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Abstract

We explore multi-step reasoning in vision-
language models (VLMs). The problem is chal-
lenging, as reasoning data consisting of mul-
tiple steps of visual and language processing
are barely available. To overcome the chal-
lenge, we first introduce a least-to-most visual
reasoning paradigm, which interleaves steps
of decomposing a question into sub-questions
and invoking external tools for resolving sub-
questions. Based on the paradigm, we further
propose a novel data synthesis approach that
can automatically create questions and multi-
step reasoning paths for an image in a bottom-
up manner. Our approach divides the complex
synthesis task into a few simple sub-tasks, and
(almost entirely) relies on open-sourced mod-
els to accomplish the sub-tasks. Therefore, the
entire synthesis process is reproducible and
cost-efficient, and the synthesized data is qual-
ity guaranteed. With the approach, we con-
struct 50k visual reasoning examples. Then, we
develop a visual reasoner through supervised
fine-tuning, which is capable of generally en-
hancing the reasoning abilities of a wide range
of existing VLMs in a plug-and-play fashion.
Extensive experiments indicate that the visual
reasoner can consistently and significantly im-
prove four VLMs on four VQA benchmarks.
Our code and dataset are available at https://
github.com/steven-ccq/VisualReasoner.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Achiam et al., 2023) have demonstrated
remarkable performance across various tasks in
natural language processing (NLP). Encouraged
by the success, the artificial intelligence commu-
nity is now enthusiastically exploring ways to en-
able LLMs to process information from modali-
ties beyond language, leading to a recent surge

* Equal Contribution.
† Corresponding Authors.

Figure 1: Top Left: An example from TextVQA (Singh
et al., 2019) with “2010” as the ground truth. Middle
Left: Response from LLaVA-NeXT-13B (Liu et al.,
2024a). Bottom Left: Response from GPT-4o with
the prompt “{question} please think step by step and
answer the question”. Right: Response given by the
proposed method, which is also the only correct answer.

in the development of large multimodal models
(LMMs) (Alayrac et al., 2022; Liu et al., 2024b;
Team et al., 2023; Dai et al., 2024; Bai et al., 2023;
Ormazabal et al., 2024). By adopting a pre-training
and instruction tuning paradigm, representations of
multiple modalities are effectively fused in deep
architectures, bringing substantial advancements
in tasks, such as image captioning (Young et al.,
2014), visual question answering (VQA) (Goyal
et al., 2017), and optical character recognition
(OCR) (Mishra et al., 2019), among others.

In this work, we explore vision language models
(VLMs) as a typical example of LMMs. Despite
the rapid progress, state-of-the-art VLMs still face
challenges in reasoning over visual content. As
exemplified in Figure 1, intuitively, the question
can be correctly solved following a “least-to-most”
paradigm (Zhou et al., 2022), in which the ques-
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tion is decomposed into a series of sub-questions,
and an answer is deduced by resolving the sub-
questions step by step. However, existing VLMs
are inept at performing such multi-step reasoning
because (1) Multi-step reasoning paths, like the one
shown in Figure 1 (right), are rarely included in
the training data (Dai et al., 2024)1. The VLMs
have few opportunities to develop the reasoning
capability from the subsequent post-training. And
(2) different from reasoning over text, solving ques-
tions in a vision-language context may require ma-
nipulating the input image (e.g., marking a specific
area) and deducting the next steps from both textual
and visual intermediate results. The requirement,
however, is difficult to accomplish for most VLMs,
whether open-sourced or proprietary.

We present least-to-most visual reasoning, a gen-
eral paradigm to guide VLMs to decompose a given
question into sub-questions and invoke tools to re-
solve each sub-question for handling diverse visual
reasoning tasks. While there have been extensive
studies for LLMs regarding chain-of-thought rea-
soning (Wei et al., 2022b; Yao et al., 2022, 2024;
Wang et al., 2022) and tool-invoking (Schick et al.,
2024; Qin et al., 2023b), the techniques are less ex-
plored in the context of VLMs. Since data scarcity
is a major obstacle, we propose a novel data syn-
thesis approach, dubbed least-to-most synthesis,
to automatically generate a “(question, reasoning
path)” tuple for a given image in a bottom-up man-
ner. Specifically, the pipeline of least-to-most syn-
thesis consists of four steps: (1) Entity Recognition:
recognizing all entities in an image; (2) Node Con-
struction: constructing three types of nodes, each
aggregating an image with a few entities and some
textual features; (3) Reasoning Process Synthesis:
synthesizing a reasoning path from a sampled chain
of nodes. Based on the nodes, the reasoning path is
formed by connecting a sequence of sub-questions
and tool arguments generated by an LLM; and (4)
Question Synthesis: generating the main question
by recursively combining the sub-questions in the
reasoning path through an LLM. Our approach
(almost entirely) relies on open-sourced models.
Therefore, it offers several advantages, including
cost-efficiency, reproducibility, and ensured data
quality, over the common practice where data are

1A few datasets, such as A-OKVQA (Schwenk et al.,
2022), VCR (Zellers et al., 2019), and ScienceQA (Lu et al.,
2022), contain rationales. However, the rationales merely pro-
vide explanations for the answers and thus differ significantly
from the multi-step reasoning data we study in the work.

obtained by querying powerful proprietary LMMs
like GPT-4V (Qi et al., 2024; Li et al., 2024).

Based on least-to-most synthesis, we build a
large scale VIsual REasOning dataset (VIREO)
with 50k examples, and tailor LLaVA-1.5-7B (Liu
et al., 2023a) as a visual reasoner through super-
vised fine-tuning on VIREO. The reasoner can
be generally applied to off-the-shelf VLMs in a
plug-and-play fashion to enhance their reasoning
capabilities. We conduct experiments with four
representative VLMs as showcases. Evaluation re-
sults across four VQA benchmarks indicate that the
reasoner can consistently improve all VLMs over
all tasks, with absolute performance gains ranging
from 0.71% to 39%.

Our contributions are three-fold:
I. We introduce the least-to-most visual reasoning
paradigm to synergize question-decomposition and
tool-invoking in VLMs for solving complex vision-
language tasks.
II. We propose least-to-most synthesis, a repro-
ducible, cost-efficient, and data quality-assured al-
gorithm for automatically creating multi-step visual
reasoning data (almost) using open-source models.
III. We use least-to-most synthesis to construct the
VIREO dataset of 50k examples for fine-tuning a
reasoner model2. Extensive experiments illustrate
that the reasoner can consistently and significantly
enhance existing VLMs in a plug-and-play fashion
across five VQA benchmarks.

2 Related Works

2.1 Vision-Language Models

Building LMMs aims to enable foundation models
to seamlessly handle multimodal signals, such as
language, vision, and audio. Among the efforts, sig-
nificant attention has been focused on jointly mod-
eling vision and language, known as VLMs. Recent
work on VLMs can be broadly categorized into two
groups, according to how visual information is in-
corporated into the models. The first line integrates
visual information into LLMs via a vision-language
connector. For example, LLaVA series (Liu et al.,
2023b,a) exploit a linear transformation or an MLP
to transform outputs from a vision encoder into in-
puts of a language model. BLIP-2 (Li et al., 2023a)
and InstructBLIP (Dai et al., 2024) rely on Query
Transformers to achieve vision-language alignment.

2We have released a larger version of VIREO comprising
500k examples to spur research in the visual reasoning area.
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Similarly, Qwen-VL (Bai et al., 2023) and mPLUG-
Owl (Ye et al., 2023) use learnable tokens to take
visual information into account. CogVLM (Wang
et al., 2023a) maps vision embedding to the space
of word embedding by an MLP adapter, and then
enables deep vision-language feature alignment via
a visual expert module. The second group strives
to train VLMs natively from image tokens and
textual tokens. Among the representative models,
Flamingo (Alayrac et al., 2022) inserts gated cross-
attention dense blocks into a pre-trained LM. BEIT-
3 (Huang et al., 2024) utilizes Multiway Transform-
ers as the backbone to encode various modalities.
KOSMOS-1 (Huang et al., 2024) and KOSMOS-
2 (Peng et al., 2023) interleave image tokens with
textual tokens in the input sequence through a de-
signed format. Gemini family (Team et al., 2023;
Reid et al., 2024) take multimodal signals as input
and can natively generate images using discrete
image tokens. Instead of building a new VLM, we
target enhancing the multi-step reasoning ability
of existing VLMs. Our data synthesis approach
enables us to develop a visual reasoner that can
be generally applied to various VLMs, leading to
consistent improvements over various VQA tasks.

2.2 Reasoning and Tool Use
Reasoning is an important emergent ability of
LLMs (Wei et al., 2022a). With appropriate exem-
plars or prompts, LLMs can demonstrate “chain-
of-thought” (CoT) behavior and solve problems
through multi-step reasoning (Wei et al., 2022b;
Kojima et al., 2022). Encouraged by the observa-
tion, significant efforts have been made to improve
the reasoning capabilities of LLMs. For example,
Zhou et al. (2022) propose least-to-most prompting
for complex reasoning; Yao et al. (2022) extend
the ability of LLMs by interleaving reasoning and
acting. Wen et al. (2024) generate code-form plans
before low-level reasoning. In addition to innova-
tions in methodology, reasoning abilities have also
proven effective in various applications, such as ta-
ble understanding (Wang et al., 2023c), math prob-
lem solving (Wei et al., 2022b), question answer-
ing (Guan et al., 2024), and decision making (Yao
et al., 2022). Very recently, the research community
begins to investigate the problem in multimodal
models (Qi et al., 2024; Yang et al., 2023; Wang
et al., 2024). Different from existing work, we fo-
cus on data synthesis with open-sourced models,
and develop a plug-an-play visual reasoner.

Our work also relates to the efforts on facili-

tating LLMs to leverage tools (Qin et al., 2023b;
Schick et al., 2024; Shen et al., 2024; Qin et al.,
2023a). The difference is that our tools are spe-
cially selected for visual processing, with the goal
of enhancing the reasoning capabilities of VLMs.

2.3 Task Decomposition for Visual Reasoning
Various approaches have been proposed to tackle
complex vision-language tasks through task decom-
position and step-by-step reasoning. For exam-
ple, Visual Programming (Gupta and Kembhavi,
2023) utilizes LLMs to perform visual reasoning
by breaking down tasks into subroutines. Similarly,
ViperGPT (Surís et al., 2023) and CodeVQA (Sub-
ramanian et al., 2023) decompose tasks to generate
executable code. However, these methods heavily
rely on the strong instruction-following capabilities
of LLMs, making them less effective with smaller
models. Furthermore, these approaches are sus-
ceptible to instability arising from prompt designs,
choice and ordering of demonstrations, and LLM
selection, even when employing powerful models
like GPT-3 (Zhao et al., 2021). Our work devi-
ates significantly from these methods by focusing
on fine-tuning VLMs on large-scale synthesized
datasets, systematically enhancing the model’s ca-
pability to handle complex tasks. This approach en-
ables us to achieve competitive performance using
smaller, open-source models (e.g., 7B or 13B pa-
rameters), making our method more cost-effective,
accessible, and suitable for practical deployment
with fewer computational resources.

3 Method

We elaborate on our method for multi-step reason-
ing in VLMs. First, we formalize least-to-most
visual reasoning that delineates how a visual rea-
soner solves a complex problem according to an
image (§3.1). Then, we present details of least-to-
most synthesis by which a VLM can be tuned as
the visual reasoner to perform reasoning (§3.2).

3.1 Least-to-Most Visual Reasoning
We formalize the least-to-most visual reasoning
paradigm as follows: Given an image I and a ques-
tion Q, a visual reasoner MR deduces a multi-step
reasoning path R, where each step either performs
operations on I (e.g., marking an area with a red
box) or asks an off-the-shelf VLM M to conclude
a final answer. To this end, we represent R as a
chain of invoking tools from a pre-defined pool
T = {ti|i = 1, 2, · · · , T} step by step, where each
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tool refers to a class of operation on images or the
VLM M, as illustrated in Figure 2 (right).

Reasoning Process. At the k-th step, MR pro-
poses a sub-question qk and selects a tool tk from
T based on an image Ik and previous steps:

qk, tk = MR(Ik, Q, {q<k}), (1)

where tk is a textual description specifying the in-
voked tool and the corresponding arguments. Then,
the answer to qk is deduced by tk, denoted as rk,
based on which Ik+1 is obtained as follows:

Ik+1 =

{
rk, if rk is an image,
Ik, otherwise.

(2)

Particularly, we set I1 to I . If Ik includes a red
box to mark some area smaller than a threshold
α, and tk intends to infer information from Ik (in-
cluding the OCR and Answer tools in Table 1),
we automatically crop this area from original Ik
and enlarge it to the same size as Ik. The above
process iterates until tk refers to the VLM M, in
which case we define the final answer A = rk and
terminate the reasoning process. In summary, we
formally denote R = [(Ik, qk, tk)]

K
k=1,

Tools. Following human experience, we define
four tools, each targeting a class of atomic prob-
lems and outputs either a modified image or a piece
of text. Tab. 1 describes details.

Specifically, we implement Grounding and
Highlight using GroundingDino (Liu et al., 2023c),
OCR using PaddleOCR3, and Answer using the
VLM M. The reasoner is trained to invoke these
tools to dive into the details of the given image.
By varying M in Answer, the reasoner can adapt
to different VLMs in a plug-and-play fashion, and
significantly enhance their performance across a
wide range of tasks, as will be shown in §4.

3.2 Least-to-Most Synthesis
To overcome the data barrier, a common practice
is to feed image-question pairs to powerful propri-
etary LMMs like GPT-4V, and gather the outputs as
a dataset (Qi et al., 2024). The top-down approach,
however, suffers from several issues: (1) Even pow-
erful proprietary models like GPT-4V still struggle
to perform reliable reasoning (Wu et al., 2023),
implying that the quality of data obtained in this
way is not guaranteed. (2) Utilizing proprietary

3https://github.com/PaddlePaddle/PaddleOCR

models incurs high costs, hindering the scalability
of the synthesized data. (3) It is difficult for oth-
ers to reproduce the method since the behavior of
proprietary models can vary over time.

In contrast to the top-down approach, we pro-
pose a bottom-up pipeline that can synthesize multi-
step visual reasoning data using (almost entirely)
open-sourced models while ensuring the quality of
the synthesized data. The workflow begins with an
image, gradually generates sub-questions associ-
ated with tools and intermediate results, and ulti-
mately synthesizes a question based on the image
and the reasoning path. Specifically, the pipeline
comprises four steps: entity recognition, node con-
struction, reasoning path synthesis, and question
synthesis, where each node aggregates a focused
(sub-)image and relevant text-form information.
Figure 2 (Left) illustrates the construction process.

Entity Recognition. We employ Deformable
DETR (Zhu et al., 2020) to recognize entities in
an image, which can identify 1,203 types of en-
tities. In practice, we discard those entities with
confidence scores ⩽ 0.5.

Node Construction. Given an image, we auto-
matically construct nodes based on the recognized
entities. Each node is represented as a pair of an
image and a textual profile, where the image is
extracted from the given one, and the profile is
an attribute-value dictionary about the image. By
converting the image into a textual profile, data syn-
thesis can eliminate the reliance on visual signals,
allowing the use of more advanced LLMs instead
of VLMs in subsequent processes. As indicated in
Figure 2, we define three types of nodes spanning
various granularities: (1) Single-Entity Node. The
image for such a node refers to one recognized en-
tity. We utilize specialized tools to extract accurate
and fine-grained attributes from multiple dimen-
sions (e.g., color) to form the profile. More details
are presented in Appendix A. (2) Entity-Group
Node. The image of an entity-group node is the
aggregation of multiple recognized entities that are
close to each other. We employ BLIP4 to caption
the image as the corresponding profile of the node.
Each caption contains about 10-20 tokens, illustrat-
ing the inter-entity relations in detail. (3) Whole-
Image Node. This type of node corresponds to the

4https://huggingface.co/Salesforce/
blip-image-captioning-large
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Figure 2: Left: the pipeline of least-to-most synthesis. Right: the process of least-to-most visual reasoning.

whole image given in advance. We use LLaVA5

to caption the image in detail as its profile, typi-
cally exceeding 200 tokens in length, which offers
comprehensive but coarse-grained information.

Reasoning Process Synthesis. We sample a
chain of M nodes from the constructed node set,
denoted as (N1, N2, · · · , NM ), which will be con-
nected in turn to form the reasoning process. We
craft elaborate rules to ensure nodes can be rea-
sonably connected and the last node NM is a
whole-image node, as detailed in Appendix A.
For every two adjacent nodes Nm and Nm+1 in
the chain (m ⩽ M − 1), based on their profiles
and a sampled tool tm, we exploit an LLM as a
Questioner to synthesize one sub-question qm to
ask about a certain attribute of the head node Nm

5https://huggingface.co/llava-hf/llava-v1.
6-vicuna-13b-hf

conditioned on the tail node Nm+1:

qm, t̂m = Questioner(NP
m, NP

m+1, tm), (3)

where NP
m and NP

m+1 refer to the profiles of Nm

and Nm+1, respectively, t̂m is the argument of the
specified tool tm to solve qm. Iterating the pro-
cess w.r.t. m, we obtain M − 1 sub-questions
and synthesize the entire reasoning process R as
[(IM−1, qM−1, t̂M−1), . . . , (I1, q1, t̂1)], where Im
is the image of Nm (m = 1, · · · ,M − 1).

Question Synthesis. We generate the main ques-
tion Q by recursively combining the sub-questions
using another LLM as a Combiner:

Q = q̃M−1, (4)

q̃m =

{
q1, m = 1,

Combiner(q̃m−1, qm), m > 1,
(5)
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Tool Argument Output Purpose

Grounding Image Target Entity
The woman in a purple ski
suit.

Image Frame an area from the Image cor-
responding to the Target Entity

Highlight Image Target Entity
Pink Cookie

Image Highlight all entities correspond-
ing to the Target Entity in the Im-
age

OCR Image List of Text
[“CURLY DICK RD”, “Tarana
13”, “Oberon 39”]

Recognize all pieces of text from
the Image

Answer Image Question
What is the next stop?
Character
[“NEXT STOP”, “BWI AIRPORT”]

Answer
As shown in the image,
the next stop is “BWI STOP”.

Answer the Question based on the
Image and recognized Character.
And Character can be empty.

Table 1: Tools used in our reasoner.

where q̃m is an intermediate result for the m-th step.
Note that {q̃m}M−2

m=2 are excluded from R, as they
are just used for synthesis of Q.

We implement Questioner and Combiner by
fine-tuning LLaMA-3-8B-Instruct6. Due to limited
resources, we obtain the training data by query-
ing GPT-4 (Wang et al., 2023b) using a few high-
quality demonstrations as seeds following the self-
instruct pipeline (Wang et al., 2023b). Since the
two tasks are relatively simple, querying GPT-4
only 10k times is enough to achieve satisfactory
performance. More details are in Appendix B.

Compared to the top-down approach, our least-
to-most synthesis is reproducible and significantly
more cost-efficient. Moreover, every step in the
pipeline is atomic, ensuring the performance of
the open-sourced models on these simple tasks.
Therefore, the synthesized data is guaranteed to be
of high quality, as will be demonstrated in §4.

4 Experiments

To assess the efficacy of the proposed method, we
fine-tune an LLaVA-1.5-7B7 as the Reasoner, and
plug the Reasoner into four representative VLMs
with various sizes and conduct experiments on four
standard VQA benchmarks. In the implementation,
we obtain 10k training examples for Question and
Combiner, respectively, by querying GPT-4. Sub-
sequently, we synthesize a visual reasoning dataset
(VIREO) with 50k examples following the least-to-

6https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

7https://huggingface.co/llava-hf/llava-1.
5-7b-hf

most synthesis approach, and perform instruction
tuning on VIREO to obtain the Reasoner. More im-
plementation details are presented in Appendix B.

4.1 Models for the Answer Tool

To illustrate the versatility of our Reasoner, we
employ several VLMs with different sizes and ar-
chitectures as the Answer tool, including (1) BLIP-
2 (Li et al., 2023a): It utilize a Q-Former module
to integrate visual and textual information. We
use the 2.7B version8, which is the smallest model
in our experiments. (2) InstructBLIP (Dai et al.,
2024): It expands BLIP-2 by incorporating instruc-
tion prompts into the Q-Former module. We use
the 7B9 and 13B10 versions in our experiments. (3)
LLaVA (Liu et al., 2024a): It hinges on a basic
projection layer to align image and text representa-
tions. We use the 13B version11.

4.2 Evaluation Datasets

We conduct experiments on the following datasets:
(1) GQA (Hudson and Manning, 2019): It is a
VQA dataset constructed from knowledge graphs,
primarily focusing on inter-entity attribute relation-
ships. (2) TextVQA (Singh et al., 2019) and ST-
VQA (Biten et al., 2019): The two datasets include
textual information within images, used to evaluate

8https://huggingface.co/Salesforce/
blip2-opt-2.7b

9https://huggingface.co/Salesforce/
instructblip-vicuna-7b

10https://huggingface.co/Salesforce/
instructblip-vicuna-13b

11https://huggingface.co/llava-hf/llava-v1.
6-vicuna-13b-hf
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the capability to understand text in pictorial form.
(3) TallyQA (Acharya et al., 2019): It is widely
used to assess the counting ability, divided into a
simple subset and a complex subset. The complex
subset of TallyQA involves more fine-grained at-
tributes of the entities in the images than the simple
subset. In our experiments, we denote these subsets
as Tally-S and Tally-C, respectively.

Since the VLMs used for the Answer tool are
general-purpose generative models and not fine-
tuned on the evaluation datasets, they may pro-
duce correct answers but include additional infor-
mation (e.g., “The answer is”) beyond the ground
truth provided by the datasets. Therefore, we use
Exact Matching (EM) as the metric only for Tal-
lyQA. For GQA and TextVQA, we use answer
recall, i.e., whether the output includes the ground
truth, for evaluation. For ST-VQA, we submit re-
sults to its official website.

4.3 Baselines
To comprehensively compare our approach with
alternative task decomposition strategies, we de-
vise a baseline termed “Tools” inspired by Gupta
and Kembhavi (2023). Specifically, we employ a
few-shot approach to decompose the initial prob-
lem into a sequence of tool-calling operations (e.g.,
PaddleOCR and GroundingDINO), which are sub-
sequently executed. Notably, we leverage LLaMA-
3-8B-Instruct (Dubey et al., 2024) for decomposi-
tion, ensuring a comparable parameter count to the
LLaVA-7B model used by our Reasoner.

4.4 Main Results
Table 2 reports evaluation results. We find that
(1) The Reasoner consistently improves the per-
formance of all VLMs across all datasets. By
decomposing questions and invoking specialized
tools, the Reasoner can improve various off-the-
shelf VLMs in a plug-and-play fashion, suggesting
its strong generalization ability. (2) The Reasoner
helps better capture complex inter-entity rela-
tions. The Reasoner brings clear improvements on
GQA, which involves diverse relations among enti-
ties in the images. The improvements could result
from the least-to-most synthesis algorithm in which
such relations are implicitly modeled. The improve-
ment for LLaVA (3.63%) is more substantial than
other weaker VLMs (1.17%-1.95%). It is possibly
because stronger VLMs may better realize their po-
tential with the Reasoner considerably alleviating
the difficulty in locating the target entity. (3) The

Reasoner boosts the understanding of words in
images. The OCR tool empowers the Reasoner
to effectively enhance the performance on both
TextVQA and ST-VQA. On TextVQA, we notice
that the enhancement is less significant on LLaVA
than on weaker VLMs, possibly because LLaVA is
less dependent on external tools for understanding
the words in images. (4) The Reasoner improves
the counting performance by a large margin.
The benefit of the Reasoner is particularly signifi-
cant on TallyQA. Without the Reasoner, the base
VLMs are sensitive to irrelevant information in the
images and thus easily miscount. By utilizing the
Highlight tool, the Reasoner can reliably mitigate
the impact of such irrelevant information.

4.5 Quality Assessment of VIREO

We conduct a human study to investigate the qual-
ity of our synthesized VIREO dataset. Specifically,
we randomly sample 200 examples from VIREO,
and recruit 3 graduate students majoring in NLP to
manually check the correctness of the synthesized
question and reasoning process for each instance.
The check focuses on the correctness in three as-
pects: (1) Sub-Question. The sub-question must
be accurately faithful to the profile of the tail node
and can be resolved using the specified tool. (2)
Argument. Based on the current sub-question,
the annotators need to assess whether using the
given argument to invoke the tool can yield the ex-
pected output. (3) Main Question. The annotators
judge whether the main question covers all sub-
questions and whether it can be decomposed into
sub-questions in the correct order. Each example
receives 3 labels from each of the three annota-
tors on each aspect. Results show that the three
evaluators consistently approve that all examples
are correct in all aspects12 , suggesting the highly
guaranteed quality of the synthesized data.

5 Discussions

Although the main results affirmed the high quality
of VIREO and the general benefits of the Reasoner
to enhance VLMs on multiple benchmarks, we are
still curious about the following research questions:
(1) RQ1: How does the capability of the Reasoner
vary w.r.t. the size of instructions for fine-tuning?
(2) RQ2: What is the relative impact of each inte-
grated tool on the Reasoner’s overall capability? (3)

12This might be surprising, but we double-checked the eval-
uation and confirmed the results.
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Model Size GQA TextVQA ST-VQA TallyQA-S TallyQA-C

BLIP2 2.7B 40.85 32.65 18.89 20.93 29.00
+ Tools - 38.26 (-1.17) 34.54 (+2.11) - 49.77 (+28.84) 34.46 (+5.46)
+ Reasoner - 42.02 (+1.17) 36.94 (+4.29) 19.60 (+0.71) 56.38 (+35.45) 39.38 (+10.38)

InstructBLIP 7B 51.65 38.46 24.85 67.05 38.84
+ Tools - 50.33 (-1.32) 42.87 (+4.41) - 68.64 (+1.59) 50.25 (+11.41)
+ Reasoner - 53.60 (+1.95) 43.42 (+4.96) 26.36 (+1.51) 74.99 (+7.94) 57.78 (+18.94)

InstructBLIP 13B 52.72 37.61 22.21 58.38 23.46
+ Tools - 51.92 (-0.80) 39.65 (+2.04) - 69.29 (+10.91) 51.37 (+27.91)
+ Reasoner - 54.24 (+1.48) 42.03 (+4.42) 23.72 (+1.51) 74.98 (+16.60) 59.73 (+36.27)

LLaVA 13B 57.02 57.04 - 70.29 29.69
+ Tools - 54.19 (-2.83) 58.91 (+1.87) - 77.01 (+6.72) 61.67 (+31.98)
+ Reasoner - 60.65 (+3.63) 59.22 (+2.18) - 80.28 (+9.99) 68.65 (+38.96)

Table 2: Evaluation results with different VLMs as the Answer tools. Size refers to the number of parameters of
the language model in each VLM. We do not provide the result of LLaVA on ST-VQA because its output always
includes abundant information, leading to nonsensical low scores using the official evaluation website. We highlight
the best results in bold.

Figure 3: The performance of the Reasoner varies with
the size of VIREO. The dashed lines indicate the per-
formance of corresponding models using 50k training
examples.

RQ3: Will the Reasoner bring a negative impact
on visual tasks other than VQA? (4) RQ4: Is the
Reasoner still effective on more advanced VLMs?
(5) RQ5: What are the underlying causes of the
Reasoner’s errors on the benchmarks?

5.1 RQ1: Influence of Data Size

Figure 3 presents the model performance when
we vary the size of VIREO. Overall, the gain in
performance gradually increases with the number
of training examples. However, we also notice that
the marginal benefit is diminishing, suggesting that
more diverse data synthesis approaches besides
ours are needed to further break through the upper
limit in future work.

Model GQA TextVQA Tally-S Tally-C

BLIP2 42.02 36.94 56.38 39.38
w/o OCR 40.26 32.30 54.89 37.89
w/o Highlight 39.34 36.30 20.45 28.66
w/o Grounding 40.44 31.98 20.89 28.84

InstBLIP-7B 53.60 43.42 74.99 57.78
w/o OCR 50.09 37.20 73.17 55.78
w/o Highlight 48.90 41.78 65.68 38.49
w/o Grounding 51.03 37.84 67.01 38.67

InstBLIP-13B 54.24 42.03 74.98 59.73
w/o OCR 50.25 36.56 73.19 55.78
w/o Highlight 48.90 41.70 57.51 25.11
w/o Grounding 51.82 37.46 58.61 25.14

LLaVA 60.65 59.22 80.28 68.65
w/o OCR 53.86 55.89 77.28 64.53
w/o Highlight 51.82 37.46 58.61 25.14
w/o Grounding 56.51 58.09 70.22 33.04

Table 3: Evaluation results of removing different tools.

5.2 RQ2: Ablation Studies Regarding Tools

To gauge the significance of the diverse tools em-
ployed in our approach, we conducted a thorough
ablation study, systematically investigating the im-
pact of removing each tool on model performance.
The findings, presented in Table 3, unequivocally
demonstrate that the exclusion of any single tool
adversely affects the model’s capabilities across
various datasets. This observation underscores the
multifaceted nature of visual tasks, which often
necessitate the synergistic application of multiple
sophisticated operations, rendering the reliance on
a solitary tool insufficient.
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Model Size MMMU POPE

InstructBLIP 7B 22.43 84.79
+ Reasoner - 22.50 (+0.07) 84.79 (+0.00)

InstructBLIP 13B 18.75 80.42
+ Reasoner - 18.23 (-0.52) 80.42 (+0.00)

Table 4: Results on broader visual tasks beyond VQA.

5.3 RQ3: Extending to Broader Visual Tasks

To investigate whether introducing a Reasoner
will hurt the performance on other visual tasks,
we conduct experiments on MMMU (Yue et al.,
2024) and POPE (Li et al., 2023b) as examples.
The MMMU benchmark aggregates massive multi-
discipline tasks necessitating abundant knowledge
to address, which is beyond the scope of our Rea-
soner. POPE is a discrimination dataset for hallu-
cination detection which requires discriminating
whether a certain coarse-grained object is present
in a given image without the need for multi-step
reasoning. We choose InstructBLIP-7B and -13B
as the base VLMs for discussion.

As shown in Table 4, introducing the Reasoner
on MMMU has a minimal impact on the final per-
formance, suggesting that the Reasoner does not
influence the expression of VLMs’ inherent knowl-
edge. On the other hand, the presence or absence of
the Reasoner on POPE yields consistent results, in-
dicating that additional reasoning over images does
not increase the likelihood of the VLMs generating
hallucinations.

5.4 RQ4: Efficacy on More Advanced VLMs

Considering that more advanced VLMs such as
Qwen-VL (Bai et al., 2023) have huge potential
to inherit the function of external tools such as
perceiving bounding boxes in images, we convert
VIREO into an end-to-end format by sequentially
combining the input and output of each step in
order to avoid the computation overhead from ex-
plicit tool invocation. Table 5 shows that the Qwen-
VL model, fine-tuned on the end-to-end version of
VIREO, significantly improves across all datasets.
Notably, the application of our Reasoner does not
cause a noticeable increase in time cost compared
to the vanilla model (1.4s v.s. 1.1s per sample).

5.5 RQ5: Regarding Error Analysis

To analyze the error types of the Reasoner, we
randomly sample 100 instances where the model
prediction is wrong from all evaluation sets. Then,

Model GQA TextVQA TallyQA-S TallyQA-C

Qwen-VL 57.95 67.26 75.38 37.92
+ Reasoner 61.73 74.12 81.50 68.40

Table 5: Evaluation results on Qwen-VL.

Figure 4: The distribution of different error types.

we analyze their error and categorize the errors
into three types: (1) Reasoning: The Reasoner
uses a wrong tool (Tool) or generates wrong ar-
guments for the tool (Arguments); (2) Execution:
The Grounding, OCR, or Highlight tool returns
wrong execution results; and (3) Inference: The
Answer tool outputs wrong answers (Wrong) or
irrelevant answers with the question (Missing).

As shown in Figure 4, the “Inference” error
has the largest proportion (42%). Among these,
there are even 15% of instances where the Answer
tool generates irrelevant answers, indicating the
huge room to improve the instruction-following
ability of existing VLMs. Additionally, the "Rea-
soning" error accounts for a significant proportion
(39%), and most of the instances (28%) are at-
tributed to wrong arguments. This means VLMs’
tool-invoking capability is far from perfect, yet this
ability is crucial for VLMs to interact with the en-
vironment. The “Execution” error is less frequent,
implying the huge potential of building general and
powerful VLMs based on specialized visual tools.

6 Conclusions

We propose a data synthesis approach to enhanc-
ing multi-step reasoning capabilities of vision-
language models. The approach decomposes the
synthesis task into several simple sub-tasks, and fin-
ish the sub-tasks (almost) with open-sourced mod-
els. Based on the approach, we build a large-scale
visual reasoning dataset, and develop a visual rea-
soner by tuning on the dataset. Evaluation results
across four VQA benchmarks indicate that the vi-
sual reasoner can generally improve the reasoning
capabilities of a number of existing VLMs.
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Limitations

We select COCO2014 (Lin et al., 2014) as the
source of images for our data synthetic process.
However, while COCO2014 is a general-purpose
image dataset, we do not guarantee that its data
can cover all visual tasks. Additionally, our pro-
posed method demonstrates consistent improve-
ments across four VQA benchmarks, but this does
not imply that our method will be effective in all
visual datasets and scenarios. Furthermore, during
our experiments, we only selected four VLMs as
base models, and we cannot ensure that our method
is capable of bringing improvements to all models.

Ethical Considerations

Images may contain sensitive information. Using
or publishing datasets that include such information
could pose potential ethical risks. In our experi-
ments, we strictly control the image sources of our
data, utilizing only authorized open-source datasets.
Furthermore, all the models we used are publicly
accessible and adhere to established requirements.
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A Details of Data Construction.

Attributes of Single-Entity Node. Each single-
entity node consists of five attributes: Label, Lo-
cation, Color, Text, and Size. Specifically, Label
and Location are directly derived from the recogni-
tion results of Deformable DETR. Color is deter-
mined using ColorThief 13 to analyze the dominant
color scheme of the subgraph corresponding to the
single-entity node. Text is obtained by applying
PaddleOCR to recognize textual content within the
image. Size records the node’s proportion in the
entire image, considering its width, height, and
area.

Construction of Chain. We use tools that pro-
duce graphical outputs (e.g., Grounding, Highlight)
to connect intermediary nodes and tools that pro-
duce textual outputs (e.g., OCR, Answer) to con-
nect terminal nodes.

We construct the chain by sequentially adding
nodes. Specifically, we maintain a queue L =
(N1, N2, . . . , Ni) consisting of nodes. To add
Ni+1, we first specify the tool ti to be used and
sample a node in the remaining set N̂ = {Nj /∈ L}
that allow the use of this tool. For instance, only
nodes with text in images permit using the OCR
tool. If N̂ = ∅ or the chain length reaches the limit,
the process terminates. When constructing VIREO,
we set the maximum chain length to 4. Conse-
quently, the dataset includes reasoning paths with
lengths of 2, 3, and 4.

B Implementation Details

Image Source. We use the COCO2014
dataset (Lin et al., 2014) as our source of images.

Questioner. We use LLaMA-3-8B-Instruct as the
base model for the Questioner. To construct the
corresponding training data, we first manually cre-
ate 5 seed prompts for each combination of head
node and tail node (3× 3 = 9). Then, we generate
a total of 10k instances by using GPT-4. During
this process, to reduce the bias introduced by the

13https://lokeshdhakar.com/projects/
color-thief/

Model Size VLM-only Reasoner

BLIP2 2.7B 0.05 1.40
InstructBLIP 7B 0.19 1.70
InstructBLIP 13B 0.28 1.79
LLaVA 13B 0.57 2.08

Table 6: The average per-sample time cost (seconds)
when using only the VLM and applying the Reasoner.

seed prompts, we gradually add the obtained re-
sults into the prompt pool. For each instance, three
prompts are randomly selected from the prompt
pool as demonstrations. For each instance, the in-
put contains 3 fields: the profiles of the head node
and tail node, and the specified tool. Output in-
cludes 2 fields: the question and the arguments of
the tool. We perform instruction fine-tuning on the
Questioner using LoRA. The rank is set to 8 and
the lora_alpha is set to 8. We adopt AdamW as the
optimizer. We set adam_beta1, adam_beta2, and
adam_epslion to 0.9, 0.999, and 1e-8, respectively.
We use the cosine schedule to warm up the train-
ing and set warmup_steps to 0.1. We set the batch
size to 4 and fine-tune Questioner for 2 epochs,
with each epoch taking around 1 hour. The training
process is completed with 8 Nvidia A100 GPUs.

Combiner. Similar to Questioner, we also use
LLaMA-3-8B-Instruct as the base model for the
Combiner. We manually create 20 seed prompts
and generate a total of 10k instances by using
GPT-4. The input includes two questions to be
merged, and the output is the merged result. The
fine-tuning settings of Combiner keep the same as
Questioner.

Reasoner. We synthesize 50k data examples us-
ing the least-to-most synthesis method. Each exam-
ple includes the current image I , the main question
Q, and the previous sub-questions {q<k}. The la-
bel for each data example comprises the current
sub-question qk and the tool tk that needs to be in-
voked. We use this data to train LLaVA-1.5-7B as
the Reasoner. We perform instruction fine-tuning
on the Reasoner using LoRA. The rank is set to 8
and the lora_alpha is set to 8. We adopt AdamW
as the optimizer. We set adam_beta1, adam_beta2,
and adam_epslion to 0.9, 0.999, and 1e-8, respec-
tively. We use the cosine schedule to warm up the
training and set warmup_steps to 0.1. We set the
batch size to 8 and fine-tune the Reasoner for 3
epochs, with each epoch taking around 3 hours.
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The training process is completed with 1 Nvidia
A100 GPU.

C Additional Time Cost

While the Visual Reasoner offers significant perfor-
mance gains across various tasks, it is crucial to ac-
knowledge the computational overhead associated
with its multi-step reasoning process. As each step
necessitates additional inference time, the overall
inference duration is extended compared to using a
vanilla VLM. Table 6 presents a quantitative anal-
ysis of the average per-sample time cost using a
single Nvidia A100 GPU.

D Case Study

To facilitate understanding of our method, we show
some cases in Figure 5, Figure 6, and Figure 7.

E Example of Data Construction

To visualize our least-to-most pipeline, we show
the data construction process in Figure 8.
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Figure 5: Case 1. This case uses Grounding to locate the donut and uses OCR and Answer to get the final answer.

Figure 6: Case 2. In this case, the man wearing orange is first precisely identified, and then attention is directed to
the bicycle near him to obtain the answer.
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Figure 7: Case 3. This case excludes irrelevant people and highlights the target group, thereby achieving accurate
counting results.
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Figure 8: A simple case to demonstrate the data construction process.
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