructions are included (as
indicated in section 2.2) while using a smaller top
n2 to prevent the inclusion of a large number of
low-quality instruction pairs. Experimenting with
different values of k might alleviate this problem,
but we aim to propose a more automated process
and avoid involving additional hyperparameter tun-
ing.
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